当前位置:文档之家› 方程应用题型汇总

方程应用题型汇总

方程应用题型汇总
方程应用题型汇总

方程应用题归类汇集

一、列方程解应用题的一般步骤(解题思路)

(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).

(2)设—设出未知数:根据提问,巧设未知数.

(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系

列出方程.

(4)解——解方程:解所列的方程,求出未知数的值.

(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际, 检验后写出答案.(注意带上单位)

二、一般行程问题(相遇与追击问题)

1.行程问题中的三个基本量及其关系:

路程=速度×时间 时间=路程÷速度 速度=路程÷时间

2.行程问题基本类型

(1)相遇问题: 快行距+慢行距=原距

(2)追及问题: 快行距-慢行距=原距

1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.340

8=-x x 2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?

解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程

⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)

方法二:设从家里到学校有x 千米,则列出方程是:60

159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和

设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+280

4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km ,

骑自行车的人的速度是每小时10.8km 。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴ 行人的速度为每秒多少米? ⑵ 这列火车的车长是多少米?

提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。

等量关系: ① 两种情形下火车的速度相等 ② 两种情形下火车的车长相等

在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。

解:⑴ 行人的速度是:3.6km/时=3600米÷3600秒=1米/秒

骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒

⑵ 方法一:设火车的速度是x 米/秒,则 26×(x -3)=22×(x -1) 解得x =4

方法二:设火车的车长是x 米,则 26

32622122?+=?+x x 6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千

米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

提醒:此类题相当于环形跑道问题,两者行的总路程为一圈

即 步行者行的总路程+汽车行的总路程=60×2

解:设步行者在出发后经过x 小时与回头接他们的汽车相遇,则 5x +60(x -1)=60×2

7、某人计划骑车以每小时12千米的速度由A 地到B 地,这样便可在规定的时间到达B 地,但他因

事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B 地,求A 、B 两地间的距离。

解:方法一:设由A 地到B 地规定的时间是 x 小时,则

12x =??

? ??

--?604602015x x =2 12 x =12×2=24(千米) 方法二:设由A 、B 两地的距离是 x 千米,则 (设路程,列时间等式)

60

460201512+=-x x x =24 答:A 、B 两地的距离是24千米。 温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。

8、一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间。隧道的顶上有一盏灯,垂直向下

发光,灯光照在火车上的时间是10s ,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

解析:只要将车尾看作一个行人去分析即可,

前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。

此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。

解:方法一:设这列火车的长度是x 米,根据题意,得

10

20300x x =+ x =300 答:这列火车长300米。 方法二:设这列火车的速度是x 米/秒,

根据题意,得20x -300=10x x =30 10x =300 答:这列火车长300米。

9、两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向

而行时,快车驶过慢车某个窗口所用的时间为5秒。

⑴ 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少?

⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?

解析:① 快车驶过慢车某个窗口时:研究的是慢车窗口的人和快车车尾的人的

相遇问题,此时行驶的路程和为快车车长!

② 慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的

相遇问题,此时行驶的路程和为慢车车长!

③ 快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的

追击问题,此时行驶的路程和为两车车长之和!

解:⑴ 两车的速度之和=100÷5=20(米/秒)

慢车经过快车某一窗口所用的时间=150÷20=7.5(秒)

⑵ 设至少是x 秒,(快车车速为20-8)则 (20-8)x -8x =100+150 x =62.5 答:至少62.5秒快车从后面追赶上并全部超过慢车。

二、环行跑道与时钟问题:

1、在6点和7点之间,什么时刻时钟的分针和时针重合?

老师解析:6:00时分针指向12,时针指向6,此时二针相差180°,

在6:00~7:00之间,经过x 分钟当二针重合时,时针走了0.5x °分针走了6x °

以下按追击问题可列出方程,不难求解。

解:设经过x 分钟二针重合,则6x =180+0.5x 解得11360=x 11

832= 2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地

同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?

老师提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。

解:① 设同时同地同向出发x 分钟后二人相遇,则 240x -200x =400 x =10

② 设背向跑,x 分钟后相遇,则 240x +200x =400 x =11

1 3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵ 成平角;⑶成直角;

解:⑴ 设分针指向3时x 分时两针重合。x x 12135+

?= 11180=x 11416= 答:在3时11

416分时两针重合。 ⑵ 设分针指向3时x 分时两针成平角。26012135÷++

?=x x 11149=x 答:在3时11

149分时两针成平角。 ⑶设分针指向3时x 分时两针成直角。46012135÷++

?=x x 11832=x 答:在3时11

832分时两针成直角。 4、某钟表每小时比标准时间慢3分钟。若在清晨6时30分与准确时间对准,则当天中午该钟表指示时间为12时50分时,准确时间是多少?

解:方法一:设准确时间经过x 分钟,则 x ∶380=60∶(60-3)

解得x =400分=6时40分 6:30+6:40=13:10

方法二:设准确时间经过x 时,则

6

512216603-=??? ??-x x 三、行船与飞机飞行问题: 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

水流速度=(顺水速度-逆水速度)÷2

1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3

小时,求两码头之间的距离。

解:设船在静水中的速度是x 千米/时,则3×(x -3)=2×(x +3)

解得x =15 2×(x +3)=2×(15+3) =36(千米)答:两码头之间的距离是36千米。

2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行

需要3小时,求两城市间的距离。

解:设无风时的速度是x 千米/时,则3×(x -24)=6

52×(x +24) 3、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,

求该河的水流速度。

解:设水流速度为x 千米/时,则9(10-x)=6(10+x) 解得x =2 答:水流速度为2千米/时.

4、某船从A 码头顺流航行到B 码头,然后逆流返行到C 码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A 与C 的距离比A 与B 的距离短40千米,求A 与B 的距离。

解:设A 与B 的距离是x 千米,(请你按下面的分类画出示意图,来理解所列方程)

① 当C 在A 、B 之间时,

205

.25.7405.25.7=-++x 解得x =120 ② 当C 在BA 的延长线上时,205.25.7405.25.7=--+++x x x 解得x =56 答:A 与B 的距离是120千米或56千米。

四、工程问题

1.工程问题中的三个量及其关系为:

工作总量=工作效率×工作时间

=工作总量工作效率工作时间 =工作总量工作时间工作效率

2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1.

1、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?

解:设还需要x 天完成,依题意,得111()41101515

x +?+= 解得x=5 2、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?

解:设甲、乙两个龙头齐开x 小时。由已知得,甲每小时灌池子的

12,乙每小时灌池子的13。 列方程:12×0.5+(12+13)x=23 , 14+56x=23 , 56x=512

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

2020年高考文科数学《直线与圆》题型归纳与训练

冲刺高考 复习必备 2020年高考文科数学《直线与圆》题型归纳与训练 【题型归纳】 题型一 倾斜角与斜率 例1 直线l 310y +-=,则直线l 的倾斜角为( ) A. 0150 B. 0120 C. 060 D. 030 【答案】 A 【解析】由直线l 310y +-=,可得直线的斜率为3 3 - =k ,设直线的倾斜角为[)πα,0∈,则3 3 tan -=α,∴?=150α. 故选:A . 【易错点】基础求解问题注意不要算错 【思维点拨】直线方程的基础问题(倾斜角,斜率与方程,注意倾斜角为α为2 π ,即斜率k 不存在的情况)应对相关知识点充分理解,熟悉熟练 例2 已知三点()0,a A 、()7,3B 、()a C 9,2--在一条直线上,求实数a 的值. 【答案】2=a 或9 2=a 【解析】5 97,35a k a k CB AB += -= ∵A 、B 、C 三点在一条直线上,∴BC AB k k =,即 59735a a += -,解得2=a 或9 2 =a . 题型二 直线方程 例1 经过点()1,1M 且在两坐标轴上截距相等的直线是( ). A. 2x y += B. 1x y += C. 1x =或1y = D. 2x y +=或x y =

【答案】D 【解析】若直线过原点,则直线为y x =符合题意,若直线不过原点设直线为1x y m m +=, 代入点()1,1解得2m =,直线方程整理得20x y +-=,故选D . 【易错点】截距问题用截距式比较简单,但截距式1=+n y m x 中要求m ,n 均非零。故做题时应考虑此情形 【思维点拨】求解基本直线方程问题通常比较简单,考虑时注意每种形式的适用范围即可。不要漏解。 题型三 直线位置关系的判断 例1 直线()1:3230l kx k y +--=和()()2:2220l k x k y -++-=互相垂直,则实数k 的值是( ) A. 2-或1- B. 2或1- C. 2-或1 D. 2或1 【答案】D 【解析】根据直线垂直的充要条件得到: ()()()3*22*20k k k k -+-+= 化简为2 3201k k k -+=?= 或2 故选择D 【易错点】本题若采用斜率之积为-1求解,则容易错误。首先求斜率变形时分母不为0,分母为零,实际上上是一条竖线(k 不存在);其次垂直时应为:121-=k k (斜率均存在)或21k k ,中一为0,一不存在 若用0:1=++c by ax l ,0:2=++t ny mx l 垂直的充要条件:0=+bn am ,则避免上述问题 【思维点拨】 直线位置关系问题(平行与垂直)应熟练掌握其判断方法。一般而言,除一般式其他形式可能漏解(忽略了k 不存在的情况)。在做题时应该考虑全面,避免少解 题型四 对称与直线恒过定点问题 例1 点()2,4关于直线230x y +-=的对称点的坐标为_________. 【答案】()2,2- 【解析】设对称点坐标为()00,x y ,则对称点与已知点连线的中点为0024,22x y ++?? ??? ,

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

直线的方程知识点及题型归纳总结

直线的方程知识点及题型归纳总结 知识点精讲 一、基本概念 斜率与倾斜角 我们把直线y kx b =+中k 的系数k (k R ∈)叫做这条直线的斜率,垂直于x 轴的直线,其斜率不存在。 x 轴正方向与直线向上的方向所成的角叫这条直线的倾斜角。倾斜角[)0,απ∈,规定与x 轴平行或重合 的直线的倾斜角为0,倾斜角不是 2 π 的直线的倾斜角的正切值叫该直线的斜率,常用k 表示,即tan k α=。 当0k =时,直线平行于轴或与轴重合; 当0k >时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0k <时,直线的倾斜角为钝角,倾斜角k 随的增大而减小; 二、基本公式 1. 111222(,),(,)P x y P x y 两点间的距离公式 12||PP =2. 111222(,),(,)P x y P x y 的直线斜率公式 121212tan (,)2 y y k x x x x π αα-= =≠≠- 3.直线方程的几种形式 (1)点斜式:直线的斜率k 存在且过00(,)x y ,00()y y k x x -=- 注:①当0k =时,0y y =;②当k 不存在时,0x x = (2)斜截式:直线的斜率k 存在且过(0,)b ,y kx b =+ (3)两点式: 11 2121 y y x x y y x x --=--,不能表示垂直于坐标轴的直线。 注:211121()()()()x x y y x x y y --=--可表示经过两点1122(,),(,)P x y Q x y 的所有直线 (4)截距式: 1x y a b +=不能表示垂直于坐标轴及过原点的直线。 (5)一般式:2 2 0(0)Ax By C A B ++=+≠,能表示平面上任何一条直线(其中,向量(,)n A B =r 是这 条直线的一个法向量)

高考直线方程题型归纳

高考直线方程题型归纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考直线方程题型归纳 知识点梳理 1.点斜式方程 设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0), 由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程. 注意:利用点斜式求直线方程时,需要先判断斜率存在与否. (1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0. (2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0. (3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解. 2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点 斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否. (1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程. (2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函 数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减. (3)直线的斜截式方程是直线的点斜式方程的特例。要注意它们之间的区别和联系及其相互转化. 3.直线的两点式方程 若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为11 2121y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程. 注意 (1)当直线没有斜率(x 1=x 2)或斜率为零(y 1=y 2)时,不能用两点式11 2121 y y x x y y x x --=--表示它的方程; (2)可以把两点式的方程化为整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1),就可以用它来求过平面上任意两点的直线方程; 如过两点A (1,2),B (1,3)的直线方程可以求得x =1,过两点A (1,3),B (-2,3)的直线方程可以求得y =3. (3)需要特别注意整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1)与两点式方程11 2121 y y x x y y x x --=--的区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展。 4.直线的截距式方程

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

直线方程题型分类总结

直线方程常见题型分类总结 直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。 题型一:两直线的位置关系 判断直线平行:已知直线12l l ,的方程为1111:0l A x B y C ++=,2222:0l A x B y C ++=,若12//l l ,则有12210A B A B -=,且1221B C B C ≠或1221A C B C ≠ 判断直线相交:1111:0l A x B y C ++=,2222:0l A x B y C ++=,若两直线相交,则有 12210AB A B -≠ 判断直线垂直:已知直线12l l ,的方程为1111:0l A x B y C ++=,2222:0l A x B y C ++=,若 12l l ⊥,则有12120A A B B +=,反之亦然。 两点间的距离,点到直线的距离,两条平行线间的距离 1.两点间距离公式: 设平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,

1212||||PP y y =-; 2.点到直线距离公式:点()00,y x P 到直线0:1=++C By Ax l 的距离2 200B A C By Ax d +++= 3.两平行直线距离公式: 两条平行直线 11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d = , 1.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于 A .1 B .13- C .2 3 - D .2- 2.若直线1:(3)4350l m x y m +++-=与2:2(5)80l x m y ++-=平行,则m 的值为 A .7- B .1-或7- C .6- D .13 3 - 题型二:定点问题 1. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点. A .(0,0) B .(3,1)C .(1,3) D .(1,3)-- 2.若不论m 取何实数,直线:120l mx y m +-+=恒过一定点,则该定点的坐标为 A .(2,1)- B . (2,1)- C .(2,1)-- D .(2,1) 3.不论m 为何实数,直线(m -1)x -y +2m +1=0 恒过定点 A.(1, - 2 1 ) B.(-2, 0) C.(2, 3) D.(-2, 3) 题型三:对称问题 1.已知点(5,8),(4,1)A B ,则点A 关于点B 的对称点C 的坐标 . 2.求点(1,2)关于直线20x y --=的对称点。 3.与直线2360x y +-=关于点(1,1)-对称的直线方程是 A .3220x y -+= B .2370x y ++= C .32120x y --= D .2380x y ++= 4.光线由点P (2,3)射到x 轴后,经过反射过点Q (1,1),则反射光线方程是 A .450x y +-= B .430x y --= C .3210x y --= D .2310x y -+= 题型四:截距相等问题 1.若直线过)1,2(P 点且在两坐标轴上的截距相等,则这样的直线有几条 A. 1条 条 条 D.以上都有可能

必修2直线与方程知识点总结与题型

必修2直线与方程知识点总 结与题型 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第三章:直线与方程的知识点 倾斜角与斜率 1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<. 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式21 21 y y k x x -= -. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k=0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α?<,随着α的增大,斜率k 也增大;当90180α?<

高考直线方程题型归纳修订版

高考直线方程题型归纳集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

高考直线方程题型归纳 知识点梳理 1.点斜式方程 设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0), 由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程. 注意:利用点斜式求直线方程时,需要先判断斜率存在与否. (1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0. (2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0. (3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解. 2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否. (1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程. (2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减. (3)直线的斜截式方程是直线的点斜式方程的特例。要注意它们之间的区别和联系及其相互转化. 3.直线的两点式方程 若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为11 2121y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程. 注意 (1)当直线没有斜率(x 1=x 2)或斜率为零(y 1=y 2)时,不能用两点式 11 2121 y y x x y y x x --=--表示它的方程; (2)可以把两点式的方程化为整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1),就可以用它来求过平面上任意两点的直线方程; 如过两点A (1,2),B (1,3)的直线方程可以求得x =1,过两点A (1,3),B (-2,3)的直线方程可以求得y =3. (3)需要特别注意整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1)与两点式方程11 2121y y x x y y x x --=--的区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展。 4.直线的截距式方程 若直线l 在x 轴上的截距是a ,在y 轴上的截距是b ,且a ≠0,b ≠0,则直线l 的方程为1x y a b +=,这种形式的方程叫做直线的截距式方程。 注意: (1)方程的条件限制为a ≠0,b ≠0,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线; (2)用截距式方程最便于作图,要注意截距是坐标而不是长度;

(完整版)必修二第3章直线与方程题型总结

必修2 第3章 直线与方程 理论知识: 1直线的倾斜角和斜率 1、倾斜角: 2、 倾斜角α的取值范围: .. 3、直线的斜率: k = 记住特殊角的正切值 ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k = 2两条直线的平行与垂直 1,L1∥L2则 注意: 2、 则 注意: 3.直线方程 1、 直线的点斜式方程: 2、、直线的斜截式方程: 3 直线的一般式方程: 4.了解斜率和截距的性质 4.两条直线的交点坐标求法:联立方程组。 5.距离 1.两点间的距离公式: . 2.点到直线距离公式: 3、两平行线间的距离公式: 6.对称问题 1.中点坐标公式:已知两点P 1 (x 1,y 1)、P 1(x 1,y 1),则线段的中点M 坐标为 2.若点11(,)M x y 及(,)N x y 关于(,)P a b 对称;求解方法: 3.点关于直线的对称: 若111(,)P x y 与222(,)P x y 关于直线:0l Ax By C ++=对称,求解方法:

直线与方程测试题 题型一(倾斜角与斜率) 1.直线053=-+y x 的倾斜角是( ) A.120° B.150° C.60° D.30° 2.若直线x =1的倾斜角为 ,则( ). A .等于0 B .等于 C .等于2π D .不存在 3.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( ). A .k1<k2<k3 B .k3<k1<k2 C .k3<k2<k1 D .k1<k3<k2 4.求直线3x +ay =1的斜率为 题型二(直线位置关系) 1.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x ,6),且l1∥l2,则x =( ). A .2 B .-2 C .4 D .1 2.已知直线l 与过点M(-3,2),N(2,-3)的直线垂直,则直线l 的倾斜角是( ). A .3π B .32π C .4π D .43π 3.设直线 l1经过点A(m ,1)、B(—3,4),直线 l2经过点C(1,m)、D(—1,m+1), 当(1) l1/ / l2 (2) l1⊥l1时分别求出m 的值 4.已知两直线l1: x+(1+m) y =2—m 和l2:2mx+4y+16=0,m 为何值时l1与l2①相交②平行 5.. 已知两直线l1:(3a+2) x+(1—4a) y +8=0和l2:(5a —2)x+(a+4)y —7=0垂直,求a 值。 题型三(直线方程) 1:根据下列各条件写出直线的方程,并且化成一般式: (1)斜率是1 2-,经过点A(8,—2); . (2)经过点B(4,2),平行于x 轴; . (3)在x 轴和y 轴上的截距分别是3 ,32-; . 4)经过两点P 1(3,—2)、P 2(5,—4); .

史上最全直线与直线方程题型归纳

直线与直线方程 一、知识梳理 1. 直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕 着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角?当直线和x轴平行或重合时,我们规定直线的倾斜角为0。?倾斜角的取值范围是0° < v 180° .倾斜角不是90 °的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示?倾斜角是90°的直线没有斜率. 2. 斜率公式:经过两点R(x i, yj, P2(X2, y2)的直线的斜率公式:k 池一匕(x i X2) X2 X i 7?斜率存在时两直线的平行:h〃|21= 2且12. &斜率存在时两直线的垂直:l1l2 k1k2 1 ? 9.特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90 °,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90 °,另一条直线的倾斜角为0°,两直线互相垂直.

二、典例精析 题型一:倾斜角与斜率 【例1】下列说法正确的个数是() ①任何一条直线都有唯一的倾斜角;②倾斜角为300的直线有且仅有一条;③若直线的斜率为tan ,则倾斜角为④如果两直线平行,则它们的斜率相等 A. 0 个个个个 练习】如果AC 0且BC 0 ,那么直线Ax By C 0不通过() A. 第一象限 B.第二象限 C. 第三象限 D. 第四象限 【例2】如图,直线l经过二、三、四象限,1的倾斜角为a,斜率为k,则()A. k sin a >0 B . k cos a >0 C . k sin a <0 D. k cos a <0 【练习】图中的直线l i, I2, I s的斜率分别为k i, k2, k s,则 (). A. k1< k2< k s B.k3< k1 < k2 C. k s< k2< k i D.k1

高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件 题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判 断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、 二次不等式的关系 题型2-12 二次方程的实根分布及 条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指 数不等式 题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对 数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所 在区间 题型2-25 利用函数的零点确定参 数的取值范围 题型2-26 方程根的个数与函数零 点的存在性问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关 系判断图像 题型3-4 利用导数求函数的单调性 和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或 不单调,求参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的

第三章直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时, 我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即k=tan 。斜率反映直线与轴的倾斜程度。 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

高考直线方程题型归纳

高考直线方程题型归纳 知识点梳理 1.点斜式方程 设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0), 由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程. 注意:利用点斜式求直线方程时,需要先判断斜率存在与否. (1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0. (2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0. (3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解. 2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否. (1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与 x 轴垂直的直线的方程. (2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减. (3)直线的斜截式方程是直线的点斜式方程的特例。要注意它们之间的区别和联系及其相互转化. 3.直线的两点式方程 若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为11 2121 y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程.

直线与圆的方程题型归类

直线与圆的方程题型归类 一、求直线方程 例1.直线l 过点(-1,2)且与直线2x -3y +4=0垂线,则l 的方程是( ) (A )3x +2y -1=0 (B )3x +2y +7=0 (C )2x -3y +5=0 (D ) 2x -3y +8=0 分析:要求过已知点的直线方程只需求斜率,因而可以由与已知直线的垂直关系得到斜率。 解:因为直线2x -3y +4=0的斜率为3 2 32=-- =k ,且直线l 与它垂直,所以,32l k =-, ∴l 的方程为3 2(1)2 y x -=- +,即3210x y +-=选A 点评:本题考查直线的斜率、直线方程、两直线的位置关系,在学习中一定要弄清楚有关概 念、直线方程的不同形式的特点、两直线平行与垂直所满足的条件,熟练掌握、灵活运用。 二、求圆方程 1.直接求圆方程 例2.(1)以点(2,-1)为圆心且与直线6x y +=相切的圆的方程是_____________________。 分析:因为圆心知道,只需要求出圆的半径 解:先将直线6x y +=化为一般式60x y +-=,再由圆心到直线的距离公式得: 圆的半径 r = =所以圆的方程为2 2 25 (2)(1)2 x y -++= 点评:此题考查圆的方程,首先要明确圆的标准方程、一般式方程、其中中包含哪些待定系数?其次,要掌握求这些系数的办法。 2.利用对称关系求圆方程 (2)已知圆1C :2 (1)x ++2 (1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为(B ) (A )2 (2)x ++2 (2)y -=1 (B )2 (2)x -+2 (2)y +=1 (C )2 (2)x ++2 (2)y +=1 (D )2 (2)x -+2 (2)y -=1 分析:要求圆的方程,关键是求圆心坐标和半径。可以用对称关系代换、也可以列方程求解。 解法1。将圆1C 方程中的x 用1+y 代换,y 用1-x 代换就会得选项(B )。 解法2。设圆心),(2b a C , 则由已知得 半径12=r , )1,1(1-C

(完整版)高中数学必修2直线与方程练习题及答案详解

直线与方程复习A 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( ) A .0 45,1 B .0 135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(2 2=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,2 3 -≠m ,0≠m 二、填空题 1.点(1,1)P - 到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________; 3. 若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。 4.点(,)P x y 在直线40x y +-=上,则2 2 x y +的最小值是________________. 5.直线l 过原点且平分ABCD Y 的面积,若平行四边形的两个顶点为 (1,4),(5,0)B D ,则直线l 的方程为________________。

相关主题
文本预览
相关文档 最新文档