当前位置:文档之家› 基于Creo的圆柱分度凸轮三维建模

基于Creo的圆柱分度凸轮三维建模

基于Creo的圆柱分度凸轮三维建模
基于Creo的圆柱分度凸轮三维建模

·69·

基于Creo 的圆柱分度凸轮三维建模

刘文光 张卧波 史建国

(济南职业学院,山东 济南 250103)

摘要:利用Creo 对圆柱分度凸轮进行三维建模,可以先绘制凸轮展开截面线,利用包络命令将截面线缠绕到圆柱,利用扫描命令创建圆柱分度凸轮主体,然后依次创建凸轮的细节特征。

关键词:圆柱分度凸轮;Creo;三维建模;包络;扫描

中图分类号:TH16 文献标志码:B 文章编号:1673-4270(2017)05-0069-05

一、圆柱分度凸轮三维建模思路

圆柱分度凸轮是自动机、自动线中常见的中低速间歇传动装置。对图1所示的圆柱分度凸轮进行三维建模,可以首先绘制凸轮展开截面线,将截面线缠绕到圆柱,通过扫描的方法创建圆柱分度凸轮主体,然后依次创建孔、加强筋、倒角等细节特征[1]。

图1 圆柱分度凸轮

二、基于Creo 的圆柱分度凸轮三维建模以Creo 中的mmns_part_solid 模板新建prt 零件。(一)创建参数

在 标签下选择 定义参数[2],创

建类型为实数的参数D,其值为160;创建类型为实数的参数T,其值为pi*D,如图2所示。

(二)创建拉伸曲面特征

选择FRONT 面为草绘平面,以RIGHT 面和TOP 面在草绘平面上的投影线的交点为圆心,草绘直径为D 的圆,完成草绘。在 操控板选择 设定拉伸为曲面,从草绘平面以指定的深度值拉伸76,生成图3所示的拉伸1。

(三)创建基准面

过拉伸1的轴线,与TOP 面成60°角生成基

准面DTM1;与拉伸1相切,与DTM1垂直生成基准面DTM2,如图4所示。

图2 参数D 和参数T

(四)创建圆柱分度凸轮展开截面线

选择DTM2为草绘平面,草绘图5所示的展开截面线。两条水平线的长度分别为T*236/360

作者简介:刘文光(1983—),男,山东济南人,济南职业学院机械制造学院讲师。

基金项目:本文系2015年度山东省高等学校科研计划项目“基于计算机辅助技术的传送机构特性分析及设计研究”(项 目编号:J15LB53)的阶段性研究成果。 ,

圆柱分度凸轮机构的设计及凸轮的数控加工

文章编号:1004-2539(2002)04-0050-03 圆柱分度凸轮机构的设计及凸轮的数控加工 (山东大学自动化研究所, 山东济南 250061)  金作成 (山东诸城锻压机床股份有限公司, 山东诸城 262200) 陈龙宝 摘要 空间分度凸轮机构主要应用于冲压机械、包装机械、制药机械及需要固定转位的自动化机械 中。根据应用的场合、应用精度及分度数的不同,空间分度凸轮机构分为平行分度凸轮机构、弧面分度凸轮机构和圆柱分度凸轮机构3大类。本文主要介绍圆柱分度凸轮机构的设计及凸轮的数控加工。 关键词 圆柱分度凸轮 设计 数控加工 1 圆柱分度凸轮机构的设计 图1为圆柱分度凸轮机构的结构示意图,凸轮作 为主动轴,分度盘作为从动轴旋转。由于凸轮曲线是由曲线部分和直线部分组成,就形成了分度盘的间歇运动。圆柱分度凸轮机构尤其适用于分度数较多的自动机械中 。 图1 圆柱分度凸轮机构的结构示意图 1.1 分度数和分度角 分度数n 的大小是由所应用的自动机械决定的。这种形式的分度机构一般适合于n =6~60的情况。 n 太小时压力角太大,传动特性很差;n 过大时,结构 很复杂,分度盘尺寸过大,转动惯量限制其不能高速运转或消耗功率过大。n 确定之后,分度盘的分度角则为Q 10=Q h =360°/2n 。1.2 分度盘直径 分度盘的直径与机构的外形尺寸和分度数有关,从图1可见,从动滚子之间的距离H 应大于工作机构 的最大外形尺寸A 。留一定空隙的σ。一般σ=10mm ~20mm ,于是从动盘滚子中心的节圆半径可用下式计算 l = H 2sin πn = A +σ 2sin π n 1.3 滚子尺寸 滚子半径通常取r 1=(0.25~0.30)H 滚子宽度通常取b 1=(0.8~1.2)r 1 1.4 凸轮尺寸 凸轮尺寸的确定原则是在保证接触应力最大值小于许用应力的前提下,尽可能紧凑一些。根据压力角计算公式可推出,圆柱凸轮的基圆直径可由下式算出 D 2= 2H V m Q 2h tan a m 式中,V m 为最大无因次速度;a m 为最大压力角。 圆柱凸轮的外径则为D 2e =D 2+b 0,凸轮槽深度 h 一般应略大于滚子宽度b 0。在确定凸轮体宽度B 2 时,为了保证分度运动时的连续性,应有适当的啮合重叠段为宜。在图1所示的机构中,B 2的取值范围为2(1-r 1)>B 2>H 。1.5 中心距 中心距是凸轮中心线与分度盘中心线之间的距离。可以用下式求得 c =l cos π n ±a 式中,a 为凸轮中心线偏离滚子起始与终止位置中心连线的距离,一般情况下a =0。凸轮中心线与分度盘基准面的距离取决于凸轮体外径D 2e 、滚子销轴向尺寸和分度盘厚度等结构参数的选取,应尽量使凸轮外缘靠近分度盘底面,以减少滚子销轴的悬臂分度。1.6 结构形式 圆柱分度的结构形式大体分3种,一种是凸脊定位,另有偏凸脊定位,还有槽定位。由于凸脊定位精度高,所以凸脊定位形式较常见。1.7 凸轮的动程角与动静比 由于分度凸轮主要功能就是实现间歇运动,因此对动静比的要求就非常严格,对动程角也有一定要求。动程角的大小是由用户提出的。但是通常希望动静比 5 机械传动 2002年

弧面分度凸轮的设计

毕业设计 题目弧面分度凸轮的设计 学院机械工程学院 专业工业工程 姓名冯堃 学号 20050407069 指导教师王红岩 二OO九年六月十日

弧面分度凸轮的设计 The Design of Roller Gear Indexing Cam 专业:工业工程 学生:冯堃 指导教师:王红岩 济南大学机械工程学院 二零零九年六月

目 录 摘 要 ............................................................i ABSTRACT .. (ii) 第一章 绪论 ...................................................- 1 - 1.1 课题研究的背景和意义 .................................................................. - 1 - 1.2 分度运动 .......................................................................................... - 1 - 1.3 从动系统的工作原理 ...................................................................... - 2 - 1.4 凸轮驱动系统分度机构 .................................................................. - 3 - 1.4.1精密分度凸轮机构的基本类型 ............................................... - 3 - 第二章 弧面凸轮设计中基本参数的确认 .............................- 5 - 2.1 弧面分度凸轮机构的基本形式与工作特点 ..................................... - 5 - 2.2 运动的必要条件——凸轮曲线的选择 ............................................. - 6 - 2.3 选择曲线时考虑的运动学参数 ......................................................... - 8 - 2.4 弧面分度凸轮机构的主要运动参数 ................................................. - 9 - 2.4.1 凸轮分度廓线头数H、转盘滚子数Z与转盘分度书I之间的 关系 .................................................................................................................... - 9 - 2.4.2 凸轮与转盘在分度期与停歇期的运动参数 .......................... - 9 - 2.4.3动停比k 与运动系数τ ......................................................... - 10 - 2.4.4 啮合重叠系数ε .................................................................... - 10 - 2.5弧面分度凸轮机构的主要几何尺寸计算 ........................................ - 11 - 2.5.1凸轮节圆半径1p r ,转盘节圆半径2p r 与中心距C ............... - 11 - 2.5.2许用压力角p a ...................................................................... - 11 - 2.5.3转盘节圆半径2p r .................................................................... - 11 - 2.5.4滚子数z 、相邻两滚子轴线间夹角z φ、滚子半径ρ与宽度b . - 11 - 2.5.5凸轮的主要尺寸 ..................................................................... - 12 - 2.5.6装上滚子后转盘的尺寸 ......................................................... - 13 -

外文翻译----宽槽圆柱凸轮数控加工技术的研究

附录1外文翻译及原文 外文翻译 宽槽圆柱凸轮数控加工技术的研究 摘要:针对传统铣削方法加工圆柱凸轮所产生的一些问题,提出了一种针对槽宽大于刀具直径的圆柱凸轮槽的数控铣削加工方法。通过分析研究,建立了一种正确的坐标转换模型,并依此加工出符合要求的宽槽圆柱凸轮。 关键词:数控加工坐标转换宽槽圆柱凸轮 圆柱凸轮槽一般是按一定规律环绕在圆柱面上的等宽槽。对圆柱凸轮槽的数控铣削加工必须满足以下要求:1.圆柱凸轮槽的工作面即两个侧面的法截面线必须严格平行;2.圆柱凸轮槽在工作段必须等宽。这是保证滚子在圆柱凸轮槽中平稳运动的必要条件。当圆柱凸轮槽宽度不大时,可以找到相应直径的立铣刀沿槽腔中心线进行加工,比较容易加工出符合上述要求的圆柱凸轮槽。据现有资料介绍,目前圆柱凸轮的铣削加工都是用这种办法来实现。由于这种方法有太多的局限性,给实际铣削加工带来许多困难。例如一旦找不到与槽宽尺寸相等的标准刀具时,就必须对刀具进行改制。 对于槽宽尺寸较大的圆柱凸轮槽,很难找到直径与槽宽相等的标准刀具。即使有相应的刀具,还要考虑机床主轴输出功率及主轴和工装夹具刚度的限制,特别是机床主轴结构对刀具的限制。例如数控机床主轴头为7∶24的40号内锥,配用JT40的工具系统,则最大只能使用φ20mm的立铣刀(不论直柄还是锥柄)。这对于槽宽为38mm的圆柱凸轮(就是本文所叙述的加工凸轮)来说是无法加工的,必须寻求新的加工方法。 下面根据实践经验和分析研究,介绍一种用直径小于凸轮槽宽的立铣刀对圆柱凸轮槽进行数控加工的方法,称之为宽槽圆柱凸轮的数控加工。 一、加工工艺 圆柱凸轮槽是环绕在圆柱面上的等宽槽,其加工时沿圆周表面铣削的范围往往大于360°,适于用带有数控回转台的立式数控铣床进行加工。根据圆柱凸轮的实际结构,选用带键的心轴作凸轮加工时径向和周向定位基准,以心轴的台肩作轴向定位基准,并用心轴前端部的螺纹通过螺母压紧圆柱凸轮。圆柱凸轮的轴向和径向尺寸一般较大,为了克服由于悬臂加工时切削力所造成的心轴变形和加工过程中产生的振颤,使用一个支承于尾座上的、与数控转台的回转轴线同轴的顶尖顶住心轴中心孔作辅助支承。 圆柱凸轮槽的底部在每一个截面上通常是等深的,一般选用平底圆柱立铣刀加工。圆柱凸轮铣削加工前通常是一个实心的圆柱体,要经过开槽、粗加工、半精加工、精加工等工序;由于槽腔宽度较大,因此,除开槽工序及粗加工工序的一部分刀位轨迹可以沿槽腔的中心线生成之外,其余刀位轨、迹则必须是沿槽腔中心线向左、右两边按相应的距离等距偏置生成,如图1所示。

凸轮的数控加工编程

毕业论文 姓名:学号: 系别:机械工程系 专业:机械制造与自动化 论文题目:凸轮的数控加工手工编程 指导教师: 2011年05 月

摘要 本论文主要介绍了凸轮结构的组成、凸轮结构的特点和功能及凸轮的应用。并且介绍了FANUC数控铣床,通过对FANUC数控铣床的认识,了解它的结构、编程中运用到的数控指令、应用范围及实际操作所运用到的理论知识。 This paper mainly introduces the composition, CAM CAM mechanism structure characteristics and function and CAM application. And FANUC CNC milling machine is introduced, through the understanding of FANUC CNC milling machine, to learn the structure, programming of CNC using to instruction, application scope and practical operation applied the theory of knowledge. 关键词: 凸轮;数控加工:FANUC ;数控铣床:手工编程 CAM; Nc machining: FANUC; CNC milling machine: manual programming

目录 1凸轮机构的组成…………………………………………………………………… 1.1凸轮……………………………………………………………………………… 1.2凸轮机构的组成…………………………………………………………………2凸轮机构的类型…………………………………………………………………… 2.1按照凸轮的形状分……………………………………………………………… 2.2按照从动件的形状分…………………………………………………………… 2.3按照从动件的运动形式………………………………………………………… 2.4按照凸轮与从动件维持高副接触的方法分……………………………………2.5其它………………………………………………………………………………3机构的特点和功能……………………………………………………………… 3.1凸轮机构的特点………………………………………………………………… 3.2功能………………………………………………………………………………4常用从动件的运动规律…………………………………………………………… 4.1等速运动规律……………………………………………………………………… 4.2等加速等减速运动规律……………………………………………………………5盘形凸轮轮廓曲线的确定………………………………………………………… 5.1应用“反转法”绘制尖顶式对心移动从动件盘形凸轮的一般步骤………………… 5.2凸轮机构的压力角、基圆半径………………………………………………………6FANUC系统………………………………………………………………………… 6.1FNUC数控系统概述……………………………………………………………… 6.2常用编程指令……………………………………………………………………… 6.2.1准备功能………………………………………………………………………… 6.2.2辅助功能………………………………………………………………………… 6.3坐标系编程指令………………………………………………………………… 6.3.1有关坐标和坐标系的指令………………………………………………………

圆柱分度凸轮机构的分析与设计

圆柱分度凸轮机构的分析与设计 【摘要】如何分析圆柱分度机构。 【关键词】分度盘;圆柱凸轮 根据机构运动分配图所确定的原始数据,分别设计各组独立的执行机构。进行凸轮机构尺寸设计时,通常需完成以下过程。 1.凸轮机构选型 在设计计算凸轮几何参数前,要先确定采用何种形式的凸轮机构,其中包括凸轮的几何形状、从动件的几何形状、从动件的运动方式、从动件和凸轮轮廓维持接触的方式等。选型设计的灵活性很强,同一工作要求可以由多种不同的凸轮机构类型来实现: (1)从动件的运动方式可以与执行机构的运动方式相同,也可以不同。他们之间可通过适当的传动机构进行变换,即移动变为摆动,或者摆动变为移动。 (2)凸轮的几何形状(平面的或空间的)选择要考虑到它在机床中的安装位置,目的是尽量简化由从动件至执行机构之间的传动机构。 (3)平面凸轮机构可用各种形式的从动件,即尖底、滚子或平底的,而空间凸轮机构中通常只能采用滚子从动件。 2.计算从动件的主要运动参数 根据执行构件的运动要求计算出凸轮机构的从动件行程(最大位移量或最大旋转角度)。对于执行构件与凸轮机构的从动件固定连接的情况,运动要求是一致的。对于执行构件与凸轮机构的从动件两者之间还具有运动传递机构的情况,则需要采用机构位置分析方法进行计算。如果执行机构件在运动过程中有一个或数个驻点位置需要保证与其它执行构件的运动协调关系,则也需计算出与这些驻点对应的从动件位置参数。 3.确定从动件的运动规律 从动件在整个运动范围内的运动特性,诸如位移、转角、速度等(有驻点要求时还包括通过驻点位置时的运动特性),是与执行构件工作特性密切相关的,也与所选定的凸轮机构的类型之间存在一定制约因素。因此,在确定从动件的运动规律时需要分析各种有关的影响因素。 4.凸轮机构的基本尺寸设计

凸轮机构习题作图题

凸轮机构考试复习与练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A.惯性力难以平衡B.点、线接触,易磨损 C.设计较为复杂D.不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A.可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A.摆动尖顶推杆B.直动滚子推杆 C.摆动平底推杆D.摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A.偏置比对心大B.对心比偏置大 C.一样大D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A.等速运动规律B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律) 6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A.增大基圆半径B.改用滚子推杆 C.改变凸轮转向D.改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线 13.凸轮轮廓曲线上各点的压力角是()。

【数控专业中文翻译】宽槽圆柱凸轮数控加工技术的研究

译文: 宽槽圆柱凸轮数控加工技术的研究 摘要:针对传统铣削方法加工圆柱凸轮所产生的一些问题,提出了一种针对槽宽大于刀具直径的圆柱凸轮槽的数控铣削加工方法。通过分析研究,建立了一种正确的坐标转换模型,并依此加工出符合要求的宽槽圆柱凸轮。 关键词:数控加工坐标转换宽槽圆柱凸轮 圆柱凸轮槽一般是按一定规律环绕在圆柱面上的等宽槽。对圆柱凸轮槽的数控铣削加工必须满足以下要求:1.圆柱凸轮槽的工作面即两个侧面的法截面线必须严格平行;2.圆柱凸轮槽在工作段必须等宽。这是保证滚子在圆柱凸轮槽中平稳运动的必要条件。当圆柱凸轮槽宽度不大时,可以找到相应直径的立铣刀沿槽腔中心线进行加工,比较容易加工出符合上述要求的圆柱凸轮槽。据现有资料介绍,目前圆柱凸轮的铣削加工都是用这种办法来实现。由于这种方法有太多的局限性,给实际铣削加工带来许多困难。例如一旦找不到与槽宽尺寸相等的标准刀具时,就必须对刀具进行改制。 对于槽宽尺寸较大的圆柱凸轮槽,很难找到直径与槽宽相等的标准刀具。即使有相应的刀具,还要考虑机床主轴输出功率及主轴和工装夹具刚度的限制,特别是机床主轴结构对刀具的限制。例如数控机床主轴头为7∶24的40号内锥,配用JT40的工具系统,则最大只能使用φ20mm的立铣刀(不论直柄还是锥柄)。这对于槽宽为38mm的圆柱凸轮(就是本文所叙述的加工凸轮)来说是无法加工的,必须寻求新的加工方法。 下面根据实践经验和分析研究,介绍一种用直径小于凸轮槽宽的立铣刀对圆柱凸轮槽进行数控加工的方法,称之为宽槽圆柱凸轮的数控加工。 一、加工工艺 圆柱凸轮槽是环绕在圆柱面上的等宽槽,其加工时沿圆周表面铣削的范围往往大于360°,适于用带有数控回转台的立式数控铣床进行加工。根据圆柱凸轮的实际结构,选用带键的心轴作凸轮加工时径向和周向定位基准,以心轴的台肩作轴向定位基准,并用心轴前端部的螺纹通过螺母压紧圆柱凸轮。圆柱凸轮的轴向和径向尺寸一般较大,为了克服由于悬臂加工时切削力所造成的心轴变形和加工过程中产生的振颤,使用一个支承于尾座上的、与数控转台的回转轴线同轴的顶尖顶住心轴中心孔作辅助支承。 圆柱凸轮槽的底部在每一个截面上通常是等深的,一般选用平底圆柱立铣刀加工。圆柱凸轮铣削加工前通常是一个实心的圆柱体,要经过开槽、粗加工、半精加工、精加工等工序;由于槽腔宽度较大,因此,除开槽工序及粗加工工序的一部分刀位轨迹可以沿槽腔的中心线生成之外,其余刀位轨、迹则必须是沿槽腔中心线向左、右两边按相应的距离等距偏置生成,如图1所示。 图 1 圆柱凸轮槽的二维展开图 二、求解模型

圆柱分度凸轮的精确建模与数控编程

文章编号:1001-2265(2010)10-0091-03 收稿日期:2010-04-16 作者简介:王卫兵(1974 ),男,江西南昌人,江西赣江职业技术学院副教授,硕士,主要从事机械设计与制造相关技术的研究,(E -m ail) w _oli ve @si na .co m 。 圆柱分度凸轮的精确建模与数控编程 王卫兵,董燕,胡志新 (江西赣江职业技术学院,南昌 330108) 摘要:应用UG 的二次开发工具UG /Gr i p 开发了圆柱分度凸轮的建模系统,实现了圆柱分度凸轮的三维数字化精确建模,再利用UG CAM 模块的可变轴曲面轮廓铣对凸轮沟槽进行数控编程与加工,提高了圆柱分度凸轮数控加工的质量和效率。 关键词:圆柱分度凸轮;二次开发;多轴编程;UG /Grip 中图分类号:TH 16;TG65 文献标识码:A Prec iseM ode ling and NC Programm ing of C ylindrical Indexing Ca m Based on A pplication D evelop m ent of U nigraphics WANG W ei b i n g ,DONG Yan,HU Zh i x i n g (Jiangx i Ganjiang V ocational Co llege ,Nanchang 330108,Ch i n a) Abst ract :On t he basis of t he analysis of surf ace c har acteristics f o r cylindrical indexing ca m ,has estab lished modeling syste m of t hree di m ensional dig itization model f o r cylindrical indexing ca m by UG /Grip ofUG re development tool .On t he basis of discussing f our axis machining appr oach of cy lindrical indexing ca m gr oove ,t he f our axis tool pat h of t he cy lindrical indexing ca m is gener ated by variable cont ourmac hining sche ma in U nigr aphics . K ey w ords :cy lindrical indexing ca m ;UG /G rip ;NC pr ogr a m ming ;r e develop ment of unigr aphics 0 引言 圆柱分度凸轮机构用于两垂直交错轴间的间隙分度步进运动,具有定位精度高、承载能力大、运动平稳等特点。广泛应用于各种机床与机械设备的间 隙步进机构与步进供料装置等[1] 。圆柱分度凸轮是机构中的关键部件,决定了整个机构的运动学和动力学性能。因此,对凸轮廓面的精确设计与数控加工精度保证的研究至关重要。 使用常规的C AD 建模工具进行圆柱分度凸轮的三维造型比较困难,采用传统的加工方法也难以保证凸轮槽的加工精度。龙村等[2] 、李俊源[3] 分别在AutoCAD 与So lid W orks 环境下,利用VB A 开发了圆柱凸轮的三维CAD 系统,未能实现造型与编程的集成。为了达到较高的凸轮廓面精度,必须对圆柱分度凸轮进行数控加工。圆柱凸轮沟槽的数控加工传统上采用三轴联动的范成等径加工或非等径加工,通过工件的旋转,铣刀作XY 联动,切割加工出凸轮的沟槽 [4 5] 。等径加工的刀具直径必须与滚子相等, 由于不可避免的刀具磨损,因此很难保证加工精度。非等径加工存在的问题有:一是不能按照零件的精确形状进行走刀;二是由于零件的旋转与主轴的移动不能完全同步产生较大误差;三是切削过程中不同的切削位置其实际的切削进给并不相等。因而这种加工方法的精度受到限制。 UG NX 是广泛应用于机械工程领域的集成化C AD /CAM /C AE 软件,其提供UG /Grip 可以对软件功能进行二次开发,以增强UG 的功能,并实现用户 化的定制[6] 。本文利用UG /Grip 编程工具开发了圆柱分度凸轮辅助建模系统,可方便地实现不同结构参数的圆柱分度凸轮精确建模,再利用UG NX 加工模块的可变轴曲面轮廓铣编制凸轮沟槽的多轴加工程序。 1 圆柱分度凸轮精确建模 1 1 圆柱分度凸轮的方程 [1 2] 圆柱分度凸轮机构的坐标系包括有:与机架相连的定坐标系X 0Y 0Z 0,与凸轮相连的动坐标系 91 2010年第10期 工艺与装备

凸轮机构(分度盘)选型范例介绍

凸轮机构(分度盘)选型范例介绍 本站搜索更多关于“分度机构论坛”的内容 典型范例: 以下内容更改机构选型: 已知条件,设计资料 (1)回转台工位数(分度数)S: S=8 (2)每工位驱动时间:1/3秒 ;定位时间:2/3秒 (3)输入轴凸轮轴转速:N=60转/分钟 (4)凸轮曲线:变形正弦曲线 (5)回转盘的尺寸:φ600mm×16mm (6)夹具的重量:2.5kg/组 (7)工件的重量:0.3kg/组 (8)转盘依靠其底部的滑动面支持本身重量负荷,有效半径:R1= 250mm (9)驱动角:θ=360×(驱动时间)/(驱动时间+定位时间)=120deg 解答: 回转台工位数:s=8输入轴凸轮轴转速:N=60rpm 凸轮曲线是变形正弦曲线,因此Vm=1.76 Am=5.53 Qm=0.991 1、负载扭矩:Tt (1)惯性扭矩:Ti (a)转盘重量:w3 w1=π×R×R×t×7.8×1/1000=π×300×300×16×7.8×1/(1000×1000) =35.29(kg) w2=2.5×8=20(kg) w3=0.3×8=2.4(kg)

(b)回转盘惯性矩:I1; 夹具惯性矩:I2; 工件惯性矩:I3为 I1=(w1×R×R)/2G=(35.29×300×300)/(2×9.8×1000×1000)=0.16(kg.m.s2) I2=(w2×R1×R1)/G=(20×250×250)/(9.8×1000×1000)=0.13(kg.m.s2) I3=(w3×R1×R1)/G=(2.4×250×250)/(9.8×1000×1000)=0.015(kg.m.s2) (c)总惯性矩:I=I1+I2+I3 =0.16+0.13+0.015=0.305(kg.m.s2) (d)输出轴最大角加速度: α=Am×2π/S×(360/θ×N/60) α=5.53×2π/8×(360/120×60/60)2=39.09(rad/s2) (1)惯性扭矩:Ti Ti=I×α=0.305×39、09=11.92(kg.m) (2)磨擦扭矩:Tf Tf=μ×w×R1=0.15×(35.29+20+2.4)×250/1000=2.16(Kg.m) (3)作功扭矩:Tw在间歇分度时没有作功,因此Tw=0 (4)以上总负载扭矩:Tt=Ti+Tf+Tw=11.92+2.16+0=14.08(kg.m) 2、实际负载扭矩:Te 安全负载的因数fe=1.8 Te=Tt×fe=14.08×1.8=25.34(kg.m) 输入轴扭矩:Tca(注:输入轴起动负载扭矩视为0 ,因此Tca=0 Tc=360/(θ×s)×Qm×(Te+Tca)=360/(120×8)×0.99×(25.34+0)=9.41(kg.m) 计算所需的马力:p=Tc×N/(716×f )(HP)或P=Tc×N/(975×f)(kw) 假设效率f=60% 那么P=9.41×60/(716×0.6)=1.31(HP)P=9.41×60/(975×0.6)=0.965(Kw) 事实上,以上所计算的值为起动时最大马力,而连续传动所需的马力为1/2选择 适用的间歇分度器根据以上所计算的资料以及输入轴的转数60rpm来选择,请参考说明书上所记载,凡是输出轴扭矩高于以上所计算的Te值者均可选用。因为 Te=25.34(kg.m),所以应采用GHH100型。 注:(1)Vm:最大非向性速度 (2)Am:最大非向性之加速度 (3)Qm:凸轮轴最大扭力系数

圆柱凸轮加工方法及应用

西 南 交 通 大 学 本科毕业设计(论文) 圆柱凸轮加工方法及应用 年 级:2005级 学 号:20055355 姓 名:商飞 专 业:制造工程 指导老师:彭新宇 2009年6月

院 系 机械工程学院 专 业 制造工程 年 级 2005级 姓 名 商飞 题 目 圆柱凸轮加工方法及应用 指导教师 评 语 指导教师 (签章) 评 阅 人 评 语 评 阅 人 (签章) 成 绩 答辩委员会主任 (签章) 年 月 日

毕业设计(论文)任务书 班级 2005制造工程一班学生姓名商飞学号 20055355 发题日期:2009 年 3 月 5 日完成日期:2009年 6 月 15 日 题目圆柱凸轮加工方法及应用 1、本论文的目的、意义空间凸轮是空间凸轮机构中的关键零件,其传统方法加工难度大,周期长,加工精度低,对操作工人技术水平要求高。本文研究了采用CAD/CAM技术采用数控机床进行空间凸轮加工的方法。讨论整个加工工艺过程的决策。并采用UG/CAM技术针对具体凸轮的重要加工工序完成了加工程序和刀路仿真,并针对该重要工序设计夹具。通过对本课题的研究,能让学生深刻理解当前进行此类产品进行加工工艺决策的理论,有助于将其在几年大学所学习知识与实践结合并得到综合运用。使其初步具备从事技术和科研工作的能力。 2、学生应完成的任务收集并吸收关于此类产品的加工工艺决策理论的资料,深刻理解基于CAD/CAM的数控编程技术,将二者有机的结合在一起并运用于空间凸轮重要工序的加工程序编制并设计夹具(提供NC程序及电子或纸质夹具图)。

3、论文各部分内容及时间分配:(共 15 周) 第一部分 收集资料,吸收消化 ( 3周) 第二部分 确定技术路线,整理论文思路 (1 周) 第三部分 完成论文初稿 ( 6周) 第四部分 修改论文 ( 1周) 第五部分 定稿及其他 ( 1周) 评阅及答辩 ( 周) 备 注 指导教师: 年 月 日 审 批 人: 年 月 日

自动化机械中圆柱分度凸轮机构的曲线设计和数控加工

自动化机械中圆柱分度凸轮机构的曲线设计和数控加工 摘要:近些年来,随着时代经济的飞速发展以及科技的进步,我国自动化机械行业发展进程不断加快。自动化机械中,空间分度凸轮机构的应用过程中,如何做好曲线设计和数控加工始终是自动化机械行业领域研究的热点之一。本文基于这一课题,首先分析了自动化机械中圆柱分度凸轮机构的曲线设计,其次分析了自动化机械中圆柱分度凸轮机构的数控加工技术。 关键词:自动化机械;圆度分度凸轮;曲线设计;数控加工 自动化机械中凸轮机构有着越来越广泛的应用,这种凸轮机构不仅仅有着传动导向的基本功能,同时也有着对机构控制的重要功能,在当前的凸轮机构发展中,不仅仅将相对复杂的运动规律产生,同时也有着相对较大的变速范围,对于执行机构的自动工作循环有着一定的控制作用。现如今,伴随着计算机辅助技术以及计算机技术的日益成熟,圆度分度凸轮机构的应用,为自动化机械带来了极大的便利,并降低了制造的成本。 1.自动化机械中圆柱分度凸轮机构的曲线设计 圆度分度凸轮主要是自动化机械一种常见的转位凸轮,同时也是一种圆盘转位凸轮,有着不封闭的曲线凹槽。工作的过程中,主动轴是凸轮,并借助于动轴进行旋转,形成一种分度盘的间歇运动,将圆盘分度的目的实现。 自动化机械圆度分度凸机构曲线设计的过程中,由于曲线运动往往有着一定的复合性,在将滚子运动轨迹满足的同时,也要将曲线运动规律以及曲线的升程满足。首先就要对余弦加速度运动规律下的凸轮理论曲线进行计算,并对修正后的曲线以及引导圆弧线进行计算。 余弦加速度运动规律下的一种凸轮理论曲线计算的过程中,就要对间隔直线逼近法加以采用,将凸轮理论下曲线中的各个点的坐标计算出。 修正曲线计算的过程中,就要结合滚子的运动轨迹,自动化机械中的铣刀控制过程中,就要将Y向的补充运动及时的增加,将修正曲线逐步形成。对于曲线各个点的修正值用表示,如下所示: 分度圆的半径用表示,同时曲线总升程用表示,分度角用表示。圆弧线计算的过程中,在对引导圆弧半径确定和相关的圆心坐标值确定的过程中,就要保证合理的选择圆弧线的半径,避免凸轮中滚子进入时出现相关的碰撞。 设计过程中,更要做好误差的校验工作,并保证动自化机械中圆柱分度凸轮机构曲线有着合理化的设计。 2.自动化机械中圆柱分度凸轮机构的数控加工

基于Creo的圆柱分度凸轮三维建模

·69· 基于Creo 的圆柱分度凸轮三维建模 刘文光 张卧波 史建国 (济南职业学院,山东 济南 250103) 摘要:利用Creo 对圆柱分度凸轮进行三维建模,可以先绘制凸轮展开截面线,利用包络命令将截面线缠绕到圆柱,利用扫描命令创建圆柱分度凸轮主体,然后依次创建凸轮的细节特征。 关键词:圆柱分度凸轮;Creo;三维建模;包络;扫描 中图分类号:TH16 文献标志码:B 文章编号:1673-4270(2017)05-0069-05 一、圆柱分度凸轮三维建模思路 圆柱分度凸轮是自动机、自动线中常见的中低速间歇传动装置。对图1所示的圆柱分度凸轮进行三维建模,可以首先绘制凸轮展开截面线,将截面线缠绕到圆柱,通过扫描的方法创建圆柱分度凸轮主体,然后依次创建孔、加强筋、倒角等细节特征[1]。 图1 圆柱分度凸轮 二、基于Creo 的圆柱分度凸轮三维建模以Creo 中的mmns_part_solid 模板新建prt 零件。(一)创建参数 在 标签下选择 定义参数[2],创 建类型为实数的参数D,其值为160;创建类型为实数的参数T,其值为pi*D,如图2所示。 (二)创建拉伸曲面特征 选择FRONT 面为草绘平面,以RIGHT 面和TOP 面在草绘平面上的投影线的交点为圆心,草绘直径为D 的圆,完成草绘。在 操控板选择 设定拉伸为曲面,从草绘平面以指定的深度值拉伸76,生成图3所示的拉伸1。 (三)创建基准面 过拉伸1的轴线,与TOP 面成60°角生成基 准面DTM1;与拉伸1相切,与DTM1垂直生成基准面DTM2,如图4所示。 图2 参数D 和参数T (四)创建圆柱分度凸轮展开截面线 选择DTM2为草绘平面,草绘图5所示的展开截面线。两条水平线的长度分别为T*236/360 和 作者简介:刘文光(1983—),男,山东济南人,济南职业学院机械制造学院讲师。 基金项目:本文系2015年度山东省高等学校科研计划项目“基于计算机辅助技术的传送机构特性分析及设计研究”(项 目编号:J15LB53)的阶段性研究成果。 ,

凸轮机构各种类型

第二十七讲下一讲 学时:2学时 课题:第十章凸轮机构 10.1 概述 10.2 常用的从动件运动规律 目的任务:熟悉凸轮机构的应用和特点及类型,理解常用的从动件运动规律,能够绘制位移线图 重点:凸轮机构的应用和特点及类型 难点:立体凸轮机构运动的实现 教学方法:利用动画演示机构运动,工程应用案例展示其应用场合。 第十章凸轮机构 10.1概述 凸轮机构由凸轮、从动件和机架三部分组成,结构简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。 10.1.1 凸轮机构的应用(工程应用案例) 内燃机配气机构凸轮机构

自动车床上的走刀机构分度转位机构 靠模车削机构 10.1.2 凸轮机构的分类 凸轮机构的类型很多,常就凸轮和从动杆的端部形状及其运动形式的不同来分类。 (1) 按凸轮的形状分 1)盘形凸轮(盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转) 尖顶移动从动杆盘形凸轮机构尖顶摆动从动杆盘形凸轮机构 滚子移动从动杆盘形凸轮机构 滚子摆动从动杆盘形凸轮机构 平底移动从动杆盘形凸轮机构平底摆动从动杆盘形凸轮机构2)移动凸轮(移动凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。) 移动从动杆移动凸轮机构 摆动从动杆移动凸轮机构 3)圆柱凸轮(圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。)

圆柱凸轮自动送料机构 4)曲面凸轮 按锁合方式的不同凸轮可分为:力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;形锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。 沟槽凸轮槽凸轮机构 等宽凸轮等径凸轮 (2) 按从动杆的端部形状分 1) 尖顶 这种从动杆的构造最简单,但易磨损,只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2) 滚子 滚子从动杆由于滚子与凸轮轮廓之间为滚动摩擦,磨损较小,故可用来传递较大的动力,因而应用较广。 3) 平底 平底从动杆的优点是凸轮与平底的接触面间易形成油膜,润滑较好,所以常用于高速传动中。 (3)按推杆的运动形式分 1)移动 往复直线运动。在移动从动杆中,若其轴线通过凸轮的回转中心,则称其为对心移动从动杆,否则称为偏置移动从动杆。 2)摆动 作往复摆动。 凸轮产品实物 https://www.doczj.com/doc/df5953914.html,/ 凸轮轴盘形凸轮 各式凸轮 总结: 凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆

凸轮机构各种类型

第二十七讲下一讲 学时:2学时 课题:第十章凸轮机构 10、1 概述 10、2 常用的从动件运动规律 目的任务:熟悉凸轮机构的应用与特点及类型,理解常用的从动件运动规律,能够绘制位移线图 重点:凸轮机构的应用与特点及类型 难点:立体凸轮机构运动的实现 教学方法:利用动画演示机构运动,工程应用案例展示其应用场合。 第十章凸轮机构 10、1概述 凸轮机构由凸轮、从动件与机架三部分组成,结构简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。但另一方面,由于凸轮机构就是高副机构,易于磨损,因此只适用于传递动力不大的场合。 10、1、1 凸轮机构的应用(工程应用案例) 内燃机配气机构凸轮机构

自动车床上的走刀机构分度转位机构 靠模车削机构 10、1、2 凸轮机构的分类 凸轮机构的类型很多,常就凸轮与从动杆的端部形状及其运动形式的不同来分类。 (1) 按凸轮的形状分 1)盘形凸轮(盘形凸轮就是一个具有变化向径的盘形构件绕固定轴线回转) 尖顶移动从动杆盘形凸轮机构尖顶摆动从动杆盘形凸轮机构 滚子移动从动杆盘形凸轮机构 滚子摆动从动杆盘形凸轮机构 平底移动从动杆盘形凸轮机构平底摆动从动杆盘形凸轮机构2)移动凸轮(移动凸轮可瞧作就是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。) 移动从动杆移动凸轮机构 摆动从动杆移动凸轮机构 3)圆柱凸轮(圆柱凸轮就是一个在圆柱面上开有曲线凹槽,或就是在圆柱端面上作出曲线轮廓的构件,它可瞧作就是将移动凸轮卷于圆柱体上形成的。)

圆柱凸轮自动送料机构 4)曲面凸轮 按锁合方式的不同凸轮可分为:力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;形锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。 沟槽凸轮槽凸轮机构 等宽凸轮等径凸轮 (2) 按从动杆的端部形状分 1) 尖顶 这种从动杆的构造最简单,但易磨损,只适用于作用力不大与速度较低的场合(如用于仪表等 机构中)。 2) 滚子 滚子从动杆由于滚子与凸轮轮廓之间为滚动摩擦,磨损较小,故可用来传递较大的动力,因而 应用较广。 3) 平底 平底从动杆的优点就是凸轮与平底的接触面间易形成油膜,润滑较好,所以常用于高速传动中。 (3)按推杆的运动形式分 1)移动 往复直线运动。在移动从动杆中,若其轴线通过凸轮的回转中心,则称其为对心移动从动杆, 否则称为偏置移动从动杆。 2)摆动 作往复摆动。 凸轮产品实物 凸轮轴盘形凸轮 各式凸轮 总结: 凸轮机构的组成

相关主题
文本预览
相关文档 最新文档