当前位置:文档之家› 高压变频器散热与冷却系统的设计

高压变频器散热与冷却系统的设计

高压变频器散热与冷却系统的设计
高压变频器散热与冷却系统的设计

高压变频器散热与冷却系统的设计

发表时间:2019-07-30T14:58:52.417Z 来源:《基层建设》2019年第11期作者:龙洁1 雷陪2

[导读] 摘要:虽然高压变频调速系统效率比较高,但是在实际运行中仍然会产生2%~4%的损耗,全部转化成热量散失在大气中。

1.广东明阳龙源电力电子有限公司;

2.广新海事重工股份有限公司广东省中山市 528400

摘要:虽然高压变频调速系统效率比较高,但是在实际运行中仍然会产生2%~4%的损耗,全部转化成热量散失在大气中。要求散热系统可以将此部分热量全部排除,避免温升过高对高压变频器运行产生影响。因此,需要基于变频器热量来源特点,根据实际情况进行计算设计,对散热系统进行优化。

关键词:高压变频器;散热;冷却系统;设计

1、前言

高压变频器现在基本上已经采用驱动交流化,以及功率变频器等高频化技术,在持续运行过程中,单位体积所散热量逐渐增加。基于高压变频器运行稳定性和可靠性要求,必须要重点做好散热系统的设计,选择有效的冷却技术,做好各个部分设计优化。

2、高压变频器散热系统设计要点

2.1功率单元散热设计

(1)设计要点。对高压变频器功率单元进行散热设计时,对象主要为整流二极管、逆变模块等。将单元串联多电平结构高压变频器作为对象,其功率器件为IGBT,散热系统设计需要合理选择功率器件,保证元器件与原材料热稳定性与耐热性良好。还要根据实际情况来确定散热方法,提高散热速度,并降低环境温度。同时,还要降低器件与设备内部发热量,选择应用功耗低的其间,严格控制发热元器件数量,并对开关频率进行优化,将内部发热总量控制在一个较低的水平。

(2)散热器设计。主要从三个方面着手:第一,插片设计。对插片长度、厚度、高度以及数量进行计算,根据实际情况选择,避免出现过度设计情况,减少材料的浪费。第二,器件安装。对于散热器上的各类器件,要保证安装方案的合理性,尽量将高发热量器件设置在此,对于损耗较大的器件,需要预留出较大的面积。并且,所有散热器和功率器件的安装面均需要均匀涂抹散热硅脂,最大程度上降低接触热阻,并按照设计标准对力矩进行紧固处理。第三,表面处理。很对高压变频器表面会进行氧化处理,对其散热效果和热阻进行改善,提高器件散热效果。

(3)结温计算。1)功率损耗。高压变频器处于稳定运行状态时,功率单元耗散功率为为续流二极管、整流二极管以及IGBT总功率耗散。因此,在对散热系统进行设计时,需要对几种器件总功率进行有效估算。续流二极管通态、关闭损耗分别为:

整流二极管处于低频运行状态时,以通态损耗为主,在进行计算分析时,可以根据通态损耗功率以及通态平均电流关系曲线查找确定。IGBT耗损主要包括通态、断态、关闭、开通以及驱动多种,功率耗散估算时,应重点分析通态、开通与关闭损耗。其中,通态损耗为:

IGBT开关损耗为:

综上,功率单元总耗损功率为:

(2)结温计算。设IBGT热阻等效电路,Ta表示环境温度;Ts表示散热器表面温度;Tj-Tr表示IGBT结温;Tc表示IGBT管壳温度;Rθ(j-c)表示器件结到管壳基准点稳态热阻,且由厂家提供,一般情况下可以在数据表中给出相应瞬态热阻曲线在t→∞稳态值或上限值;Rθ(c-a)表示管壳不经过散热器散热,直接进入空气的热阻,在计算分析时可以对称部分热量忽略不计;Rθ(c-s)表示管壳到散热器触热阻,由厂家提供数据;Rθ(s-a)表示散热器基准点到环境基准点的热阻,此数值受散热器尺寸、形式以及冷却方式等因素影响。

在热平衡条件下,其间静态热阻为:

电力电子器件处于工作状态时,采取周期性通断方式,在设计时

需要分析瞬态热阻对结温波动产生的影响,根据此来确定波动是否超

过最大结温。其中,瞬态热阻为:

结合上述分析结果,可以确定电力电子其间结温以及散热器热阻计算公式为:Tj=Ta+PAV×Rja=Ta+PAV×(Rθ(j-c)+Rθ(c-a)+Rθ(c-s))

对热阻进行计算时,还要重视损耗功率波动、负载波动的分析,根据其波动幅度,来确定下一步设计方向和优化方法。正常状态下,应保证给定条件下最高温度在125℃以内,对于稳态结温计算裕量应保留5℃。

2.2整机散热设计

风道设计包括串联风道和并联风道两种,其中串联风道比较简单,为垂直风道可以降低风阻,但是会对散热效果产生一定影响,设计

一次风机高压变频器冷却方案

高压变频器冷却方案 由于变频器本体在运行过程中有一定的热量散失,为保证变频器具有良好的运行环境,需要为变频器室配备一套独立的冷却系统。综合冷却系统的投资和运营成本、设备维护量、无故障运行时间,现提出以下三种冷却系统解决方案: 一、空调密闭冷却方式 1.1系统介绍 为了提高高压大功率变频器的应用稳定性,解决好高压变频器环境散热问题。目前常用的办法是:密闭式空调冷却。该方法主要是为高压变频器提供一个固定的具有隔热保温效果的房间,根据高压变频器的发热量和房间面积大小计算出空调的制冷量,从而配备一定数量的空调。 采用空调冷却时,房间的建筑面积过大会增加空调冷却负荷。同时,由于变频器排出的热风不能被空调全部吸入冷却,因此,造成系统运行效率低,造成节约能源的二次浪费。变频器室内的冷热风循环情况如下图所示。 变频器从柜体的正面和后面吸入空气,经柜顶风机将变频器内部的热量带走排到室内。从而在变频器室上部形成一个温度偏高、压力偏高的气旋涡流区,在变频器的正面部分形成一个偏负压区。在运行中,变频器功率柜正面上部区域实际上是吸入刚排出的热风进行冷却,形成气流短路风不能达到有效的冷却效果。空调通常采用下进上出风结构,从而与变频器在一定程度上形成了“抢风”现象,这就是“混合循环区”。在这个区域变频器吸入的空气不完全是空调降温后的冷空气,空调的降温处理也没有把变频器排出的热空气全部降温,从而导致了整个冷却系统的运行效率不高。 变频器自身是节能节电设备,而通常采用的空调式冷却则造成能源的二次浪费。这种情况在大功率、超大功率的变频应用系统中更加明显。 1.2空调技术特点

a)高效制冷 b)广角送风,室温均匀舒适 c)防冷风设计,送风舒适 d)独立除湿 e)低温、低电压启动 f)室外机耐高温运转 g)室内密闭冷却 h)防尘效果好 i)运行成本高

第2章-ABB-ACS800变频器的硬件组成

第2章 ABB ACS800硬件组成 ABB用R2,R3…直到R8来标记不同的外形规格、技术数据和尺寸图,外形规格不标在传动单元的型号标签上。传动单元的外形规格请参见选型手册技术数据章节的等级表一栏。 ACS800-01 ACS800-04 R2~R6 R7~R8 变频器由以下基本单元组成 1 整流单元

● 2 储能单元 ● 3 逆变单元 ● 4 制动单元 ● 5 控制单元 一整流单元 整流器与供电电网相连,将三相交流电整流为直流电,为中间直流环节提供能量。能量既能从电网流向直流环节,又能从直流环节流向电网。 ? 1 二极管整流 ? 2 二极管+晶闸管整流 ? 3 晶闸管反向并联整流 ? 4 IGBT整流

二储能单元 ? 1 电容储能 ? 2 电感储能 三逆变单元 ?IGBT 四控制单元

RDCU-02C或RDCU-12C RMIO-01C或RMIO-11C RMIO-02C或RMIO-12C 1功率板 AINP+AINT+APOW+AGDR-------R7,R8 + + AINP-01C AINT-02C APOW-01C + = RINT

AGDR-71C 2电路板连接图 主电路:完成对电机提供驱动功率的变换过程 电路板: 控制电路完成计算,通讯,数据采集和电机控制等功能。 3 诊断和控制盘接口板(ADPI) 板上有控制盘的连接座,红色指示灯和绿色指示灯,每个模块可以并联两块这样的电路板(用于平板式安装和书架式安装),控制盘即插即用,两个控制盘不能同时工作。

4 电机控制和I/O 板(RMIO-02C或RMIO-12C) 5 ACS800-04主电路板(AINT) 它的功能包括:

变频器设计方法

变频器设计方法 一、变频调速系统设计的一般 性方法 (一)变频调速系统设计的内 容和步骤 变频调速系统设计的主要内容 和步骤如下: (1)控制系统总体方案设计, 明确系统的总体要求及技术条件。包括系统的基本功能、控制方案选 择以及性能指标(响应时间、稳态 精度、通信接口)等; (2)设计主电路拓扑结构,选 定逆变器件类型; (3)确定控制策略和控制方式; (4)选择主控制芯片; (5)选择各物理量的传感器和检测电路; (6)系统硬件设计,包括主电路模块、驱动与保护电路,与CPU 相关的电路、外围设备、接口电路、逻辑电路及键盘显示模块; (7)系统软件设计,包括应用程序的设计、管理以及监控程序的设计; 图4-25 变频调速系统的研发过程

(8)在各单元软硬件调试合格的基础上,进入系统实验与统调阶段。 变频调速系统的研制开发过程如图4-25所示。 (二)变频调速系统总体方案的确定 确定变频调速系统总体方案是设计系统的第一步。总体方案直接影响整个控制系统的投资、性能品质及实施难度。确定控制系统的总体方案必须根据实际应用的要求,结合具体被控对象而定。但在总体设计中还是有一定的共性,大体上可以从以下几个方面考虑。 1.选择主电路拓扑结构根据系统容量的大小以及实际要求选择合理的变频调速系统主电路拓扑结构。20世纪80年代以来,以GTO、BJT、MOSFET为代表的自关断器件得到长足的发展,尤其是以IGBT为代表的双极型复合器件的惊人发展,使得电力电子器件正沿着大容量、高频率、易驱动、低损耗、智能模块化的方向迈进。伴随着电力电子器件的飞速发展,逆变器主电路的结构也日趋多样化。 (1)普通三相变频器通常也称为二电平变频器,即第二章中所讲的交-直-交型变频器,这种拓扑结构比较简单,为了获得大功率可采用器件的串并联来实现。 (2)交-交变频电路普通二电平逆变器直流侧电压通常由交流电整流获得,因为存在直流环节,所以逆变器效率不高,主电路相对复杂。而交-交直接变频电路省去中间直流环节一次功率

无负压供水设备选型计算方案

无负压供水设备选型计算 工程概况: 本项目为某小高层住宅楼工程,建筑物高度约38、6米,工程中生活给水水源为市政自来水管网,水质符合国家《生活饮用水卫生标准》要求。需二次加压户数为40户,按单卫一厨考虑;工程中生活给水采用分区供水方式;一至七层为市政管网直供;八层以上有设备加压,用水高峰期时自来水压力为0。4MPA,自来水进出水管径为 DN100,配一块DN100的总水表。 青岛三利: 一、设计原则 公司技术人员根据本工程特点,市政管网的供水状况以及工程的拟用水情况,结合我公司多年从事无负压技术研究的经验以及我公司无负压产品的独特技术,本着技术先进合理、运行安全可靠、卫生环保健康的原则,同时考虑一次性投资、占地面积、运行费用、日常维护管理、供水安全的情况,为本工程选用一套WWG无负压(无吸程)增压稳流供水设备保证整个系统的供水。 二、设计依据 1、本工程的基本资料 2、《建筑给水排水设计规范》GB 50015-2003 3、《泵站设计规范》GB/T50256-97 4、《给水排水设计手册》第2册(核工业第二研究设计院主编,

中国建筑工业出版社出版) 5、《高程建筑给水排水设计手册》(第二版,湖南科学技术出版社 出版) 6、《给水排水设计手册》第1册。常用资料(中国市政工程西南 设计院主编,中国建筑工业出版社出版) 7、《三利产品设计手册》 三、方案选型计算 1、设计生活给水流量 根据《建筑给水排水设计规范》(GB 50015-2003)第3.6.4条款计算设计流量: 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数,按下式计算出住宅共40户,每户按单卫一厨设计的最大用水时卫生器具的给水当量 平均出流概率: U0=q0.m.k h/0.2.Ng.T.3600(%) 其中: U0--生活给水管道最大用水时卫生器具给水当量平均出流概率 q0--最高用水日的用水定额,取250L/(人/D) m --每户用水人数,取3.5人 kh --小时变化系数,取3.0 Ng --每户设置的卫生器具给水当量数,取Ng=4.0 T—用水时间,T=24H

通用变频器的设计

摘要 使异步电动机实现性能好的调速一直是人们的理想,过去如变极调速、绕线转子异步电动机转子回路串电阻调速均属于有级调速;而调压调速虽能平滑调速,但调速范围不大,耗能多,仅限于小功率,无法和直流调速系统相比。随着新技术、新理论的不断发展,变频调速技术应运而生,其控制方式完全可以和直流调速系统相媲美。因此变频器的应用日益广泛,变频器性能的优劣直接影响着电机的运行特性,所以如何提高变频器的优化控制成为变频技术的关键。在变频调速中关键的一项就是控制端SPWM波的产生,它不仅要求电压和频率变化呈线性关系,而且要求输出波形尽可能接近于正弦波,特别是对于一些性能指标要求较高的全控型开关器件如IGBT等,其开关频率很高,因此就要求SPWM波发生器要达到一定的开关频率,基波频率也要求相对较高。为了解决这个问题,可以利用SLE4520这块集成芯片,来生成满足要求的SPWM波。本设计就是利用AT89C51单片机作为控制主机,与三相PWM集成芯片SLE4520配合工作,设置一种SPWM波生成的算法,通过单片机的定时模块产生脉冲,并将其送入SLE4520中,最后将SPWM脉冲送至逆变桥臂上下的IGBT中来控制逆变电路。本设计的优势在于可以通过键盘/显示来进行变频器的智能控制。在不同的工作状态下,可以显示不同的数据,再配合上各种故障保护电路,可以使得变频器安全的工作。 关键词:SLE4520 单片机 SPWM脉冲

ABSTRACT To achieve good performance asynchronous motor speed is ideal, such as speed regulating pole change motor rotor asynchronous and winding speed rotor circuit resistance of all belong to have stepless speed regulation, And although speed regulating speed can be smooth, but not more than energy-consuming, speed limits, only small power, compared with dc speed control system. With the new technology, the new theory of frequency conversion technology unceasing development, the control mode, and can completely Dc speed control system. But in the frequency conversion control is one of the key is the wave of SPWM not only requires the voltage and frequency variation, and the requirements of a linear relationship between output waveform in sine as close as possible, especially for some performance index to demand higher all-controlling switching device IGBT etc, such as the high frequency switching, so requires SPWM wave generator to reach a certain switching frequency wave frequency also require relatively high. In order to solve this problem, you can use SLE4520 this integration chip, to meet the requirements of SPWM wave generated.This design is to use AT89C51 as host, and three-phase PWM control SLE4520 integrated chips, setting an SPWM wave generated by MCU timing algorithms, and will produce pulses module to SLE4520, finally will SPWM inverter pulse to bridge the arm upper-and-lower IGBT inverter circuits to control. The design of the keyboard/strengths can display for converter intelligent control. In different working conditions, can show the different data, combined with the various fault protection circuit, can make the job security. Keywords:SCM(Single Chip Microcomputer)SLE4520 SPWM(Sinusoidal Pulse Width Modulation)

高压变频器方案

一、概述 高压变频器调速系统是将变频调速技术应用于大功率高压电机调速的一种电力换流装置,是国家大型设备节能技术改造及建设推广项目,应用范围广泛,应用高压变频调速器能大幅度降低电机的电耗,其节能效果一般在30%以上,具有明显的节能与环保效益,对提高企业的能源利用率,延长设备的使用寿命,减少设备运行费用与设备维护费用,确保用户的用电质量与用电可靠性,能起到极大的促进作用。在社会积极倡导各行业节能、减排的今天,甲方同时也做出积极地响应。甲方对现场控制对象(高惯量风机)提出的高性能控制装置高压变频器无疑就是其中的一例。根据现场使用情况、工艺要求,利用选用优良的大功率、高电压变频控制装置,不但可以调节电机的转速、转矩充分发挥其电气机械特性,而且可以更大程度上为钢厂、社会节能同时能够获得的更大的经济效益。本系统方案就是给现场高惯量风机选择一款综合性能较好的高压变频器。 二、被控设备基本参数、工作环境、电网情况 1、风机: 型号:Y5-2*48N026.5F 流量:700000m3/h 转速:965r/min 转动惯量:23000kg/m3 2、驱动电机: 型号:YBPK710-6 额定功率:2240KW 额定电压:6KV 额定电流:261A 变频运行:电动机Y型接法效率:96.0% 功率因素:0.86 绝缘等级:F 3、设备现场环境情况: 温度:0-40℃湿度:≤95%,不凝露 4、10KV电网情况 额定电压:10KV 正常电压波动范围:+/-10% 额定频率:50HZ 频率变化范围:+/-10% 三、高压变频器控制方案及选择 交流变频调速技术是现代化电气传动的主要发展方向之一,它不仅调速性能优越,而且节能效果良好。实践证明,驱动风机、水泵的大、中型笼型感应电动机,采用交流变频调速技术,节能效果显著,控制水平也大为提高。目前,变频调速技术已广泛应用于低压(380V)电动机,但在中压(3000V以上)电动机上却一直没有得到广泛应用,造成这种情况的主要原因是目前在低压变频器中广泛应用的功率电子器件均为电压型器件,耐压值基本都在1200-1800V,研制高压变频器难度较大,为了攻克这一技术难题,国内外许多科研机构及大公司都倾注大量人力物力进行研究,工业发达国家高压变频器技术已趋于成熟,国外几家著名电器公司都有高压大容量变频器产品,典型的如美国A-B(罗克韦尔自动化公司所属品牌)、欧洲的西门子公司、ABB 公司等。这些公司产品的电压一般为3-10kv,容量从250-4000kw,所采用的控制方式、变流方式及其他方面的关键技术也有很大差别。 A-B 从1990 年研制成功并开始投入商业运行的变频器主要采CSI-PWM技术,即电流源逆变-脉宽调制型变频器,采用电流开关器件,无需升降压变压器即可以直接输出6KV 电压,分强制风冷和水冷型,功率从300 到18000 马力,至今已经应用于多个行业上千台应用记录。是最有影响力,最为广泛接受的中压变频技术。美国罗宾康公司采用大量低压电压型开关器件,配合特殊设计的多脉冲多次级抽头输出隔离整流变压器,同样能够实现输出端直接6 千伏输出,由于是大量低压元件串接,故被称之为多极化电压性解决方案。西门子公司和ABB 公司分别采用中压IGBT 和IGCT 器件,是典型的电压型变频器。器件耐压等级为4160/3300V,直接输出电压最高达3300V。所以国内也有将此种方案称为高中方案,对应的将6KV-6KV(如A-B 方案)称为高高方案。中压变频器的发展和广泛应用是最近十几年的事情,相比之下低压变频器的应用却已经有超过二十年的时间。在中压变频器大面积推广应用之前,也出现了另外一种方案。即采用升降压变压器的“高-低-高”式变频器,

变频恒压供水的应用方案

变频恒压供水的应用方案 一、前言 随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频供水设备已广泛应用于多层住宅小区生活及高层建筑生活消防供水系统。变频调速供水设备一般具有设备投资少,系统运行稳定可靠,占地面积小,节电节水,自动化程度高,操作控制方便等特点。但在实际应用中若选型及控制不当,不但达不到节能目的,反而“费电”。以下结合我们多年来的实践经验,对几种变频供水系统的应用及其控制方法进行介绍,供同行及用户在设计、改造、选型时参考。 二、一拖二变频供水方式(见图1) 适用一般小区恒压供水,特点:是无需附加供水控制盒,成本低。利用变频器本身内置的恒压PID 控制功能。就能达到2 台水泵循环启停功能。 三、带小流量循环软启动变频供水设备(如3+1 供水模式,见图2) 该类型设备在实际应用中较多,系统由水泵机组、循环软启动变频柜、压力仪表、管路系统等构成。变频柜由变频调速器,供水盒(PLC+AD 模块+DA 模块),低压电器等构成。系统一般选择同型号水泵2~3 台,以3 台泵为例,系统的工作情况如下: 平时1 台泵变频供水,当1 台泵供水不足时,先开的泵切换为工频运行,变频柜再软启动第2 台泵,若流量还不够,第2 台泵切换为工频运行,变频柜再软启动第3 台泵。若用水量减少,按启泵顺序依次停止工频泵,直到最后1 台泵变频恒压供水。 另外系统具有定时换泵功能,若某台泵连续运行超过24h 变频柜可自动停止该泵切换到下一台泵继续变频运行。换泵时间由程序设

定,可按要求随时调整。这样可均衡各泵的运行时间,延长整体泵组的寿命,防止个别水泵因长时间不工作而锈死。 当变频供水系统在小流量或零流量的情况下,比如在夜间用水低谷时,系统内的用水量很小,此时水泵在低流量下运行,会造成水泵效率大大降低,不能达到节能的目的,水泵功率越大用电越多。例如对300~1000 户的多层住宅小区或600 户左右的小高层住宅楼群(12 层以内)的生活用水系统,生活主泵功率一般在15kW 左右,系统的零流量频率fo 一般为25~35Hz 故在夜间小流量时,采用主泵变频供水效率较低。 这就涉用供水系统在小流量或零流量时的节电问题,一般可以采取4 种方案:a 变频主泵+工频辅泵;b 变频主泵+工频辅泵+气压罐; c 变频主泵+气压罐; d 变频主泵+变频辅泵。从节能、投资角度看第4 种方案更为适宜,该方案即在原变频主泵基础上,再配备1~2 台小泵专用在夜间或平时小流量时变频供水,一般选择小泵流量为3~6m3/h,居民区户数越多,流量可适当选择大些。小泵功率一般为1.5~3kW,小泵的扬程按主泵的扬程或略低扬程即可。 四、深水井变频供水设备

高压变频器技术要求_知识交流

高压变频器技术要求_

XXX矿高压变频器技术要求 一、使用条件 1.环境温度范围: 0℃~40℃ 2.海拔高度:≤1000m 3.相对湿度范围:≤95% 4.运行地点无导电及易爆尘埃,无腐蚀金属和破坏绝缘的气体或蒸汽。 5.电网情况:额定电压10000V±10%,额定频率50HZ±5% 6.额定功率:2×630kW 7.控制电机功率:2×450kW 8.象限数:二象限 9.拖动方式:采取一拖一 二、供货范围 高压变频器供货范围 高压变频器的主要和辅助设备的设计、制造、检查、试验等必须遵守下列标准的最新版本,但不仅限于下列标准。 GB 156-2003 标准电压 GB/T 1980-1996 标准频率

GB/T 2423.10-1995 电工电子产品基本环境试验规程振动(正弦)试 验导则 GB 2681-81 电工成套装置之中的导线颜色 GB 2682-81 电工成套装置之中的指示灯和按钮的颜色GB 3797-89 电控设备第二部分:装有电子器件的电控设备GB 3859.1-93 半导体电力变流器基本要求的规定 GB 3859.2-93 半导体电力变流器应用导则 GB 3859.3-93 半导体电力变流器变压器和电抗器 GB 4208-93 外壳防护等级的分类 GB 4588.1-1996 无金属化孔单、双面印制板技术条件 GB 4588.2-1996 有金属化孔单、双面印制板技术条件 GB 7678-87 半导体自换相变流器 GB 9969.1-88 工业产品使用说明书总则 GB 10233-88 电气传动控制设备基本试验方法 GB 12668-90 交流电动机半导体变频调速装置总技术条件 GB/T14436-93 工业产品保证文件总则 GB/T15139-94 电工设备结构总技术条件 GB/T13422-92 半导体电力变流器电气试验方法 GB/T 14549-93 电能质量公用电网谐波 IEEE std 519-1992 电力系统谐波控制推荐实施 IEC1800-3 EMC传导及辐射干扰标准 IEEE519 电气和电子工程师学会 89/336EC CE标志 GB 12326 电能质量电压允许波动和闪变 GB/T 14549 电能质量公用电网谐波 GB 1094.1~1094.5 电力变压器 GB 6450 干式变压器 GB/T 10228 干式电力变压器技术参数和要求 GB17211 干式电力变压器负载导则 GB311 .1 高压输变电设备的绝缘配合 DL/T 620 交流电气装置的过电压保护和绝缘配合 四、变频器主要技术要求 1、变频器自带防谐波干扰电网装置,变频器输入侧对电网的谐波污染,在电机的整个调速范围内,必须满足GB/T14549-93《电能质量公用电网谐波》及IEEE519-1992国际标准的规定。变频器应对本体控制系统无谐波影响,如使用多脉冲整流器,整流桥脉冲数必须≥12脉冲。 2、变频器要求采用直接高-高形式,不能采用高-低-高形式,不允许有输出升压变压器,10kV输入,10kV直接输出单元串联多电平电压源形式。 3、2台变频器,需要采用主从控制方式,具有负载出力平衡功能,要求负载不平衡度小于5%。 4、变频器要求采用无速度传感器的矢量控制,同步误差率≤5%,具有启动转矩大的特点,可以重载启动皮带;低速特性好,可以低速验带;过载能力强,要求变频器具有相对电机150%60s/10min的过载能力。

变频器硬件设计方案

一.设计思路 通用型变频器的硬件电路主要由3部分组成:整流电路、开关电源电路以及逆变电路。整流电路将工频交流电整流为直流,并经大电容滤波供给逆变单元;开关电源电路为IPM和计算机控制电路供电;逆变电路是由PM50RSAl20组成。二.控制回路 1.整流电路 整流电路中,输人为380V工频交流电。YRl~YR3为压敏电阻,用于吸收交流侧的浪涌电压,以免造成变频器损坏。输人电源经二极管整流桥6R130G-160整流为直流,并经电的作用。发光二极管用于指示变频器的工作状态。Rl是启动过程中的限流电阻,由El~E4大电容滤波后成为稳定的直流电压,再经电感和电容滤波后作为逆变单元和开关电源单元的电源。R2和R3是为了消除电容的离散性而设置的均压电阻,同时还起到放于E1~E4容量较大,上电瞬间相当于短路,电流很大,尺l可以限制该电流大小,电路正常状态后由继电器RLYl将该电阻短路以免增加损耗。继电器的控制信号SHORT来自于计算机,上电后延时一定时间计算机发出该信号将电阻切除。R1应选择大功率电阻,本电路中选择的是20W的水泥电阻,而且为了散热该电阻安装时应悬空。电路中的+5V、+12V和±15V电压是由开关电源提供的电压。LVl是电压传感器,用于采集整流电压值,供检测和确定控制算法用。UDCM是电压传感器的输出信号。通过外接插排连接至外接计算机控制电路。 2.开关电路 输出电压进行变换,为IPM模块和外接的计算机控制电路提供电源,提供的 电压为±该电路主要由PWM控制器TL3842P、MOSFETK1317和开关变压器组成, 其功能是对整流电路的流15V、+1直2V、+5v。

无负压供水设备施工方案

无负压供水设备施工方案是一种新型的节能供水设备。无负压供水设备施工方案系运用当今最先进的微电脑控制技术,将变频调速器与电机水泵组合而成的机电一体化高科技节能供水装置。无负压供水设备施工方案以水泵出水端水压(或用户用水流量)为设定参数,通过微机自动控制变频器的输出频率从而调节水泵电机的转速,实现用户管网水压的闭环调节,使供水系统自动恒压稳于设定的压力值:即用水量增加时,频率提高,水泵转速加快;用水量减少时,频率降低,水泵转速减慢。这样就保证了整个用户管网随时都有充足的水压(与用户设定的压力一致) 和水量(随用户的用水情况变化而变化)。 无负压供水设备施工方案工作原理 根据用户要求,先设定给水压力值,然后通电运行,压力传感器监测管网压力,并转为电信号送至可编程控制器或微机控制器,经分析处理,将信号传至变频器来控制水泵运行,当用水量增加时,其输出的电压及频率升高,水泵转数升高,出水量增加,当水量减小时,水泵转数降低,减少出水量,使管网压力维持设定压力值,,在多台泵运行时,逐机软启动,由变频转工频至压力流量满足为止,实现了水泵的循环控制,当夜间小流量运行时,可通过变频水泵来维持工作,变频给水泵可以停机保压。 无负压供水设备施工方案产品六大优点:

(1)高效节能:充分利用市政水源本身具有的压力热能,差多少补多少,切实有效地、最大限度地发挥了变频调速的节能效果。 (2)洁净卫生:构成连续密闭的增压供水方式,完全保持了市政水源的国家水质卫生标准,从根本上避免了增压系统造成的水质标准降低和各种水源污染问题。 (3)杜绝浪费:不仅淘汰了高位水箱,还彻底地取消了地面(地下)水池水箱,完全杜绝了水箱溢流,定期清洗造成的水源浪费。 (4)运行噪声低:系列产品采用全变频调整方案时,大部分时间特别在夜间处于低噪声运行工况。 (5)设计了全密闭的、兼有缓冲作用和动态补偿作用的水源箱罐,与目前市场所谓无负压罐相比,更具有实际意义,并使控制系统得以简化。 (6)该系列产品控制系统充分总结了国内外变频给水设备的设计制造经验,采用规范通用的控制系统技术方案,可换用任意厂商的变频器、调节器、PLC和其他元器件,调试维修特别方便,为产品的终身售后服务奠定了良好基础,不会因技术进步而导致售后服务问题。 恒压变频供水设备安装使用及保养:

1通用变频器的硬件电路设计

1通用变频器的硬件电路设计 1.1通用变频器的总体设计 本设计的系统以TI公司的TMS320LF2407A为控制核心,由主电路、系统保护电路和控制电路组成,其总体设计图如图3.1所示。 图1.1 基于DSP的通用变频调速系统总体设计图 其中主电路部分由整流电路、滤波电路、逆变电路(IPM)和IPM驱动电路与吸收电路组成。其工作原理是把单相交流电压通过不可控整流模块变为直流电压,整流后的脉动电压再经过大电容C1,C2平滑后成为稳定的直流电压。IPM逆变电路对该直流电压进行斩波,形成电压和频率均可调的三相交流电,提供给电机。

系统保护电路包括过压、欠压保护、限流启动、IPM故障保护与泵升控制等。过压、欠压保护是利用电阻分压采集母线电压,与规定值相比较;限流启动是由于开启主回路时,大电容充电瞬间引起的电流过大,这样可能会损坏整流桥,因此在主回路上串联限流电阻R1,当电容电压达到规定值时,启动继电器把R1短路,主回路进入正常工作状态;IPM故障保护是IPM内部集成的各种保护功能,包括过电流保护功能、短路保护功能、控制电源欠电压保护和管壳及管芯温度过热保护。把上述各种故障信号进行综合处理后形成总的故障信号送入DSP(TMS320LF2407A)的PDPINTA故障中断入口,进而封锁DSP的PWM波输出。 控制电路包括DSP最小系统电路、频率输入电路、光耦隔离电路等。最小系统由DSP本身和外扩的数据SRAM、程序SRAM、复位电路、晶振、译码电路、电源转换电路和仿真接口JTAG电路组成,仿真接口JTAG电路是为了实现在线仿真,同时在调试过程装载数据代码和程序代码;频率输入电路可以设置系统要输出的SPWM波的频率;光耦隔离电路是为了把DSP输出的弱电信号和主电路的强电信号进行可靠隔离。 1.2主电路的设计

伺服驱动器硬件设计方案

伺服驱动器硬件设计方案 伺服驱动器的硬件研发主要包括控制板和电源板的设计,控制板承担与上位机进行交互和实时生成精准的PWM信号。电源板的作用根据PWM信号,利用调制的原理产生特定频率,特定相位和特定幅值的三相电流以驱动电机以达到最优控制。 一控制板研发 1)控制板的架构主要的任务就是核心器件的选择。 安川、西门子等国际知名的公司都是采样ASIC的方式的芯片,这样就可以按照自己 的设计需要来制造专用于伺服控制的芯片,由于采样ASIC方式,所以芯片的运行速 度非常快,那么就比较容易实现电流环的快速响应,并且可以并行工作,那么也很 容易实现多轴的一体化设计。采样ASIC的方式有很多的好处,比如加密等。但是采 样ASIC的风险和前期的投入也是非常的巨大的,并且还要受该国的芯片设计和制造 工艺的限制。 根据我国的实际的国情和国际的因素等多种原因,核心芯片比较适宜采样通用的 DSP,ARM等处理器,比如Ti的C2000飞思卡尔的K60,英飞凌的XE164等。研究 台达的伺服驱动器发现其架构是采用Ti的DSP 2812+CPLD,这和我们公司GSK的方 案基本一样。我们也是采用DSP2812加CPLD(EPM570T144)来实现核心的控制功能。 2)核心器件的控制功能的分工。 DSP实现位置环、速度环、电流环的控制以及利用事件管理器PWM接口实现产生特 定的PWM信号。可以利用其灵活的编程特性快速的运算能力实现特定的控制算法等,还可以利用其自身的A/D完成对电机电流的转换,但是DSP自身的A/D精度普遍较 低,并且还受基准电压电源的纹波PCB的LAYOUT模数混合电路的处理技巧影响, 所以高档的伺服几乎都采用了外部A/D来完成电流采样的处理。比如路斯特安川等。 也有一些高档的伺服使用一些特殊的电流传感器,该传感器的输出已经是数字信 号,这样就可以节省了外部A/D芯片和增强抗干扰能力。如西门子的变频器采用 ACPL7860,发那克用于机器人的六驱一体的伺服也是采用了ACPL7860,西门子的伺 服S120采用了Ti的芯片AMC1203。 CPLD的作用是用来协助DSP以减少其自身的开销,比如完成速度的计算,位置的 计算,控制外部A/D对电机电流进行转换,因此当实现位置环速度环电流环所需要 的位置数据,速度数据,电流数据,那么DSP就可以直接从CPLD/FPGA处读取,不 需要耗费DSP的宝贵时间来计算这些数据。如果是增量式编码器采用M/T法测速效 果是最好的,但M/T法对DSP处理器的资源开销很大, 而CPLD/FPGA可以非常方便 使用M/T法进行测速。如果是绝对式编码器也可以非常方便采用CPLD/FPGA来解 析通信协议,并实现测速。一些高档的伺服也采用了CPLD/FPGA实现总线和以太网 功能。

变频器安装方案

变频器安装方案集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

温州市综合材料生态处置中心 焚烧、固化及附属设施设备安装及调试项目 变频器施工方案 编制: 审核: 批准: 上海灿州环境工程有限公司、中易建设有限公司(联合体) 二0一五年10月 目录 1、适用范围 2、施工准备 3、安装操作流程 4、安装人员 5、风险分析及预防措施 说明:因变频器是柜体式(配电柜)安装,所以先安装柜体根据成套配电柜及动力开关柜安装施工工艺标准(HFWX.QB/1-6-009- 2004)施工。 1.适用范围: 温州市综合材料生态处置中心焚烧及附属设施设备安装及调试工程电气安装成套配电柜,动力开关柜安装及二次回路接线。 2、施工准备

2.1设备及材料要求 业技术标准,符合设计要求并有出厂合格证。设备应有铭牌并注明 厂家名称,附件备件齐全。 “长城”标志合格证。 2.2主要机具 2.3施工材料准备工期:半天 3、安装操作流程 3.1安装流程 设备开箱检查——设备搬运——基础槽钢制作安装——原接触器 开关柜体的拆除搬运——调频器柜体安装及开关柜体安装——调频 器的安装——控制调频器接触器、开关的安装——二次回路接线— —送电调试变频器——动力电缆施放对接——试验调整——送电联 动试车——联动试车成功交付运行 3.2设备开箱检查 3.2.2 4内部检查:电器设置及元件无损伤裂缺陷。 3.3设备搬运 3.4柜体基础槽钢制作安装 触器开关 柜体的拆 除搬运

3.6调频器柜体及控制调频器开关、接触器柜体(原65T引风机送风 机触器开关柜体)安装 Φ12.2mm孔高压柜体钻Φ16.22mm孔。分别用ΦM12、ΦM16镀锌螺丝固定。允许偏差见表: 2铜线与柜体上的接地端子连接牢固。 3.7变频器的安装 ——+40℃,测试环境温度的点应在距变频器约5cm处。在环境温度大于+40℃的情况下,每增加5℃,其运行功率下降30%。相对湿度应不超过90%,无结露现象。在变频器安装的位置应无阳光、无腐蚀性气体及易燃气体、尘埃少、海拔低于1000m、垂直安装、保证热空气排除新的空气进入机柜门入口的通道、无震动。 ≧100mm;上下方:≧150mm。为了防止异物掉在变频器的出风口阻塞风道,必须在变频器出风口的上方加装保护罩。 7天 3.8控制调频器接触器、开关的安装 7天

变频供水设备技术将大力突破!变频恒压供水方案(带水箱)更受市场欢迎!

关键字:恒压供水设备,变频恒压供水设备,恒压给水设备,无塔变频恒压供 水设备,恒压供水系统,恒压供水方式,恒压供水设备原理,恒压供水设备原 理图,恒压供水设备图片 长沙华振泵业有限公司位于浏阳永安制造产业园,是湖南区内最大的成套供水设 备生产厂家,拥有一批高素质、经验丰富的技术人才及管理人员,自上个世纪九十 年代成立以来,一直致力于二次加压供水设备的智能化研究,十几年的生产安装经 验,造就迪慧优良品质,先后荣获自治区优质产品及重合同守信用企业称号,华振 公司正以全新高科技产品结构,完善的售后服务,打造供水行业中智能化控制的优 质品牌。 恒压供水设备问题的提出 水已经成为中国21世纪的热点问题,水有其自然属性,它既是一种特殊的、 不可替换的资源,又是一种可重复使用、可再生的资源;水又有其经济和社会属性, 不仅工业、农业的发展要靠水,水更是城市发展、人民生活的生命线。 恒压供水设备技术其节能、安全、供水高品质等优点,在供水行业得到了广泛 应用。恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为 供水管网的压力变化)自动调节系统的运行参数,在用水量发生变化时保持水压恒 定以满足用水要求是当今先进、合理的节能型供水系统。在实际应用中如何充分利 用变频器内置的各种功能,对合理设计变频器调速恒压供水设备,降低成本、保证 产品质量等有着重要意义。 供水模式 本方案选用我公司新一代智能数控变频恒压供水设备,恒压按需调流,根据不 同时段用水量智能选择水泵台数,节能的同时也让用户喝到符合国家卫生标准的饮 用水。供水示意图为: 用户

变频器结构电路图 主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。变频器结构图如图所示。 图.变频器结构图 变频器的配线 1、主回路端子台的配线图如图所示。 图.变频器配线图 2、控制回路端子 (1)控制回路端子图

高压变频器的冷却方式

一、引言 在电力、化工、煤矿、冶金等工业生产领域要求高压变频器有极高的可靠性。影响高压变频器的可靠性指标有多项,其中在设计过程中其散热与通风是一个至关重要的环节。目前高压变频器有高-低-高式、元件直接串联式、中点箝位多电平式、单元级联式等多种方式,一般来讲,上述各种方式的高压变频器,其效率一般都可达到96~98%;但由于设备功率大,在正常工作时,仍要产生大量的热量。为保证设备的正常工作,把大量的热量散发出去,优化散热与通风方案,进行合理的设计与计算,实现设备的高效散热,对于提高设备的可靠性是十分必要的。 高压变频器设备功率较大,4%的功率损耗主要以热量形式散失在运行环境当中。如果不能及时有效的解决变频器室的工作环境温度问题,将直接危及变频器本体的运行安全;最终因为温度过高,导致变频器过热保护动作跳闸。为保证变频器具有良好的运行环境,必须对变频器及运行环境的温度控制采取措施。 二、冷却方式 通过变频器工程应用经验的积累,针对不同的应用环境现场提供完整的变频器冷却系统解决方案。常用的几种冷却方式主要包括:⑴风道开放式冷却;⑵空调密闭冷却;⑶空-水冷密闭冷却;⑷设备本体水冷却;⑸上述方式组合冷却。 1.风道开放式冷却 1.1冷却过程 冷风经变频室通风入口滤网进入变频器,经过对机体进行冷却后,再由变频器风道出风口将热风排出。 1.2安装方式 风道开放式冷却安装比较简单,只需在变频室的墙壁上开两个通风入口,安装上滤网,然后在变频器的柜顶风罩上向外引出出风口风道即可,如下图1所示: 1.3系统特点 (1)施工简单,维护量大; (2)费用低廉; (3)运行稳定性依赖于当地环境 2.空调密闭冷却 2.1容量选择原则 按照变频器的发热量和控制室环境实用面积来选择空调的容量。 2.2安装方式 变频器室安装空调时,要求变频器控制室空间要尽可能小,并且做好密封,避免夏季室外温度高带来的加热效应。空调的安装位置可根据现场实际情况布置在变频器两侧。具体设备布局如下图2所示。 2.3系统特点 (1)急速高效制冷 (2)童锁功能,防止误操作 (3)广角送风,室温均匀舒适 (4)防冷风设计,送风舒适 (5)独立除湿 (6)低温、低电压启动 (7)室外机耐高温运转 (8)室内密闭冷却

电机变频调速系统硬件设计..

第三章 系统的硬件设计及其实现 3.1系统硬件结构总体设计 硬件部分包括主电路、保护电路、驱动电路、控制电路。 本文所涉及到的主电路的参数是三相完全对称的,其中整流部分采用二极管不可控整流,逆变部分采用的功率器件是IGBT 。系统结构框图如图3- 1所示。380V 三相交流电输入到整流器主电路,调节交流输入变压器使输出直流电压稳定在540V 左右。DSP 的主要任务是输出SVPWM 触发脉冲对逆变器的输出进行控制。在实际的系统组成中,分为强电部分和弱电部分。强电部分和弱电部分相互隔离分开能够减少强电部分对弱电部分的影响,这点对于DSP 的正常运行,变频器的正常工作有很重要的影响。 图3-1系统硬件结构总框图 主电路:采用交一直一交电压型变频装置。它主要由整流电路、滤波电路、逆变器三部分组成。整流电路是利用二极管三相桥式不可控整流模块将三相工频交流电整流成直流电;滤波电路采用电容滤波,将整流输出的脉动电压转化为平直的直流电压Vdc;逆变器是由IGBT 构成的三相全桥式逆变器。 3.2主电路工作原理 在交流变频调速系统中,主回路作为直接执行机构,其可靠性及稳定性直接影响整个系统的运转。主电路一般是由整流电路、中间滤波电路和逆变器三部分组成。本课题选用的是电压型交一直一交变频装置。它包括不可控整流器、大电容滤波、三相桥式逆变器、采样电路、保护电路以及能耗制动电路,其电路原理整流器 TMS320F2812 DSP 直流 母线 逆变器 开关电源 CT1 CT2 M 光耦隔离 驱动电路 过流保护 滤波电路 光电 编码器 上位机 键盘 A B C 六路PWM 信号

图如图3-2 图3-2系统硬件主电路图 主电路主要包括整流器和逆变器,需要用到整流桥、滤波电容器组、限流电阻和开关、电源指示器、整流二极管等器件。 三相交流电源经三相整流桥全波整流成直流电,如电源的线电压为,则三相全波整流后平均直流电压的大小是=1.35UL ,我国三相电源的线电压为380V ,考虑滤波电容的因素,全波整流后的电压是=1.414UL ,故直流电压大约为540V 。滤波电容的功能主要有两点:一是滤平全波整流后的电压纹波;二是当负载变化时,使直流电压保持平稳。由于受到电解电容的电容量和耐压能力的限制,滤波电路通常由若干个电容器并联成一组,又由两个电容器组串联而成,由于电解电容器的电容量有较大的离散性,故电容器组和的电容量不能完全相等,这将使它们承受的电压不相等,为了使它们承受的电压相等,在和二旁各并联一个阻值相等的均压电阻和。 限流电阻和开关,当变频器合上电源的瞬间,滤波电容器的充电电流是很大的。过大的冲击电流可能使三相整流桥的二极管损坏,同时也使电源电压瞬间下降而受到“污染”。为了减少冲击电流,在变频器刚接通电源后的一段时间里,电路内串入限流电阻,其作用是将电容器的充电电流限制在允许范围之内。当充电到一定程度时,令开关接通,将电阻短路掉。电源指示, 除了表示电源是否接通以外,还有一个十分重要的功能,即在变频器切断电源后,指示滤波电容器上的电荷是否己经释放完毕。由于的容量较大,而切断电源又必须在逆变电路停止工作的状态下进行,所以没有快速放电的回路,其放电时间长达数分钟。又由于上的电压较高,如不放完.对人身安个将构成威胁。 3.2.1整流二极管及IGBT 的选择 (1)整流二极管的选择 a.确定电压额定值整流二极管的耐压按式((6-1)确定。根据电网电压,考虑A B C M 整流桥

无负压供水设计方案

供水设备有限公司方案设计 项目名称: 方案设计单位:供水设备有限公司 联系人: 日期:20 年月日

目录 第一章无负压供水设备方案设计 1.1 工程概况 1.2 方案设计原则 1.3 方案编制依据 第二章材料清单及报价 2.1无负压供水设备清单及报价 第一章无负压供水设备方案设计 1.1 工程概况 该项目为小区生活供水,总户数为272户,楼层高为56米,初步分为低、中二个区,低区为1-3层,市政管网水直接供水;中区为4-18层,设计流量Q=40M3/H,设计扬程H=70米;采用我公司一套无负压供水设备,用水高峰期自来水压力约为0.25MPA。

1.2 方案选型计算 【供水流量、管道水力(即水泵扬程)计算】(高区流量和扬程计算) (B)用水标准M:每间平均人数 3.5 人/户q0:每人每日用水量标准300L Kh:小时系数 2.5 Ng:每户当量总数 2.75 T:供水时间24 小时 (C)设计流量U0=(q0mKh)/(0.2·Ng·T·3600) 0.05524 Ac:对应于不同U0系数0.03715 Ng:小区当量总数316.25 U=[1+ac(Ng—1)0.49]/Ng1/2 0.093 qg=0.2·U·Ng(L/S) 5.88 L/S 设备选用用流量Qh=3.6·qg 21.17 M3/h (D)设计压力 水泵满足最不利点所需水压 Hb总≥1.2Hy+Hc+Hd c+∑h-H0 139 m 最不利配水点与引入管的标高差Hy 110 m 最不利配水点所需流出水头Hc 15 m 泵房与最远建筑物一楼地面的地势高差Hdc 4 m 泵房与最远建筑物间管线的水力损失,含沿程水头损 失hf和局部水头损失hd(∑h) 3 m 市政自来水管网的最小供水压力H0 0.15MPa m 根据以上计算方式,可以设计中区流量为Q=40M3/H,扬程H=70M;

相关主题
文本预览
相关文档 最新文档