当前位置:文档之家› 材料线膨胀系数的测定

材料线膨胀系数的测定

材料线膨胀系数的测定
材料线膨胀系数的测定

实验十材料线膨胀系数的测定--示差法

物体的体积或长度随温度的升高而增大的现象称为热膨胀。热膨胀系数是材料的主要物理性质之一,它是衡量材料的热稳定性好坏的一个重要指标。

目前,测定材料线膨胀系数的方法很多,有示差法(或称“石英膨胀计法”)、双线法、光干涉法、重量温度计法等。在所有这些方法中,以示差法具有广泛的实用意义。国内外示差法所采用的测试仪器很多,有分立式膨胀仪(如weiss立式膨胀仪)和卧式膨胀仪(如HTV 型、UBD型、RPZ―1型晶体管式自动热膨胀仪)两种。有工厂的定型产品,也有自制的石英膨胀计。些外,双线法在生产中也是—种快速测量法。本实验采用示差法。

一.目的意义

在实际应用中,当两种不同的材料彼此焊接或熔接时,选择材料的热膨胀系数显得尤为重要,如玻璃仪器、陶瓷制品的焊接加工,都要求二种材料具备相近的膨胀系数。在电真空工业和仪器制造工业中广泛地将非金属材料(玻璃、陶瓷)与各种金属焊接,也要求两者有相适应的热膨胀系数;如果选择材料的膨胀系数相差比较大,焊接时由于膨胀的速度不同,在焊接处产生应力,降低了材料的机械强度和气密性,严重时会导致焊接处脱落、炸裂、漏气或漏油。如果层状物由两种材料迭置连接而成,则温度变化时,由于两种材料膨胀值不同,若仍连接在一起,体系中要采用一中间膨胀值,从而使一种材料中产生压应力而另一种材料中产生大小相等的张应力,恰当地利用这个特性,可以增加制品的强度。因此,测定材料的热膨胀系数具有重要的意义。

本实验的目的:

1.了解测定材料的膨胀曲线对生产的指导意义;

2.掌握示差法测定热膨胀系数的原理和方法,测试要点;

3.利用材料的热膨胀曲线,确定玻璃材料的特征温度

二.示差法的基本原理

一般的普通材料,通常所说膨胀系数是指线膨胀系数,其意义是温度升高1℃时单位长度上所增加的长度,单位为厘米╱厘米·度。

假设物理原来的长度为L0,温度升高后长度的增加量为?L,实验指出它们之间存在如下关系:

α1?t (15-1)?L╱L

0=

式中的α1,称为线膨胀系数,也就是温度每升高1℃时,物体的相对伸长。

当物体的温度从T1上升到T2时,其体积也从V1变化为V2,则该物体在T1至T2的温度范围内,温度每上升一个单位,单位体积物体的平均增长量为

βV1-V2)╱V1(T1-T2)(15-2)

=

(

式中,β为平均体膨胀系数。

从测试技术来说,测体膨胀系数较为复杂。因此,在讨论材料的热膨胀系数时,常常采 用线膨胀系数:

α=(L 1-L 2)╱L 1(T 1-T 2) (15-3)

式中:α―玻璃的平均线膨胀系数; L 1―在温度为T 1时试样的长度; L 2―在温度为T 2时试样的长度;

β与α的关系是

332233T T ??+??+=αααβ (15-4)

方图奶斗)中的第二项和第三项非常小,在实际中一般略去不计,而取β≈3 α。 必须指出,由于膨胀系数实际上并不是一个恒定的值,而是随温度变化的,所以上述膨胀系数都是具有在一定温度范围?t 内的平均值的概念,因此使用时要注意它适用的温度范围。

表15-1 一些材料的膨胀系数

示差法是基于采用热稳定性良好 的材料石英玻璃(棒和管)在较高温度 下,其线膨胀系数随温度而改变的性 质很小,当温度升高时,石英玻璃与 其中的待测试样与石英玻璃棒都会发 生膨胀,但是待测试样的膨胀比石英 玻璃管上同样长度部分的膨胀要大。 因而使得与待测试样相接触的石英玻 璃棒发生移动,这个移动是石英玻璃

管、石英玻璃棒和待测试样三者的同 图15-1 石英膨胀仪内部结构热膨胀分析图 时伸长和部分抵消后在千分表上所显

示的?L值,它包括试样与石英玻璃管和石英玻璃棒的热膨胀之差值,测定出这个系统的伸长之差值及加热前后温度的差数,并根据已知石英玻璃的膨胀系数,便可算出待测试样的热膨胀系数。

图15-1是石英膨胀仪的工作原理分析图,从图中可见,膨胀仪上千分表上的读数为:?L=?L1-?L2

由此得到:?L1 = ?L+ ?L2

根据定义,待测试样的线膨胀系数

α(?L+?L2)╱L??t=(?L╱L??t)+ (?L2/L??t)

=

其中?L2/L??t=α石

所以α=α石+(?L╱L??t)

若温度差为t2-t1,则待测试样的平均线膨胀系数α可按下式计算:

α=α石+?L╱L(t2-t1)

式中:α石―石英玻璃的平均线膨胀系数(按下列温度范围取值);

5.7? 10-7度-1(0~300℃)

5.9? 10-7度-1(0~400℃)

5.8? 10-7度-1 (0~1000℃)

5.97? 10-7度-1 (200~700℃)

t1―开始测定时的温度;

t2―一般定为300℃(若需要,也可定为其它温度);

?L―试样的伸长值,即对应于温度t2与t1时千分表读数之差值,以毫米记;

L―试样的原始长度,毫米。

这样,将实验数据在直角座标系上作出热膨胀曲线(如图15-2)。就可确定试洋的线热膨胀系数,对于玻璃材料还可以得出其特征温度Tg与Tf。

三.材料、设备和仪器装置

1.待测试样玻璃、陶瓷等);

2.小砂轮片(磨平试样端面用);

3.卡尺(量试样长度用);

4.秒表(记时用);

5.石英膨胀仪(包括管式电炉、

制石英玻璃管、石英玻璃棒、千分表、

电偶、电位差计、电流表、2KVA调压图15-2玻璃材料的膨胀曲线

器等);

6.仪器装置如图15-3所示。

四.测试程序

1.试降的准备

(1)必须先取无缺陷(对于玻璃,应当无砂子、波筋、条纹、气泡)材料,作为测定膨胀系数的试样。

(2)试样尺寸依不同仪器的要求而定。例如,一般石英膨胀仪要求试样直径为5~6毫米,长为60±01毫米的待测棒;UBD万能膨胀仪要求试样直径为3毫米、长为50±01毫米;Welss立式膨胀仪要求试样直径为12毫米、长为65±01毫米。

(3)把试棒两端磨平,用千分卡尺精确量出长度。

图15-3示差法测定材料膨胀系数的装置

1-测温热电偶2-膨胀仪电炉3-电热丝4-电流表5-调压器6-电炉铁壳

7-钢柱电炉芯8-待测试棒9-石英玻璃棒10-石英玻璃管11-遮热板

12-铁制支承架13-千分表 l4-水瓶15-水银温度计 16-电位差计

2.测试操作要点

(1)被测试样和石英玻璃棒、千分表顶杆三者应先在炉外调整成平直相接,并保持在

石英玻璃管的中轴区,以消除摩擦与偏斜影响造成误差。

(2)试样与石英玻璃棒要紧紧接触使试样的膨胀增量及时传递给千分表,在加热测定

前要使千分表顶杆紧至指针转动2~3圈,确定一个初读数.

(3)升温速度不宜过快,以控制2~3℃/分钟为宜,并维持整个溅试过程的均匀升温。

(4)热电偶的热端尽量靠近试样中部、但不应与试样接触。测试过程中不要触动仪器,也不要振动实验台桌。

3.测试步骤

(1)先接好路线,再检查一遍接好的电路。

(2)把石英玻璃管支夹在铁架上。

(3)先把准备好的待测试样小心地装入石英玻璃管内,然后装进石英玻璃棒,使石英玻璃棒紧贴试样,在支架的另一端装上千分表,使千分表的顶杆轻轻顶压在石英玻璃棒的末端,把千分表转到零位。

(4)将卧式电炉沿滑轨移动,将管伏电炉的炉芯套上石英玻璃管,使试样位于电炉中心位置(即热电偶端位置)。

(5)合上电闸,接通电源,等电压稳定后,调节自耦调压器,以每分钟3℃的速度升温,每隔2分钟记一次千分表的读数和电位差计的读数,直到千分表上的读数向后退为止。

将所测数据记入表15-3。

表40-2 测试结果记录表

五.数据处理

1.根据原始数据绘出待测材料的线膨胀曲线。

2.按公式计算被测材料的平均膨胀系数。

3.对于玻璃材料,从热膨胀曲线上确定出其特征温度Tg、Tf。

六.思考题

1.举两例说明测试材料膨胀系数对指导生产有何实际意义?

2.为什么要选用石英玻璃作为安装试样的托管?升温速度的快慢对膨胀系数的测试结果有无影响?为什么?

线膨胀系数测量的讲义

金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪表的失灵,以及加工焊接中的缺陷和失败等等。 一.实验目的 学习测量金属线膨胀系数的一种方法。 二.实验仪器 金属线膨胀系数测量实验装置、YJ-RZ-4A数字智能化热学综合实验仪、 游标卡尺、千分表、待测金属杆(铜杆、铁杆) 金属线膨胀系数测量的实验装置如图1所示 内有加热引线和温度传感器引线 图1 YJ-RZ-4A数字智能化热学综合实验仪面板如图2所示 图2 三.实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?T近似成正比,与原长L亦成正比,即

?L = T L ?α (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔凝石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1T 时杆长L (一般,杆在1T 时的长度L 可以近似等于杆在常温时的长度)、受热后温度达2T 时的伸长量?L 和受热前后的温度1T 及2T ,则该材料在(1T ,2T )温区的线胀系数为: α = ) (12T T L L -? (2) 其物理意义是固体材料在(1T ,2T )温区内,温度每升高一度时材料的相对伸长量,其单位为1)(-?C 。 测线胀系数的主要问题是如何测伸长量?L 。而?L 是很微小的,如当L ≈250mm,温度变化12T T -≈100℃,金属的a 数量级为10 5 -1)(-?C 时,可估算出?L ≈0.25mm 。对于这么 微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。 千分表是一种通过齿轮的多极增速作用,把一微小的位移,转换为读数圆盘上指针的读数变化的微小长度测量工具,它的传动原理如图3所示,结构如图4所示, 千分表在使用前,都需要进行调零,调零方法是:在测头无伸缩时,松开“调零固定旋钮”,旋转表壳,使主表盘的零刻度对准主指针,然后固定“调零固定旋钮”。调零好后,毫米指针与主指针都应该对准相应的0刻度。 千分表的读数方法:本实验中使用的千分表,其测量范围是0-1mm 。当测杆伸缩0.1mm 时,主指针转动一周,且毫米指针转动一小格,而表盘被分成了100个小格,所以主指针可以精确到0.1mm 的1/100,即0.001mm ,可以估读到0.0001mm 。即: 千分表读数=毫米表盘读数+ ?1000 1 主表盘读数 (单位:mm ) (毫米表盘读数不需要估读,主表盘读数需要估读) 例如:图5中千分表读数为:0.2+ ?1000 1 59.8=0.2598 mm

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量班级:姓名:学号:实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受 热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了 △L,则有 () 1 2 t t L L- = ?α(1)(2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系 数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测 量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远 镜和米尺组成的。光杠杆放大原理如下图所示: () 1 2 t t L L - ? = α

当金属杆伸长△L时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有:带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读 数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升 高10度时标尺读数直至温度升高到90度止 l L D b b? = - 2 1 2 () D l b b L 2 1 2 - = ? () ()k DL l t t DL b b l 2 2 1 2 1 2= - - = α

固体热膨胀系数的测量实验报告图文稿

固体热膨胀系数的测量 实验报告 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 ()12t t L L -=?α (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: 当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时()12t t L L -?= α

有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节 中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记 录每升高10度时标尺读数直至温度升高到90度止 8.单击卷尺,分别测量l、D, 9.以t为横轴,b为纵轴作b-t关系曲线,求直线斜率。 10.代入公式计算线膨胀系数值。 由图得k=0.3724 五、实验数据记录与处理 六、思考题 1.对于一种材料来说,线胀系数是否一定是一个常数为什么 答:不是。因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果的事实可证明。 2.你还能想出一种测微小长度的方法,从而测出线胀系数吗? 答:目前想不到更好地方法。 3. 引起测量误差的主要因素是什么? 答:仪器的精准度,操作过程中的不可避免性的失误,温度变化的控制,铜棒受热不均匀等。

物理金属线膨胀系数测量实验报告

实验 (七) 项目名称:金属线膨胀系数测量实验 一、实验目的 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 二、实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即: t L L ???α=? (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在) , (21t t 温度区域的线胀系数为:) t L (L ???= α(2) 其物理意义是固体材料在)t , t (21温度区域内,温度每升高一度时材料的相对伸长量,其单位为1 )C (-。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若 mm 250L =,温度变化C 100t t 0 12≈-,金属的α数量级为105)C (10--?,则估算出 mm 25.0t L L ≈???α=?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验用千分表(分度值为mm 001.0)测微小的线胀量。 三、实验主要仪器设备和材料

线膨胀系数实验报告参考

线胀系数测量实验报告参考稿 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪一台,千分表(1-0-0.001mm )一个,待测铜管一根。 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 如图所示,待测铜管的线胀系数为: () t L L ???= α 式中L 为温度为1t 摄氏度时的管长,L ?为管受热后温度从1t 升高到2t 时的伸长量,t ?为管受热前后的温度升高量 (12t t t -=?) 。 该式所定义的线胀系数的物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 【实验内容和步骤】 1.把样品铜管安装在测试架上。连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。 4.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。 5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为mm 2.0左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。) 6.正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到C 50?左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如C 35?)。.

材料热膨胀系数的测定

材料热膨胀系数的测定 1. 实验目的 1.1 掌握热机分析的基本原理、仪器结构和使用方法。 1.2 掌握热膨胀系数的概念以及测定方法。 2. 基本原理 物体的体积或长度随着温度的升高而增大的现象称为热膨胀。它是衡量材料的热稳定性好坏的一个重要指标。目前,测定材料线膨胀系数的方法很多,有示差法(或称“石英膨胀计法”)、双线法、光于涉法、重量温度计法等。在所有这些测试方法中,以示差法具有广泛的实用意义。 当物体的温度从T 1上升到T 2时,其体积也从V 1变化为V 2,则该物体在T 1一T 2的温度范围内,温度每上升一个单位。单位体积物体的平均增长量为平均体膨胀系数。从测试技术来说,测体膨胀系数较为复杂。因此,在讨论材料的热膨胀系数时,常常采用线膨胀系数,其意义是温度升高1℃时单位长度上所增加的长度,单位为cm ·cm ·℃-1 。 将试样装在装样管内用顶杆压住试样,顶杆与位移传感器接触,在加热炉中,通过精密温度控制仪按规定的升温速率加热试样到试验最终温度,并经位移传感器测量加热过程中试样的线膨胀情况.按下式计算由室温至试验温度的各温度间隔的线膨胀系数: 0 0001);(t t L L L t t --?=α 式中:0t —— 初始温度,℃; t —— 实际(恒定或变化)的试样温度,℃; 0L ——受测玻璃试样,在温度为0t 时的长度,mm ; L ——温度为t 时的试样长度,mm 。 若标称初始温度0t 为20℃;因此平均线性热膨胀系数就应表示为);C 20(t ?α。膨胀系数实际上并不是一个恒定的值,而是随温度变化的,所以上述膨胀系数都是具有在一定温度范围内的平均值的概念,因此使用时要注意它适用的温度范围。 3. 仪器与试剂 热机分析仪 XYW-500B

材料的热膨胀系数

热膨胀系数 物体由于温度改变而有胀缩现象。其变化能力以等压(p一定)下,单位温度变化所导致的长度量值的变化,即热膨胀系数表示。 线胀系数是指固态物质当温度改变摄氏度1度时,其某一方向上的长度的变化和它在20℃(即标准实验室环境)时的长度的比值。各物体的线胀系数不同,一般金属的线胀系数单位为1/摄氏度。 大多数情况之下,此系数为正值。也就是说温度变化与长度变化成正比,温度升高体积扩大。但是也有例外,如水在0到4摄氏度之间,会出现负膨胀。而一些陶瓷材料在温度升高情况下,几乎不发生几何特性变化,其热膨胀系数接近0。 中文名:热膨胀系数 英文名:coefficient of thermal expansion , CTE 线膨胀系数:α=ΔL/(L*ΔT) 面膨胀系数:β=ΔS/(S*ΔT) 体膨胀系数:γ=ΔV/(V*ΔT) 1. 概述 expansion thermal coefficient 热膨胀系数有线膨胀系数α、面膨胀系数β和体膨胀系数γ。 式中ΔL为所给长度变化ΔT下物体温度的改变,L为初始长度; ΔS为所给面积变化ΔT下物体温度的改变,S为初始面积; ΔV为所给体积变化ΔT下物体温度的改变,V为初始体积; 严格说来,上式只是温度变化范围不大时的微分定义式的差分近似;准确定义要求ΔV与ΔT无限微小,这也意味着,热膨胀系数在较大的温度区间内通常不是常量。 线热膨胀系数αL

δ = 热膨胀系数* 全长* 温度变化 = 10.8 * 10-6 * 100mm * 100℃ = 0.108 (mm) 3. 热膨胀系数的精密测试与测量能力溯源 为了保证材料热膨胀系数国与国之间的量值统一和互认,国际计量局长度委员会(CCL)2004年启动过材料热膨胀系数的国际比对,有十几个国家参加了这个项目的国际比对。 为应对国际比对,更为了统一与实现国内材料的热膨胀系数测量能力及热膨胀仪测量精度,经国家局批准在国家计量院(中国计量科学研究院)建立“材料热膨胀系数国家最高标准装置”,以满足量值统一及测试需求。该标准基于最小误差链原则,把相关量值直接溯源到国家基准单位,在-180度到2400度范围内提供最高达10E-8量级测量不确定度。 4. 金属膨胀系数 测定温度条件及单位:20℃,(单位10-6/K或10-6/℃) 备注:简单讲就是材料在变化1摄氏度时长度的相对变化量。 膨胀系数实际就是:1MM长的材料在变化1摄氏度时长度变化了多少NM(纳米)。 一般钢材的热膨胀系数为(10-20)×10-6 /℃,系数越大在受热后变形则越大,反之则越小。 比如:钢轨的线膨胀系数是:11.8 nm/(mm×℃),实际上就是指1mm(毫米)长的钢轨在温度变化1摄氏度时长度会变化11.8nm (纳米)。 金属名称元素符号线性热膨胀系数金属名称元素符号线性热膨胀系数铍Be 12.3 铝Al 23.2 锑Sb 10.5 铅Pb 29.3 铜Cu 17.5 镉Cd 41.0

金属线膨胀系数测量实验报告

梧州学院学生实验报告 成绩: 指导教师: 专业: 班别: 实验时间: 实验人: 学号: 同组实验人: 实验名称:金属线膨胀系数测量 实验目的:1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 实验仪器: 型号规格 单位 数量 备注 FB7 1 2型金属线膨 胀系数测定仪 台 1 被测件测试架 台 1 千分表 只 1 传感器连接线 根 2 L=80c m 红黑各一根 小漏斗 只 1 电源线 根 1 实验讲义(说明书)] 本 1 注意事项:1、做实验前必须精读FB712型金属线膨胀系数测定仪的使用说明书,正规操作 2 、注意千分表的使 用规范。 FB712型金属线膨胀系数测量仪实验装置示意图 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。 特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为 L 的物体, 受热后其伸长量厶L 与其温度的增加量△ t 近似成正比,与原长L 亦成正比,即: △ L=a ? L ?△ t (1) 式中的比例系数a 称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数 不同,塑料的 47 -J?V 叱-■: <■:"負号 ■'a ^_A s'.Vi Pf jW 丹 >¥ -i~ ■ "I irtf I - *■ 4 !■":■_! 牡二盂:J 豪迂二辽山输咤或典: &::?,、性%世*巴电冷忙即卜亠:.豆凳;其 応宓云I 恣心加[文 图&匹丁型金属线勝胀無数测定仪实物黑片 强制风冷 低速如撰 高速&]壇 盥控设齧 放水阀 H 水fr 匕 千分表 铝骨 FT1碱度传感黯 循环水管 削* 口 金廉管温度扬示 甥管 爲虔倩号践 S 度 指

固体线膨胀系数的测定

固体线膨胀系数的测定 绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。 【实验目的】 1、学习测量固体线膨胀系数的一种方法。 2、了解一种位移传感器——数字千分表的原理及使用方法。 3、了解一种温度传感器——AD590的原理及特性。 4、通过仪器的使用,了解数据自动采集、处理、控制的过程及优点。 5、学习用最小二乘法处理实验数据。 【实验原理】 1、线膨胀系数 设在温度为t1时固体的长度为L1,在温度为t2时固体的长度为L2。实验指出,当温度变化范围不大时,固体的伸长量△L= L2-L1与温度变化量△t= t2-t1及固体的长度L1成正比。即: △L=αL1△t (1)式中的比例系数α称为固体的线膨胀系数,由上式知: α=△L/Ll·1/△t (2)可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。多数金属的线膨 胀系数在(0.8—2.5)×10-5/℃之间。 线膨胀系数是与温度有关的物理量。当△t很小时,由(2)式测得的α称为固体在温度为t1时的微分线膨胀系数。当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t1—t2温度范围内的线膨胀系数。 由(2)式知,在L1已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地测量△L及t是保证测量成功的关键。 2、微小位移的测量及数字千分表 测量微小位移,以前用得最多的是机械百分表,它通过精密的齿条齿轮传动,将位移转化成指针的偏转,表盘最小刻度为0.01mm,加上估读,可读到0.001mm,这种百分表目前在机械加工行业仍广泛使用。 物理实验中常用光杠杆法测微小位移,它通过光学系统将微小位移量放大再加以观测。

线膨胀系数测定

金属线膨胀系数测量实验 (FB712型金属线膨胀系数测定仪) 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪实验装置如图1、图2所示:

【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即: t L L ???α=? (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在)t , t (21温度区域的线胀系数为: () t L L ???=α (2) 其物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若mm 250L =,温度变化C 100t t 12?≈-,金属的α数量级为()15C 10--??,估算mm 25.0t L L ≈???α=?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验就用千分表分度值为mm 001.0千分表测微小的线胀量。

金属线膨胀系数的测量

第 1 页 共 9 页 金属线膨胀系数的测 量 (FB712型金属线膨胀系数测定仪) 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪实验装置如图1、图2所示: nemo xatu 2011.11.21

第 2 页 共 9 页 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L Δ与其温度的增加量t Δ近似成正比,与原长L 亦成正比,即: t L L Δ??α=Δ (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数) 。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 材 料 铜、铁、铝 普通玻璃、陶瓷殷 钢 熔凝石英 数量级 ()15C 10??°× ()16C 10??°× ()16C 102??°×< ()1 7C 10??°× 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L Δ和受热前后的温度升高量t Δ(12t t t ?=Δ),则

材料的热膨胀系数

https://www.doczj.com/doc/df17577511.html,/p-50731110.html 陶粒5.83 耐火粘土砖的热膨胀系数是多少呀? (4.5-6)×10的负6次方/℃ 材料的热膨胀系数 Material 10-6 in./in.*/°F 10-5 in./in.*/°C High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2

大学物理实验-金属线膨胀系数的测量

(1314实验室) 金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪表的失灵,以及加工焊接中的缺陷和失败等等。 一.实验目的 学习测量金属线膨胀系数的一种方法。 二.实验仪器 金属线膨胀系数测量实验装置、FT-RZT-I 数字智能化热学综合实验平台、 游标卡尺、千分表、待测金属杆 金属线膨胀系数测量的实验装置如图1所示 内有加热引线和温度传感器引线 图1 FT-RZT-I 数字智能化热学综合实验平台面板如图2所示 图2 三.实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?T近似成正比,与原长L亦成正比,即

?L = T L ?α (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔凝石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1T 时杆长L (一般,杆在1T 时的长度L 可以近似等于杆在常温时的长度)、受热后温度达2T 时的伸长量?L 和受热前后的温度1T 及2T ,则该材料在(1T ,2T )温区的线胀系数为: α = ) (12T T L L -? (2) 其物理意义是固体材料在(1T ,2T )温区内,温度每升高一度时材料的相对伸长量,其单位为1)(-?C 。 测线胀系数的主要问题是如何测伸长量?L 。而?L 是很微小的,如当L ≈250mm,温度变化12T T -≈100℃,金属的a 数量级为10 5 -1)(-?C 时,可估算出?L ≈0.25mm 。对于这么微小的伸长量,用普通量具 如钢尺或游标卡尺是测不准的。可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。 千分表是一种通过齿轮的多极增速作用,把一微小的位移,转换为读数圆盘上指针的读数变化的微小长度测量工具,它的传动原理如图3所示,结构如图4所示, 千分表在使用前,都需要进行调零,调零方法是:在测头无伸缩时,松开“调零固定旋钮”,旋转表壳,使主表盘的零刻度对准主指针,然后固定“调零固定旋钮”。调零好后,毫米指针与主指针都应该对准相应的0刻度。 千分表的读数方法:本实验中使用的千分表,其测量范围是0-1mm 。当测杆伸缩0.1mm 时,主指针转动一周,且毫米指针转动一小格,而表盘被分成了100个小格,所以主指针可以精确到0.1mm 的1/100,即0.001mm ,可以估读到0.0001mm 。即: 千分表读数=毫米表盘读数+ ?1000 1 主表盘读数 (单位:mm ) (毫米表盘读数不需要估读,主表盘读数需要估读) 例如:图5中千分表读数为:0.2+?1000 1 59.8=0.2598 mm

5材料热膨胀系数的测量

材料热膨胀系数的测量 一、实验目的 1、掌握PCY-3-1000型顶杆热膨胀仪的使用和软件操作; 2、使用热膨胀仪测量不同材料的线膨胀系数。 二.实验原理 材料线膨胀系数是物质的基本热物理参数之一,是表征材料性质的重要特征量。准确的测量材料线膨胀系数,对于基础科学研究、技术创新、工程应用都具有重要的意义。最近几年,世界各国对材料线膨胀系数的测量建立了大量的测试方法与装置,例如激光干涉膨胀仪、顶杆膨胀仪、衍射膨胀装置、显微膨胀装置和瞬态法等。通过比对,这些方法各有其优缺点,在实际生活生产中,我们根据不同的需要来选择不同的方法。本实验是用顶杆法测量材料的线膨胀系数。 线膨胀系数定义为物体在温度上升1℃时所增加的长度和原来长度之比,即: T l l ??=α 实验证明,不同材料的线膨胀系数是不同的,且同种材料在不同温度时的线膨胀系数也是不同的。通过实验测出物体伸长量?l 和温度增加量?T ,就可以算出线膨胀系数α。 PCY-3-1000型顶杆热膨胀仪的样品室示意图如下: 电炉升温后炉膛内的试样发生膨胀,顶在试样端部的测试杆产生与之等量的膨胀量(如果不计系统的热变形量),这一膨胀量由电感位移计精确测量出来,并由仪表显示且送计算机处理。因为仪器在实验升温的过程中,试样架、位移顶杆本身在温度作用下也会产生一定的位移,造成实验过程中的位移误差,因此需要考虑系统的补偿值。则膨胀系数为: T l k l t ?-?=α

补偿值k t应只是试样架及测试杆在相应温度下的综合膨胀值,所以应将试样在相应温度下的膨胀值,从测试数据中相应温度下的膨胀量中扣除后剩下的膨胀量即为仪器在相应温度下的补偿值k t。计算机和仪表显示的位移单位均为μm,计算机数据处理后显示的α值是通过自动系统补偿的计算结果。 三、实验内容和步骤 1、仪器上电 在仪器外部各线缆接好确认无误后,合上电源开关总闸,旋动仪器上的“电源开关”,此时仪器上电源指示灯点亮(红色指示灯),各仪表上电自检。仪表自检完成后温度控制表PV区会显示室温,SV区会显示跳动的“STOP”字样;而位移表PV区则会显示当前位移量,当试样架上没有放试样时,PV区可能会显示跳动的“ORAL”字样。 2、升温曲线程序编排设置 在温度控制表上,就进入了仪表升温曲线程序编排设置,仪表的PV区显示的是参数名,SV显示的是对应参数的参数值,此时通过 个参数的参数值后,再按面板上的可以跳到下一个参数。 例如,热膨胀系数测试时仪表升温曲线程序编排设置如下: 此处以从室温升温至300℃,然后恒温10分钟,对仪表升温曲线进行程序编排设置如表所示:

金属棒线膨胀系数的测量带数据处理

本科实验报告 实验名称:金属棒线膨胀系数的测量 【实验目的】 1.用光杠杆测定金属棒在一定温度区域内的平均线膨胀系数。 2. 熟悉几种测量长度的仪器及其误差的数量级。 3. 学习用图解法求在温度为零时的原长及线膨胀系数的方法。 【实验原理】 当固体温度升高时,由于分子的热运动,固体微粒间距增大,结果使固体膨胀。在常温下,固体线膨胀度随温度的变化可由经验公式表示为 ()((1)式中,称为固体的线膨胀系数;Lo为t等于0℃时的长度。实验表明在温度变化不大时,是一个常量。因此, (2)由此可见,的物理意义是温度每升高1℃是,物体的相对伸长量。 实验还发现,当温度变化较大时,同一材料在不同温度区域其线膨胀系数不一定相同。随温度t的升高而变大。这时 …) (3)

=…(4)是经验公式,可从手册上查得a、b、c,…等常量。 实验可测得物体在室温t1(℃)时长度为L1,温度升到t2(℃)时的长度伸长量,根据公式可得 (5) (6)消去Lo可得 (7) 当t1,t2 较小时,由于和L相比甚小,,可近似写成 (8) 由式求得的是在温度t2-t1间的平均线膨胀系数。 很明显,实验中测出是关键。本实验是利用光杠杆来测量由温度变化而引起的长度微小变化量。实验时将待测金属棒直立在线膨胀系数测定仪的金属铜中。将光杠杆后足尖置于金属棒的上端,前刀口至于固定的台上。 设在温度t1时,通过望远镜和光杠杆的平面镜看见直尺上的刻度n1,刚好在望远镜中叉丝横线处,当温度升至t2时,直尺上刻度n2移至叉丝横线上,由光杠杆原理可得 (9) 式中,D为光杠杆镜面到直尺的距离;K为光杠杆后足尖到尖刀口的垂直距离。 (10) 可见,只要测出各长度n1,n2,D,K,L1及温度t1,t2便可求得。对于Lo50cm的铜棒,其的数量级为,若温度变化=t2-t1100时的约为cm,可见Lo,因此式中L1可近似取为室温下的棒长值L,t1,n1,是对应L的室温及光杠杆系统直尺上刻度的读数。 【实验器材】 线膨胀仪、待测金属棒(约50cm,铜质)、卷尺(1mm)、游标卡尺(0.02mm)、温度计(2℃),光杠杆一套。 【实验步骤】 1.将铜棒取出,用米尺测量其长度,并记下室温。然后把被测棒慢慢放入加 热管道内,直到铜棒的下端接触到底部,调节温度计,注意不要让温度计碰到加热壁; 2.调节光杠杆平面镜法线大致与望远镜同轴,通过刀口进行调整,且平行于水平 底座,该过程可以用水平仪进行调节,在望远镜中找到标尺的像,该过程可以通过调节物镜和目镜的焦距来实现,记录此时望远镜对应的读数; 3.打开电源,加热金属棒,测出不同温度是望远镜对应的读数, 4.关闭电源,记录随着温度降低,望远镜对应的读数; 5.数据处理,计算得出金属的线膨胀系数,并分析误差; 6.结束实验,整理仪器。

线膨胀系数测定指导书

线膨胀系数的测定 一、概述 FD-LEA-B线膨胀系数测定仪是固体线膨胀系数的一种精密测定仪,固体线膨胀系数测量已列入大专院校的物理实验教学大纲中.本仪器对各种固体的热胀冷缩的特性可做出定量检测,并可对金属的线膨胀系数做精确测量. 本仪器的恒温控制由高精度数字温度传感器与单片电脑组成,炉内具有特厚良导体纯铜管作导热,在达到炉内温度热平衡时,炉内温度不均匀性≤±0.3℃,读数分辨率为0.1℃,加热温度控制范围为室温至80.0℃.本仪器为高等院校测量金属线膨胀系数的优质仪器. 二、仪器简介 1.仪器结构如图1所示,它由恒温炉、恒温控制器、千分表、待测样品等组成. 图1内部结构示意图 1.大理石托架 2.加热圈 3.导热均匀管 4.测试样品 5.隔热罩 6.温度传感器 7.隔热棒 8.千分表 9.扳手 10.待测样品 11.套筒 2.仪器使用方法: 1)被测物体为Φ8×400(mm)的圆棒; 2)整体要求平稳,因伸长量极小,故实验时应避免振动; 3)千分表安装须适当固定 (以表头无转动为准)且与被测物体有良好的接触(读数在0.2—0.3mm处 较为适宜,然后再转动表壳校零);

三、技术指标 1.温度控制分辨率:0.1℃; 2.样品加热炉内空间温度达到平衡时,温度不均匀性≤±0.3℃; 3.温度控制范围:室温至80℃; 4.伸长量测量精度:0.001mm,最大测量范围为0.000—1.000mm; 5.被测金属样品为Φ8×400(mm)的圆棒; 6.温控仪使用环境和外型尺寸: 1)输入电源:220V±10% 50Hz—60Hz 2)湿度:85% 3)温度:0—40.0℃ 4)外型尺寸:315×250×140(mm) 5)仪器重量:约3kg 7.电加热恒温箱外型尺寸:560×120×20 (mm) . 四、实验项目 1.测量铁、铜、铝棒的线膨胀系数; 2.测量其它固体物质的线膨胀系数(要求加工成Φ8×400mm的圆棒); 3.学习用作图法求物理量,并分析实验误差; 4.学会使用千分表和掌握温度控制仪的操作方法. 五、注意事项 1.不能用千分表去测量表面粗糙的毛坯工件或者凹凸变化量很大的工作,以防过早损坏表的零件, 使用中应避免量杆过多地做无效运动,以防加快传动件的磨损; 2.测量时,量杆的移动不宜过大,更不可超过它的量程终止端,绝对不可敲打表的任何部位,以 防损坏表的零件; 3.不要无故拆卸千分表内零件,不许将千分表浸放在冷却液或其它液体内使用; 4.千分表在使用后,要擦净装盒,不能任意涂擦油类,以防粘上灰尘影响灵活性.

材料热膨胀系数的测定实验

材料热膨胀系数的测定 物体的体积或长度随着温度的升高而增大的现象称为热膨胀。热膨胀系数是材料的主要物理性质之一,它是衡量材料的热稳定性好坏的一个重要指标。 目前,测定材料线膨胀系数的方法很多,有示差法(或称“石英膨胀计法”)、双线法、光干涉法、重量温度计法等。在所有这些测试方法中,以示差法具有广泛的实用意义。国内外示差法所采用的测试仪器很多,有分立式膨胀仪和卧式膨胀仪两种。 一、实验目的 (1)了解测定材料的膨胀曲线对生产的指导意义; (2)掌握示热法测定热膨胀系数的原理和方法; (3)利用材料的热膨胀曲线,确定45钢的特征温度。 二、基本原理 对于一般的普通材料,通常所说膨胀系数是指线膨胀系数,其意义是温度升高1℃时单位长度上所增加的长度,单位为cm·cm-1·℃-1。 假设物体原来的长度为L0,温度升高后长度的增加量为△L,则: △L/ L0=α1△t 式中α1—线膨胀系数,也就是温度每升高1℃时,物体的相对伸长。 当物体的温度从T1上升到T2时,其体积也从V1变化为V2,则该物体在T1~T2的温度范围内,温度每上升一个单位,单位体积物体的平均增长量为: β=(V1-V2)/V1(T1-T2) 式中β—平均体膨胀系数。 从测试技术来说,测体膨胀系数较为复杂。因此,在讨论材料的热膨胀系数时,常常采用线膨胀系数 α=(L1-L2)/L1(T1-T2) 式中α—玻璃的平均线膨胀系数; L1—在温度为T1时试样的长度; L2—在温度为T2时试样的长度; α与β的关系:β=3α+3α2·△T2+α3·△T3 上式中的第二项和第三项非常小,在实际中一般略去不计,而取β≈3α 膨胀系数实际上并不是一个恒定的值,而是随着温度变化的,所以上述膨胀系数都是具有在一定温度范围△t内的平均值的概念,因此使用时要注意它适用的温度范围,一些材料的膨胀系数见下表。 一些材料的膨胀系数

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: ()12t t L L -=?α()12t t L L -?= α

当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止 l L D b b ?=-212()D l b b L 212-= ?()()k DL l t t DL b b l 221212=--= α

相关主题
文本预览
相关文档 最新文档