当前位置:文档之家› MJT-高中数学难点解析教案27-求空间的角

MJT-高中数学难点解析教案27-求空间的角

MJT-高中数学难点解析教案27-求空间的角
MJT-高中数学难点解析教案27-求空间的角

高中数学难点解析 难点27 求空间的角

空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.

●难点磁场

(★★★★★)如图,α—l —β为60°的二面角,等腰直角三角形MPN 的直角顶点P 在l 上,M ∈α,N ∈β,且MP 与β所成的角等于NP 与α所成的角.

(1)求证:MN 分别与α、β所成角相等; (2)求MN 与β所成角.

●案例探究

[例1]在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点.

(1)求证:四边形B ′EDF 是菱形; (2)求直线A ′C 与DE 所成的角;

(3)求直线AD 与平面B ′EDF 所成的角; (4)求面B ′EDF 与面ABCD 所成的角. 命题意图:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强,属★★★★★级题目.

知识依托:平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角.

错解分析:对于第(1)问,若仅由B ′E =ED =DF =FB ′就断定B ′EDF 是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B ′、E 、D 、F 四点共面.

技巧与方法:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法.求二面角的大小也可应用面积射影法.

(1)证明:如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=2

5

a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG AB

A ′

B ′知,B ′EGA ′是平

行四边形.

∴B ′E ∥A ′G ,又A ′F

D G ,∴A ′GDF 为平行四边形.

∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面 故四边形B ′EDF 是菱形.

(2)解:如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,

则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角. 在△A ′CP 中,易得A ′C =3a ,CP =DE =25a ,A ′P =2

13a 由余弦定理得cos A ′CP =

15

15

故A ′C 与DE 所成角为arccos

15

15. (3)解:∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上.如下图所示.

又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′ 在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a 则cos ADB ′=

3

3 故AD 与平面B ′EDF 所成的角是arccos

3

3. (4)解:如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心.

作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心,

再作HM ⊥DE ,垂足为M ,连结

OM ,则OM ⊥DE , 故∠OMH 为二面角B ′—DE ′—A 的平面角.

在Rt △DOE 中,OE =

2

2a ,OD =23a ,斜边DE =25a ,

则由面积关系得OM =1030

=

?DE OE OD a 在Rt △OHM 中,sin OMH =6

30

=

OM OH 故面B ′EDF 与面ABCD 所成的角为arcsin 6

30

.

[例2]如下图,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方形,侧棱AA 1长为b ,且AA 1与AB 、AD 的夹角都是120°.

求:(1)AC 1的长;

(2)直线BD 1与AC 所成的角的余弦值.

命题意图:本题主要考查利用向量法来解决立体几何问题,属★★★★★级题目. 知识依托:向量的加、减及向量的数量积.

错解分析:注意<AA ,1>=<1AA ,>=120°而不是60°,<,>=90°. 技巧与方法:数量积公式及向量、模公式的巧用、变形用.

2

2112221111121111111221222111112

22221112221111111212222||||||)

)((||)

)((,2||,)2(.22||,22||,

0,21

120cos ,21120cos 90,,120,,||||,|:|222||||||)

)(())((||)1(:b a AA AA AB AD AA AA AA BD BD ab AB AD AA AA AA BD AA BD a ab b a AC ab b a AC ab a b AA ab a b AA AA AA a b AA AA AA AA AA AA AA AA AC AC AC +=?-?-?+++=-+-+=?=-=?--+?+?+?=-++=?∴-+=+=+==-+=∴-+=∴=?-=??=?-=??=?∴?

>==>=<<===?+?+?+++=++++=++=?=依题意得由已知得解

2212||b a BD +=∴ 2

211124|

|||,cos b a b AC BD AC BD AC BD +-=

>=

<

∴BD 1与AC 所成角的余弦值为2

2

24b

a b +.

●锦囊妙计

空间角的计算步骤:一作、二证、三算

1.异面直线所成的角 范围:0°<θ≤90° 方法:①平移法;②补形法.

2.直线与平面所成的角 范围:0°≤θ≤90° 方法:关键是作垂线,找射影.

3.二面角

方法:①定义法;②三垂线定理及其逆定理;③垂面法. 注:二面角的计算也可利用射影面积公式S ′=S cos θ来计算 ●歼灭难点训练 一、选择题

1.(★★★★★)在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为底面ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角是( )

A.

6

π B.

4

π C.

3

π D.

2

π 2.(★★★★★)设△ABC 和△DBC 所在两平面互相垂直,且AB =BC =BD =a ,∠CBA = ∠CBD =120°,则AD 与平面BCD 所成的角为( )

A.30°

B.45°

C.60°

D.75° 二、填空题

3.(★★★★★)已知∠AOB =90°,过O 点引∠AOB 所在平面的斜线OC ,与OA 、OB 分别成45°、60°,则以OC 为棱的二面角A —OC —B 的余弦值等于_________.

4.(★★★★)正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为_________.

三、解答题

5.(★★★★★)已知四边形ABCD 为直角梯形,AD ∥BC ,∠ABC =90°,P A ⊥平面AC ,且P A =AD =AB =1,BC =2

(1)求PC 的长;

(2)求异面直线PC 与BD 所成角的余弦值的大小; (3)求证:二面角B —PC —D 为直二面角.

6.(★★★★)设△ABC 和△DBC 所在的两个平面互相垂直,且AB =BC =BD ,∠ABC =

∠DBC =120°

求:(1)直线AD 与平面BCD 所成角的大小; (2)异面直线AD 与BC 所成的角; (3)二面角A —BD —C 的大小.

7.(★★★★★)一副三角板拼成一个四边形ABCD ,如图,然后将它沿BC 折成直二面角.

(1)求证:平面ABD ⊥平面ACD ; (2)求AD 与BC 所成的角; (3)求二面角A —BD —C 的大小.

8.(★★★★★)设D 是△ABC 的BC 边上一点,把△ACD 沿AD 折起,使C 点所处的新位置C ′在平面ABD 上的射影H 恰好在AB 上.

(1)求证:直线C ′D 与平面ABD 和平面AHC ′所成的两个角之和不可能超过90°; (2)若∠BAC =90°,二面角C ′—AD —H 为60°,求∠BAD 的正切值.

参考答案

难点磁场

(1)证明:作NA ⊥α于A ,MB ⊥β于B ,连接AP 、PB 、BN 、AM ,再作AC ⊥l 于C ,BD ⊥l 于D ,连接NC 、MD .

∵NA ⊥α,MB ⊥β,∴∠MPB 、∠NP A 分别是MP 与β所成角及NP 与α所成角,∠MNB ,∠NMA 分别是MN 与β,α所成角,∴∠MPB =∠NP A .

在Rt △MPB 与Rt △NP A 中,PM =PN ,∠MPB =∠NP A ,∴△MPB ≌△NP A ,∴MB =NA . 在Rt △MNB 与Rt △NMA 中,MB =NA ,MN 是公共边,∴△MNB ≌△NMA ,∴∠MNB =∠NMA ,即(1)结论成立.

(2)解:设∠MNB =θ,MN =2a ,则PB =PN =a ,MB =NA =2a sin θ,NB =2a cos θ,∵

MB ⊥β,BD ⊥l ,∴MD ⊥l ,∴∠MDB 是二面角α—l —β的平面角,

∴∠MDB =60°,同理∠NCA =60°,

∴BD =AC =

3633=MB a sin θ,CN =DM =63

2

60sin 6=?MB a sin θ,

∵MB ⊥β,MP ⊥PN ,∴BP ⊥PN

∵∠BPN =90°,∠DPB =∠CNP ,∴△BPD ∽△PNC ,∴

PB

BD

PN PC =

222

22

2

2

2)cos 2(3sin 6)sin 362(,a

a a a

a a

BN DB a

CN a -=

-∴

-=

-θθθ即

整理得,16sin 4θ-16sin 2θ+3=0 解得sin 2θ=4341

或,sin θ=2321或,当sin θ=23时,CN =63

2

a sin θ= 2a >PN 不

合理,舍去.

∴sin θ=2

1

,∴MN 与β所成角为30°. 歼灭难点训练

一、1.解析:(特殊位置法)将P 点取为A 1,作OE ⊥AD 于E ,连结A 1E ,则A 1E 为OA 1

的射影,又AM ⊥A 1E ,∴AM ⊥OA 1,即AM 与OP 成90°角.

答案:D

2.解析:作AO ⊥CB 的延长线,连OD ,则OD 即为AD 在平面BCD 上的射影,

∵AO =OD =

2

3

a ,∴∠ADO =45°. 答案:B

二、3.解析:在OC 上取一点C ,使OC =1,过C 分别作CA ⊥OC 交OA 于A ,CB ⊥OC 交OB 于B ,则AC =1,,OA =2,BC =3,OB =2,Rt △AOB 中,AB 2=6,△ABC 中,由余弦定理,得cos ACB =-

3

3

. 答案:-

3

3 4.解析:设一个侧面面积为S 1,底面面积为S ,则这个侧面在底面上射影的面积为

3

S ,由题设得3

21=S S ,设侧面与底面所成二面角为θ,则cos θ=21

33111==S S S S

,∴θ=60°.

答案:60°

三、5.(1)解:因为P A ⊥平面AC ,AB ⊥BC ,∴PB ⊥BC ,即∠PBC =90°,由勾股定理得PB =222=+AB PA .

∴PC =622=+PC PB .

(2)解:如图,过点C 作CE ∥BD 交AD 的延长线于E ,连结PE ,则PC 与BD 所成的角为∠PCE 或它的补角.

∵CE =BD =2,且PE =1022=+AE PA

∴由余弦定理得cos PCE =63

2222-

=?-+CE PC PE CE PC ∴PC 与BD 所成角的余弦值为6

3

.

(3)证明:设PB 、PC 中点分别为G 、F ,连结FG 、AG 、DF ,则GF ∥BC ∥AD ,且GF =2

1

BC =1=AD ,从而四边形ADFG 为平行四边形,

又AD ⊥平面P AB ,∴AD ⊥AG ,即ADFG 为矩形,DF ⊥FG .

在△PCD 中,PD =2,CD =2,F 为BC 中点,∴DF ⊥PC

从而DF ⊥平面PBC ,故平面PDC ⊥平面PBC ,即二面角B —PC —D 为直二面角. 6.解:(1)如图,在平面ABC 内,过A 作AH ⊥BC ,垂足为H ,则AH ⊥平面DBC , ∴∠ADH 即为直线AD 与平面BCD 所成的角.由题设知△AHB ≌△AHD ,则DH ⊥BH ,AH =DH ,

∴∠ADH =45°

(2)∵BC ⊥DH ,且DH 为AD 在平面BCD 上的射影, ∴BC ⊥AD ,故AD 与BC 所成的角为90°.

(3)过H 作HR ⊥BD ,垂足为R ,连结AR ,则由三垂线定理知,AR ⊥BD ,故∠ARH 为二面角A —BD —C 的平面角的补角.设BC =a ,则由题设知,AH =DH =2

,23a

BH a =,在△HDB 中,HR =

43a ,∴tan ARH =HR

AH

=2 故二面角A —BD —C 大小为π-arctan2.

7.(1)证明:取BC 中点E ,连结AE ,∵AB =AC ,∴AE ⊥BC

∵平面ABC ⊥平面BCD ,∴AE ⊥平面BCD , ∵BC ⊥CD ,由三垂线定理知AB ⊥CD .

又∵AB ⊥AC ,∴AB ⊥平面BCD ,∵AB ?平面ABD . ∴平面ABD ⊥平面ACD .

(2)解:在面BCD 内,过D 作DF ∥BC ,过E 作EF ⊥DF ,交DF 于F ,由三垂线定理知A F ⊥DF ,∠ADF 为AD 与BC 所成的角.

设AB =m ,则BC =2m ,CE =DF =

22m ,CD =EF =3

6m 3

21

arctan ,321tan 22=∠∴=+=

=∴ADF DF EF AE DF

AF

ADF

即AD 与BC 所成的角为arctan

3

21

(3)解:∵AE ⊥面BCD ,过E 作EG ⊥BD 于G ,连结AG ,由三垂线定理知AG ⊥BD , ∴∠AGE 为二面角A —BD —C 的平面角

∵∠EBG =30°,BE =

22m ,∴EG =4

2m 又AE =22m ,∴tan AGE =GE

AE

=2,∴∠AGE =arctan2.

即二面角A —BD —C 的大小为arctan2.

8.(1)证明:连结DH ,∵C ′H ⊥平面ABD ,∴∠C ′DH 为C ′D 与平面ABD 所成的角且平面C ′HA ⊥平面ABD ,过D 作DE ⊥AB ,垂足为E ,则DE ⊥平面C ′HA .

故∠DC ′E 为C ′D 与平面C ′HA 所成的角

∵sin DC ′E =D C DE '≤D

C DH

'=sin DC ′H

∴∠DC ′E ≤∠DC ′H ,

∴∠DC ′E +∠C ′DE ≤∠DC ′H +∠C ′DE =90° (2)解:作HG ⊥AD ,垂足为G ,连结C ′G ,

则C ′G ⊥AD ,故∠C ′GH 是二面角C ′—AD —H 的平面角

即∠C ′GH =60°,计算得tan BAD =2

2.

空间中点线面的位置关系练习题

1、下列有关平面的说法正确的是( ) A 一个平面长是10cm ,宽是5cm B 一个平面厚为1厘米 C 平面是无限延展的 D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则: ①αα???∈A a a A , ② αα∈??∈A a a A , ③αα????A a a A , ④αα???∈A a a A , 其中说法正确的个数是( ) A.0 B.1 C.2 D.3 3、下列图形不一定是平面图形的是( ) A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( ) A.4、6、7 B.3、4、6、7 C.4、6、7、8 D.4、6、8 5、共点的三条直线可确定几个平面 ( ) A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的中点, 则,正方体的过P 、Q 、R 的截面图形是( ) A 三角形 B 四边形 C 五边形 D 六边形 7、三个平面两两相交,交线的条数可能有———————————————— 8、不共线的四点可以确定——————————————————个平面。 9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有——————————— 10、空间两条互相平行的直线指的是( ) A.在空间没有公共点的两条直线 B.分别在两个平面内的两条直线 C.分别在两个不同的平面内且没有公共点的两条直线 D.在同一平面内且没有公共点的两条直线 11、分别和两条异面直线都相交的两条直线一定是( ) A 异面直线 B 相交直线 C 不平行直线 D 不相交直线 12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。 A 4 B 3 C 2 D 1 13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( ) A.若AC 和BD 共面,则AD 与BC 共面 B.若AC 和BD 是异面直线,则AD 与BC 是异面直线 C.若AB =AC ,DB =DC ,则AD =BC D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形 14、空间四边形SABC 中,各边及对角线长都相等,若E 、F 分别为SC 、AB 的中点, 那么异面直线EF 与SA 所成的角为( ) A 300 B 450 C 600 D 900 15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是———————————————————— 16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————————————— 17、ABCDEF 是正六边形,P 是它所在平面外一点,连接PA 、PB 、PC 、PD 、PE 、PF 后与正六边形的六条边所在直线共十二条直线中,异面直线共有——————————对。 18、点E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,且BD =AC ,则四边形EFGH 是————————————。 A Q B 1 R C B D P A 1 C 1 D 1 ? ? ? S C A B E F

人教版新课标高中数学必修四 全册教案

按住Ctrl 键单击鼠标打开教学视频动画全册播放 1.1.1 任意角 教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角? 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 始边 终边 顶点 A O B

例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面 终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'. 答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类: ③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P .9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2 α 各是第几象限角? 解:α 角属于第三象限, 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

高中数学空间点线面之间的位置关系的知识点总结(1)

高中空间点线面之间位置关系知识点总结 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 D C B A α L A · α C · B · A · α

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为 简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; P · α L β 共面直线 =>a ∥c 2

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

人教版高中数学_全册教案

第一章空间几何体 第一章课文目录 1.空间几何体的结构 1.空间几何体的三视图和直观图 1.3空间几何体的表面积与体积 知识结构: 一、空间几何体的结构、三视图和直观图 1.柱、锥、台、球的结构特征 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 棱柱与圆柱统称为柱体; (2)锥 棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。 底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥…… 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。 棱锥与圆锥统称为锥体。 (3)台 棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。 圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。 圆台和棱台统称为台体。 (4)球 以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;

半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。 (5)组合体 由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。 几种常凸多面体间的关系 名称棱柱直棱柱正棱柱 图形 定义有两个面互相平 行,而其余每相 邻两个面的交线 都互相平行的多 面体 侧棱垂直于底面 的棱柱 底面是正多边形的 直棱柱 侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面的形状平行四边形矩形矩形 平行于底面的截面 的形状与底面全等的多 边形 与底面全等的多 边形 与底面全等的正多 边形 名称棱锥正棱锥棱台正棱台图形 定义有一个面是多 边形,其余各面 底面是正多边 形,且顶点在底 用一个平行于 棱锥底面的平 由正棱锥截得 的棱台

高中数学必修二《空间直角坐标系》优秀教学设计

4.3空间直角坐标系 4.3.1空间直角坐标系 教材分析 本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。 课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。 本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。结合图形、联系长方体和正方体是学好本小节的关键。 课时分配 本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。 教学目标 重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。 难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。 知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。 能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。 教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。 自主探究点:如何由空间中点的坐标确定点的位置。 考试点:空间中点的确定及坐标表示。 易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。 拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。 教具准备多媒体课件和三角板 课堂模式师生互动、小组评分以及兵带兵的课堂模式。 一、引入新课 由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。 ,x y 数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面内的点M可以用一对有序实数()表示。类似于数轴和平面直角坐标系(一维坐标系和二维坐标系),当我们建立空间直角坐标系(三维坐 x y z表示。 标系)后,空间中任意一点可用有序实数组(,,)

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ , DP AQ AB 2 1 ==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6 . (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为 6 π ,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==, F , G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

高中数学必修二点线面的位置关系与线面平行判定及其性质(精华试题版)

空间点线面的位置关系精编考题 1.平面的基本性质公理1 如果一条直线上的两个点都在一个平面,那么这条直线上的所有点都在这个平面 ,,A B l A B α∈??∈? l α?? 2.平面的基本性质公理2(确定平面的依据) 经过不在一条直线上的三个点,有且只有一个平面 3.平面的基本性质公理2的推论 (1)经过一条直线和直线外的一点,有且只有一个平面 (2)经过两条相交直线,有且只有一个平面 (3)经过两条平行直线,有且只有一个平面 4.平面的基本性质公理3 如果两个不重合的平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条 直线 A A αβ∈??∈??l A l αβ=∈ 5.异面直线的定义与判定 (1)定义:不同在任何一个平面的两条直线,既不相交也不平行 (2)判定:过平面外一点与平面一点的直线,与平面不经过该点的直线是异面直线 典例1如图长方体中,(1)说出以下各对线段的位置关系? ①EC 和BH 是 直线;②BD 和FH 是 直线; ③BH 和DC 是 直线 (2)与棱AB 所在直线异面的棱共有 条? (3)长方体的棱中共有多少对异面直线? 例2:如图,在长方体ABCD-A 1B 1C 1D 1中,已知E 、F 分别是AB 、BC 的中点. (1)求证:EF//A 1C 1. (2)求证:四边形EF A 1C 1是梯形. (3)若M 、N 分别是A 1B 1、B 1C 1的中点, 求证:∠MD 1N=∠EDF . G F H E B C D A A 1

精选考题 1. 空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 2. 直线与平面平行的条件是这条直线与平面的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 3. 若b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面 4. 正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5. 下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面的两条直线叫异面直线 6. 已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 7. 若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 8 已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面 9.已知异面直线a ,b 分别在平面α、β,且α∩β=c,那么直线c 一定( ) A .与a 、b 都相交; B .只能与a 、b 中的一条相交; C .至少与a 、b 中的一条相交; D .与a 、b 都平行. 10.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面 D .相交或异面 11.若空间两条直线a ,b 没有公共点,则其位置关系是____________. 12.若a 和b 是异面直线,b 和c 是异面直线,则a 和c 的位置关系是______________. 13.在正方体ABCD —A 1B 1C 1D 1中,与对角线AC 1异面的棱共有________条. 14.给出下列四个命题: ①垂直于同一直线的两条直线互相平行; ②平行于同一直线的两直线平行; ③若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ;

高中数学《任意角》教案3 苏教版必修4

第 1 课时:§1.1.1 任意角 【三维目标】: 一、知识与技能 1. 使学生理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角; 2.能在00到0360范围内,找出一个与已知角终边相同的角,并判定其为第几象限角; 3.能写出与任一已知角终边相同的角的集合 二、过程与方法 1.通过创设情境,类比初中所学的角的概念,从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法; 2.通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示; 3.讲解例题,总结方法,巩固练习. 三、情感、态度与价值观 1. 通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系. 2.理解掌握终边相同角的表示方法,树立运动变化的观点,理解静是相对的,动是绝对的,学会运用运动变化的观点认识事物,并由此深刻理解推广后的角的概念. 【教学重点、难点与关键】: 重点:任意角的概念 难点:把终边相同的角用集合和符号语言正确地表示出来; 关键:理解终边相同的角的意义 【学法与教学用具】: 1.学法:在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示,以及正负角的表示,另外还有相同终边角的集合的表示等。 2. 教学用具:多媒体、实物投影仪、三角板、圆规. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 我们已经学习过一些角,如锐角、直角、钝角、平角、周角。利用这些角,我们已能表示圆周上某些点P 。但要表示圆周上周而复始地运动着的点,仅有这些角是不够的。如点P 绕圆心旋转一周半,所在位置怎样用角来表示?在生活中,也有类似情形。如在体操、跳水中,有“转体0720”、“翻腾两周半”这样的动作名称,“0720”在这里也是用来表示旋转程度的一个角。 ●0720是怎样的一个角? 二、研探新知

高一数学教案人教版

高一数学教案人教版 【篇一:人教版高中数学必修3全册教案】 教育精品资料 按住ctrl键单击鼠标打开名师教学视频全册播放 按住ctrl键单击鼠标打开名师教学视频全册播放 第一章算法初步??????????????11.1算法与程序框图???????????????2 1.1 算法与程序框图(共3课时) 1.1.1 算法的概念(第1课时) 【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义. 【教学目标】1.理解算法的概念与特点; 2.学会用自然语言描述算法,体会算法思想; 3.培养学生逻辑思维能力与表达能力. 【教学重点】算法概念以及用自然语言描述算法 【教学难点】用自然语言描述算法 【教学过程】 一、序言 算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力. 在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想. 二、实例分析 例1:写出你在家里烧开水过程的一个算法. 解:第一步:把水注入电锅; 第二步:打开电源把水烧开; 第三步:把烧开的水注入热水瓶. (以上算法是解决某一问题的程序或步骤)

数学中的想象多数属于空间想象

如何培养初中生的空间想象能力 伍勇(泸州十二中 QQ:17234348) 摘要:初中生尽管涉及空间几何的内容较少,但其空间想象能力的培养需要在初中一步步的培养和训练。本文从教学实例中入手,谈谈自己在教学中培养初中生空间想象能力的一些做法和教学建议。 关键词:初中生空间想象能力 数学中的想象多数属于空间想象,那么什么是空间想象?一种说法认为,空间想象是对真实事物的大小、形状、位置、相互关系等在头脑中的表象进行加工,改造与创新的过程。另一种说法认为,数学想象不能局限于对头脑中的表象的加工,还应该包括对相应图形的认识与操作,数学中有些复杂的空间问题是很难,仅靠对表象的操作来解决的,必须在已有表象的基础上,借助直观图形,才能进一步对表象进行加工改造。 根据上述分析,空间想象能力应该是形成客观事物的大小、形状、位置关系的表象以及对其进行加工、改造、创新的能力,是顺利有效地处理几何图形,探明其关系特征所需要的一种特殊的数学能力。 数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的。初中教材里的“三视图”的教学,从理论上说,是以立体几何、画法几何等位基础依据的,利用这些基础可以对视图进行深入的分析。但是由于受学生空间想象能力的发展的制约以及初中生知识储备的局限,在初中投影和视图内容的教学不可能完全从理论角度深入进行,而应该借助直观模型的作用,作好由感性认识到理性认识的过渡,比较通俗易懂地介绍一些基本概念、基本原理(规律)。正式由于这些原因,在教材的编写上有一个明显的特点:重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律。 因此要培养空间想象能力,必须重视实际例子在教学中的作用,在直观认知的基础上归纳基本规律。例如,介绍正投影时涉及投影线与投影面的垂直关系(线面垂直),教科书在此处采用结合插图并使用“投影线正对着投影面”这样通俗易懂的语言加以解释的处理方法,虽然不是十分准确,但能使学生了解其基本意思就够了。又如,介绍正投影的规律时,教科书先后选择了铁丝、正方形纸板和正方体模型等例子,插图和文字相结合,按照维数从1到3的顺序说明有关平行、斜交和垂直的位置关系。

空间点线面位置关系例题训练

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角 ________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). 【例题讲解】 1、平面的基本性质 例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH. 求证:EH、FG、BD三线共点. 变式迁移1

高中数学《任意角》教案1 苏教版必修4

1.1.1 任意角(1) 一、课题:任意角(1) 二、教学目标:1.理解任意角的概念; 2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书 写。 三、教学重、难点:1.判断已知角所在象限; 2.终边相同的角的书写。 四、教学过程: (一)复习引入: 1.初中所学角的概念。 2.实际生活中出现一系列关于角的问题。 (二)新课讲解: 1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。 说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类: 正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角; 零角:如果一条射线没有做任何旋转,我们称它为零角。 说明:零角的始边和终边重合。 3.象限角: 在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。 例如:30,390,330-o o o 都是第一象限角;300,60-o o 是第四象限角。 (2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。例如:90,180,270o o o 等等。 说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。 4.终边相同的角的集合:由特殊角30o 看出:所有与30o 角终边相同的角,连同30o 角自身在内,都可以写成30360 k +?o o ()k Z ∈的形式;反之,所有形如30360k +?o o ()k Z ∈的角都与30o 角的终边相同。 从而得出一般规律: 所有与角α终边相同的角,连同角α在内,可构成一个集合 {}|360,S k k Z ββα==+?∈o , 即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 说明:终边相同的角不一定相等,相等的角终边一定相同。 5.例题分析: 例 1 在0o 与360o 范围内,找出与下列各角终边相同的角,并判断它们是第几象限角? (1)120-o (2)640o (3)95012'-o 解:(1)120240360-=-o o o , 所以,与120-o 角终边相同的角是240o ,它是第三象限角; (2)640280360=+o o o , 所以,与640o 角终边相同的角是280o 角,它是第四象限角; (3)95012129483360''-=-?o o o , 所以,95012'-o 角终边相同的角是12948'o 角,它是第二象限角。

人教版高中数学集合教案

1.1.1 集合 教学目标: 1、理解集合的概念和性质. 2、了解元素与集合的表示方法. 3、熟记有关数集. 4、培养学生认识事物的能力. 教学重点:集合概念、性质 教学难点:集合概念的理解 教学过程: 1、定义: 集合:一般地,某些指定的对象集在一起就成为一个集合(集). 元素:集合中每个对象叫做这个集合的元素. 由此上述例中集合的元素是什么? 例(1)的元素为1、3、5、7, 例(2)的元素为到两定点距离等于两定点间距离的点, 例(3)的元素为满足不等式3x-2> x+3的实数x, 例(4)的元素为所有直角三角形, 例(5)为高一·六班全体男同学. 一般用大括号表示集合,{ …}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为…… 为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5} 2

(1)确定性;(2)互异性;(3)无序性. 3、元素与集合的关系:隶属关系 元素与集合的关系有“属于∈”及“不属于?(? 也可表示为 )两种。 如A={2,4,8,16},则4∈A ,8∈A ,32 A. 集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作 a ∈A ,相反,a 不属于集A 记作 a ?A (或a A ) 注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q …… 元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q …… 2、“∈”的开口方向,不能把a ∈A 颠倒过来写。 4 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N *或N + 。Q 、Z 、R 等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0的集,表示成Z * 请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。 1.1.2 集合间的基本关系 教学目标:1.理解子集、真子集概念; 2.会判断和证明两个集合包含关系; 3 . 理解 ”、“?”的含义; 4.会判断简单集合的相等关系; 5.渗透问题相对的观点。 教学重点:子集的概念、真子集的概念 教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算 教学过程: 观察下面几组集合,集合A 与集合B 具有什么关系? (1) A={1,2,3},B={1,2,3,4,5}. (2) A={x|x>3},B={x|3x-6>0}. (3) A={正方形},B={四边形}. (4) A=?,B={0}. ∈?∈

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

空间角与距离求法(高二)

1 空间角与点面距离求法 求空间角和点到平面的距离是教学的重点,也是学生学习的难点,更是高考的必考点.新课标强调要求利用向量的运算来解决这两个问题,而新教材的处理是通过探究引导学生推理得出相关公式.在复习时,作为教师有必要帮助学生对相关的知识进行梳理、归纳和小结. 1.空间角的求法 在立体几何中,求空间角是学习的重点,也是学习的难点,更是高考的必考点.我们在复习时,必须对相关的知识进行梳理、归纳和小结,才会灵活运用公式熟练地求出空间角. 一、相关概念和公式 (1) b a ,是空间两个非零向量,过空间任意一点O ,作,,b a ==则AOB ∠叫做 向量a 与向量b 的夹角,记作>≤≤=< . (3) 设),,(111z y x a = , ),,(222z y x b = 则212121||z y x a ++= ,222222||z y x b ++= , 212121z z y y x x b a ++=? . 二、两条异面直线所成的角 (1) 定义:已知两条异面直线a 和b ,经过空间任一点O 作直线,//,//b b a a ''我们把a '与b ' 所成的锐角(或直角)叫做异面直线a 和b 所成的角(或夹角). (2) 范围: 异面直线a 和b 所成的角为θ: 900≤<θ, 则cos 0≥θ . (3) 求法: ▲① 平移法: 把两条异面直线a 和b 平移经过某一点(往往选取图中的特殊点),构造三角形(有时会用到补形法,如三棱柱补成平行六面体等),解三角形(通常用到余弦定理).特别提醒:若由边角关系求得为钝角.. 时,注意取其补角为异面直线所成的角. ▲② 向量法: 若a 和b 分别是异面直线a 和b 的方向向量,则 | ||||||||||||,cos |cos b a b a b a b a b a ??=??=><=θ . 说明: ① 其中=θ或- 180 ; ② 在计算b a ?时可用向量分解或坐标进行运算. 三、直线与平面所成的角 (1) 定义: 一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角) 如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平

文本预览
相关文档 最新文档