当前位置:文档之家› 52单片机实用的IO模拟串行口C语言源程序

52单片机实用的IO模拟串行口C语言源程序

52单片机实用的IO模拟串行口C语言源程序
52单片机实用的IO模拟串行口C语言源程序

52单片机实用的IO模拟串行口C语言源程序

作者:21IC suda

用途:短距离、波特率要求不高、环境干扰不大的场合

特点:

程序简练、实用、移植方便

占用定时器T2

只消耗约600字节的ROM

有详细的注释

参数:

晶振:22.1184MHz

波特率:1200

起始位:1

数据位:8

校验位:无

停止位:1

*/

#include

//将T2定时器的自动重装寄存器定义成16位SFR,以方便访问

sfr16 RCAP2 = 0xCA;

//修改如下定义将方便程序移植

sbit RXD_pin = P3^0; //定义接收引脚

sbit TXD_pin = P3^1; //定义发送引脚

#define MAIN_CLK 22118400L //定义主频

#define BAUD_RA TE 1200L //定义波特率(数值不能太高,因为要给T2中断服务程序留足执行时间)

#define HITS 8 //定义采样率(应当是偶数;减少采样率能提高波特率,但为保证可靠工作,最小不能少于6次)

#define RXD_BUF_LEN 32 //定义接收缓冲区大小

volatile unsigned char RXD_buf[RXD_BUF_LEN]; //定义接收缓冲区(循环队列)

volatile unsigned char RXD_p1; //指向缓冲区,由中断程序自动修改

volatile unsigned char RXD_p2; //指向缓冲区,由主程序修改

#define TXD_BUF_LEN 32 //定义发送缓冲区大小

volatile unsigned char TXD_buf[TXD_BUF_LEN]; //定义发送缓冲区(循环队列)

volatile unsigned char TXD_p1; //指向TXD_buf,由主程序修改

volatile unsigned char TXD_p2; //指向TXD_buf,由中断程序修改

//定时器T2初始化

extern void T2_init()

{

EA = 0;

T2CON = 0x00;

PT2 = 1; //将T2中断设置成高级优先级

RCAP2 = 65536L - ( MAIN_CLK / 12 ) / ( BAUD_RATE * HITS ); //此公式值得你琢磨一下

TH2 = RCAP2H;

TL2 = RCAP2L;

ET2 = 1;

TR2 = 1;

EA = 1;

}

//接收初始化

extern void RXD_init()

{

unsigned char i;

RXD_pin = 1;

RXD_p1 = 0;

RXD_p2 = 0;

for ( i=0; i

{

RXD_buf[i] = 0x00;

}

}

//发送初始化

extern void TXD_init()

{

unsigned char i;

TXD_pin = 1;

TXD_p1 = 0;

TXD_p2 = 0;

for ( i=0; i< TXD_BUF_LEN; i++ )

{

TXD_buf[i] = 0x00;

}

}

//发送单个字符

extern void TXD_Send_Char(const unsigned char c)

{

unsigned char p; //临时变量

p = TXD_p1 + 1;

if ( p >= TXD_BUF_LEN ) p = 0;

while ( p == TXD_p2 ); //判断发送缓冲队列是否已满,如果是,则暂时不能发送TXD_buf[TXD_p1] = c; //先将c写入队列

TXD_p1 = p; //再修改TXD_p1

//在T2中断服务程序里会自动完成发送

}

//发送字符串(不包括末尾的'\0')

extern void TXD_Send_String(const unsigned char s[])

{

unsigned char c;

unsigned int i = 0;

for (;;)

{

c = s[i++];

if ( c == '\0' ) break;

TXD_Send_Char(c);

}

}

//定义接收缓冲字符

volatile unsigned char bdata RXD_ch;

sbit RXD_ch_MSB = RXD_ch^7;

//定义发送缓冲字符

volatile unsigned char bdata TXD_ch;

sbit TXD_ch_LSB = TXD_ch^0;

//T2中断服务程序

//每中断HITS次处理1位

static void T2INTSVC() interrupt 5 using 3

{

//定义接收所需要的变量

static bit RXD_doing = 0; //正在接收的标志

static unsigned char RXD_t = HITS/2; //接收时计数T2的中断次数

static unsigned char RXD_cnt; //接收时bit位的计数器

//定义发送所需要的变量

static bit TXD_doing = 0; //正在发送的标志

static unsigned char TXD_t; //发送时计数T2的中断次数

static unsigned char TXD_cnt; //发送时bit位的计数器

//先清除TF2

TF2 = 0;

//接收数据

if ( RXD_doing ) //正处于接收状态

{

if ( --RXD_t == 0 ) //经过了HITS个采样脉冲

{

if ( RXD_cnt == 0 ) //8个数据位接收完毕

{

if ( RXD_pin ) //检测到停止位

{

RXD_t = RXD_p1 + 1; //在这里,RXD_t作为临时变量

if ( RXD_t >= RXD_BUF_LEN ) RXD_t = 0;

if ( RXD_t != RXD_p2 ) //如果接收缓冲队列未满

{

RXD_buf[RXD_p1] = RXD_ch;

RXD_p1 = RXD_t;

}

else

{

//如果接收缓冲队列已满,只好丢弃新收到数据

}

}

else //检测停止位时出错

{

//舍弃新收到的数据

}

RXD_doing = 0; //接收全部完毕,清除正在接收的标志

RXD_t = HITS/2; //恢复RXD_t的初始值

}

else //接收数据位

{

RXD_ch >>= 1;

RXD_ch_MSB = RXD_pin;

//上面2条语句若用{CY=RXD_pin; CY=(RXD_ch&0x01); RXD_ch=ACC;}代替,效率更高

RXD_cnt--;

RXD_t = HITS;

}

}

}

else //检测起始位

if ( RXD_pin )

{

RXD_t = HITS/2;

}

else

{

RXD_t--;

if ( RXD_t == 0 ) //连续HITS/2次采样RXD_pin都是0,就可以确认起始位

{

//启动接收

RXD_t = HITS;

RXD_cnt = 8;

RXD_doing = 1;

}

}

}

//发送数据

if ( TXD_doing ) //正处于发送状态

{

TXD_t--;

if ( TXD_t == 0 )

{

if ( TXD_cnt == 0 ) //发送全部完毕

{

TXD_doing = 0; //清除正在发送的标志

}

else

{

if ( TXD_cnt == 1 ) //8个数据位发送完毕

{

TXD_pin = 1; //发送停止位

}

else //发送数据位

{

TXD_pin = TXD_ch_LSB;

TXD_ch >>= 1;

//上面2条语句若用{CY=(TXD_ch&0x01); TXD_pin=CY; TXD_ch=ACC;}代替,效率更高

}

TXD_cnt--;

TXD_t = HITS;

}

}

else

{

if ( TXD_p2 != TXD_p1 ) //如果发送缓冲队列不空

{

//从发送缓冲队列中取出要发送的数据

TXD_ch = TXD_buf[TXD_p2++];

if ( TXD_p2 >= TXD_BUF_LEN ) TXD_p2 = 0;

//启动发送

TXD_doing = 1;

TXD_cnt = 9;

TXD_t = HITS;

//先发送起始位

TXD_pin = 0;

}

else

{

//发送缓冲队列是空的,不发送任何数据

}

}

}

//系统初始化

void SystemInit()

{

TXD_init();

RXD_init();

T2_init();

}

//主程序

void main()

{

unsigned char c;

SystemInit();

//

TXD_Send_String("Hello!\r\n");

TXD_Send_String("The author is 21IC suda.\r\n");

//以下是简单的测试:从接收引脚接收数据,再通过发送引脚转发出去for (;;)

{

if ( RXD_p2 != RXD_p1 )

{

c = RXD_buf[RXD_p2++];

if ( RXD_p2 >= RXD_BUF_LEN ) RXD_p2 = 0;

TXD_Send_Char(c);

}

}

}

上位机与51单片机串口通信

上位机与51单片机串口通信 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六 进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中, 则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

//参考源程序 #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容sbit gewei=P2^4; //个位选通定义

C语言串口通信助手代码

该程序全部由C写成没有C++ 更没用MFC 完全是自娱自乐给需要的人一个参考 #include "stdafx.h" #include #include "resource.h" #include "MainDlg.h" #include #include #include HANDLE hComm;//用于获取串口打开函数的返回值(句柄或错误值)OVERLAPPED m_ov; COMSTAT comstat; DWORD m_dwCommEvents;

TCHAR cRecs[200],cSends[100]; //接收字符串发送字符串 char j=0,*cCom; //接收用统计数据大小变量端口选择 BOOL WINAPI Main_Proc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch(uMsg) { HANDLE_MSG(hWnd, WM_INITDIALOG, Main_OnInitDialog); HANDLE_MSG(hWnd, WM_COMMAND, Main_OnCommand); HANDLE_MSG(hWnd,WM_CLOSE, Main_OnClose); } return FALSE; } /*系统初始化函数*/ BOOL Main_OnInitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam) { HWND hwndCombo1=GetDlgItem(hwnd,IDC_COMBO1); ComboBox_InsertString(hwndCombo1,-1,TEXT("COM1")); ComboBox_InsertString(hwndCombo1,-1,TEXT("COM2"));

51单片机与PC机通信资料

《专业综合实习报告》 专业:电子信息工程 年级:2013级 指导教师: 学生:

目录 一:实验项目名称 二:前言 三:项目内容及要求 四:串口通信原理 五:设计思路 5.1虚拟串口的设置 5.2下位机电路和程序设计 5.3串口通信仿真 六:电路原理框图 七:相关硬件及配套软件 7.1 AT89C51器件简介 7.2 COMPIN简介 7.3 MAX232器件简介 7.4友善串口调试助手 7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计 九:proteus仿真调试 十:总结 十一:参考文献 一:实验项目名称:

基于51单片机的单片机与PC机通信 二:前言 在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。 目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。 为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。 用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时,系统的更改和扩充极为容易。MCS-51系列单片机,由于内部带有一个可用于异步通讯的全双工的穿行通讯接口,阴齿可以很方便的构成一个主从式系统。 串口是计算机上一种非常通用的设备通讯协议,大多数计算机包容两个基于RS232的串口。串口同时也是仪器仪表设备通过用的通讯协议,很多GPIB兼容的设备也带有RS-232口。同时串口通讯协议也可以用于获取远程采集设备数据。所以,深入的理解学习和研究串口通信相关知识是非常必要的。此次毕业设计选题为“PC机与MCS-51单片机的串口通讯”,使用51单片机来实现一个主从式

c语言串口通信范例

一个c语言的串口通信程序范例 分类:技术笔记 标签: c语言 串口通信 通信程序 it 最近接触一个项目,用HL-C1C激光位移传感器+易控组态软件完成生产线高度跳变检测,好久没有接触c c#,一些资料,找来做个记录,也许大家用的着 #include #include #include #include #define COM232 0x2f8 #define COMINT 0x0b #define MaxBufLen 500 #define Port8259 0x20 #define EofInt 0x20 static int comportaddr; static char intvectnum; static unsigned char maskb; static unsigned char Buffer[MaxBufLen]; static int CharsInBuf,CircIn,CircOut; static void (interrupt far *OldAsyncInt)();

static void interrupt far AsyncInt(void); void Init_COM(int ComPortAddr, unsigned char IntVectNum, int Baud, unsigned char Data, unsigned char Stop, unsigned char Parity) { unsigned char High,Low; int f; comportaddr=ComPortAddr; intvectnum=IntVectNum; CharsInBuf=0;CircIn=0;CircOut=0; f=(Baud/100); f=1152/f; High=f/256; Low=f-High*256; outp(ComPortAddr+3,0x80); outp(ComPortAddr,Low); outp(ComPortAddr+1,High); Data=(Data-5)|((Stop-1)*4); if(Parity==2) Data=Data|0x18; else if(Parity==1) Data=Data|0x8; outp(ComPortAddr+3,Data); outp(ComPortAddr+4,0x0a);

单片机串口通信协议程序

#include #include #define R55 101 #define RAA 202 #define RLEN 203 #define RDATA 104 #define RCH 105 //#define unsigned char gRecState=R55; unsigned char gRecLen; unsigned char gRecCount; unsigned char RecBuf[30]; unsigned char gValue; void isr_UART(void) interrupt 4 using 1 { unsigned char ch; unsigned char i; unsigned char temp; if (RI==1) { ch=SBUF; switch(gRecState) { case R55: // wait 0x55 if (ch==0x55) gRecState=RAA; break;

case RAA: if (ch==0xaa) gRecState=RLEN; else if (ch==0x55) gRecState=RAA; else gRecState=R55; break; case RLEN: gRecLen=ch; gRecCount=0; gRecState=RDATA; break; case RDATA: RecBuf[gRecCount]=ch; gRecCount++; if (gRecCount>=gRecLen) { gRecState=RCH; } break; case RCH: temp=0; for(i=0;i

51单片机串口通信异常的调试一例

51单片机串口通信异常的调试一例 单片机与DSP在硬件结构和程序编写方面存在很多共同之处,所以最近几周试着用了一下51单片机开发板,希望进一步熟悉中断的概念、串口通信、I2C协议、存储扩展等常用的知识。 在进行串口通信的实验时,预期功能不能实现。实验的设计方案是:通过上位机给单片机发送一个16bit的字符串,单片机对字符串进行接收并立刻回显给上位机,接收并回显完毕后依次将这些字符(只能是0-9,a-f这几个字符,可以重复)在数码管上进行显示。 程序编写完成后,通过上位机发送字符串9876543210abcdef,单片机串口接收并回显9876543210abcde,然后数码管依次显示f9876543210abcde,数码管显示完成后,单片机串口回显的字符串中的e后面又多了一个f。 对实验现象进行分析不难发现,串口的接收和回显功能正常,但是存在2个问题:1.串口接收并回显和数码管显示的时序有点混乱;2.数码管的显示出现异常,本应该依次显示9876543210abcdef,实际上显示的却是f9876543210abcde。 对源代码进行分析发现,时序混乱的原因是中断响应及中断返回的执行时序出现问题,修改代码后问题1被解决。 问题2的解决思路:源代码中,通过串口接收到的字符串被存储在一个一维数组array[16]中,该数组有16个元素,每个元素都是unsigned char型。在源代码中,先注释掉数码管显示的那一段代码,然后添加串口打印代码,串口打印实现的功能是依次显示array[0]到array[15]这16个元素的值。编译通过后,将程序烧写到单片机。使用串口调试助手,以十六进制的形式观察array[0]到array[15]的取值,结果如下:

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.doczj.com/doc/df14996057.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

c语言串口通信范例

c语言串口通信范例 This manuscript was revised by the office on December 22, 2012

一个c语言的串口通信程序范例 标签:分类: 最近接触一个项目,用HL-C1C激光位移传感器+易控组态软件完成生产线高度跳变检测,好久没有接触c c#,一些资料,找来做个记录,也许大家用的着 #include <> #include <> #include <> #include <> #define COM232 0x2f8 #define COMINT 0x0b #define MaxBufLen 500 #define Port8259 0x20 #define EofInt 0x20

static int comportaddr; static char intvectnum; static unsigned char maskb; static unsigned char Buffer[MaxBufLen]; static int CharsInBuf,CircIn,CircOut; static void (interrupt far *OldAsyncInt)(); static void interrupt far AsyncInt(void); void Init_COM(int ComPortAddr, unsigned char IntVectNum, int Baud, unsigned char Data, unsigned char Stop, unsigned char Parity) { unsigned char High,Low; int f; comportaddr=ComPortAddr; intvectnum=IntVectNum; CharsInBuf=0;CircIn=0;CircOut=0; f=(Baud/100);

单片机串口通信的发送与接收(可编辑修改word版)

51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。 当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。无 论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。 看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。 接收数据时,基本上都是使用“中断方式”,这是正确合理的。 即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数, 收到了新数据。 发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来 等待发送完毕。 这时,处理不好的话,就可能带来问题。 看了一些网友编写的程序,发现有如下几条容易出错: 1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。 这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。 这种处理方法,就会遗漏收到的数据。 2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。 但是,却在中断函数中,将TI 清零! 这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。 3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收 中断的程序。 对此,做而论道发表自己常用的方法: 接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。 发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。 这样一来,收、发两者基本一致,编写程序也很规范、易懂。 更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。 实例: 求一个PC 与单片机串口通信的程序,要求如下: 1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。

C语言串口通信-源代码

#include #include #include #include #define COM232 0x2f8 #define COMINT 0x0b #define MaxBufLen 500 #define Port8259 0x20 #define EofInt 0x20 static int comportaddr; static char intvectnum; static unsigned char maskb; static unsigned char Buffer[MaxBufLen]; static int CharsInBuf,CircIn,CircOut; static void (interrupt far *OldAsyncInt)(); static void interrupt far AsyncInt(void); void Init_COM(int ComPortAddr, unsigned char IntVectNum, int Baud, unsigned char Data, unsigned char Stop, unsigned char Parity) { unsigned char High,Low; int f; comportaddr=ComPortAddr; intvectnum=IntVectNum; CharsInBuf=0;CircIn=0;CircOut=0; f=(Baud/100); f=1152/f; High=f/256; Low=f-High*256; outp(ComPortAddr+3,0x80); outp(ComPortAddr,Low); outp(ComPortAddr+1,High); Data=(Data-5)|((Stop-1)*4); if(Parity==2) Data=Data|0x18; else if(Parity==1) Data=Data|0x8; outp(ComPortAddr+3,Data);

单片机串口通信

单片机串口通信 关键词:单片机,串口通信 单片机应用中,串口通信是不可缺少的部分。如何编写有效的串口通信程序对程序的结构、可靠性都有很大的影响。串口控制程序一般分为查询和中断两者方式。查询方式适用于简单的应用,简单可靠,但是缺点是需要占用处理器资源,在发送或者接收数据的时候不能做其它的事情,处理器利用率低。中断方式下,在发送或者接受数据的时候处理器还可以做其它的工作,效率较高。 对于稍微复杂的系统来说,中断方式管理串口程序将会更加有效。中断处理方式也可分为几种,其中采用循环缓冲区的方式比较高效。循环缓冲区为定义的一定长度的RAM区间,对于接受数据来说,中断中收到的数据将存入RAM中,然后等待主程序来读取。其中会涉及到数据见的协调问题,写数据的时候不能把还没有读取的数据覆盖掉,读数据的时候应该读取的是缓冲区中最老的数据。当缓冲区已满的时候,写入的新数据应该覆盖掉最老的数据。这些问题的处理可以使用两个指针来实现。

初始化时两个指针均指向RAM区间的底部,如图1所示。当中断中接收到一个数据的时候,将这个数据写入写指针WPTR指向的存储单元,然后调整写指针指向下一个空余的RAM区间,程序上处理就是把写指针加一,如图2所示。同理,写入N个数据后写指针同步更新,如图3所示。 当读数据的时候,首先判断缓冲区中是否有数据,方法是判断读指针和写指针是否相等,如果相等表明没有数据,如图5所示。如果读指针和写指针不等,那么读取缓冲区中的数据,然后调整读指针,当写指针和读指针相等的时候,表明缓冲区中的有效数据已经读取完,此时读指针和写指针相等。

当有数据再次写入的时候,继续紧接着上次写入的地址后写入新的数据,如果数据长度超过缓冲区的长度,写指针重新返回缓冲区的底部重新开始(这是循环缓冲的由来),如图6所示。此时如果有数据读出,读指针做同样的更新。如果没有数据读出,一直有数据写入,可能会出现缓冲区写满的情况,如图7所示。此时如果仍然没有数据读取,继续有数据写入的时候,为了保留新的数据,必须丢弃老的数据,即写指针可能超过读指针,此时,读指针必须和谐指针同步更新,这样才能保证读取的是没有被覆盖的最老的数据,如图8所示。 需要注意的是,读指针在中断过程中也可能被更改,因此,读数据的子程序需要对读指针的更改进行保护,方法是在读数据的时候关闭串行口中断。下面是循环缓冲区接收数据的程序实例。 FT, 尽然连文本都不能上传,代码只好贴出来吧。 /* * FileName: uart.h * Description: header file for SerialPort * Author: SangWei, HUST-CEEE-2004 * Contact: swkyer@https://www.doczj.com/doc/df14996057.html,, swkyer@https://www.doczj.com/doc/df14996057.html,

PC机与单片机232通信协议

PC 机与单片机通信(RS232 协议) 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六

进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中,则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

[C语言源程序] #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容 sbit gewei=P2^4; //个位选通定义 sbit shiwei=P2^5; //十位选通定义 sbit baiwei=P2^6; //百位选通定义 unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,}; //1~10 void Delay(unsigned int tc) //延时程序 { while( tc != 0 ) {unsigned int i; for(i=0; i<100; i++); tc--;} } void LED() //LED显示接收到的数据(十进制) { gewei=0; P0=table[dat%10]; Delay(10); gewei=1; shiwei=0; P0=table[dat/10]; Delay(10); shiwei=1; baiwei=0; P0=table[dat/100]; Delay(10); baiwei=1; } ///////功能:串口初始化,波特率9600,方式1///////// void Init_Com(void) { TMOD = 0x20; PCON = 0x00; SCON = 0x50; TH1 = 0xFd; TL1 = 0xFd; TR1 = 1; } /////主程序功能:实现接收数据并把接收到的数据原样发送回去/////// void main() { Init_Com();//串口初始化 while(1) { if ( RI ) //扫描判断是否接收到数据, { dat = SBUF; //接收数据SBUF赋与dat RI=0; //RI 清零。

用C编写的RS232串口通信程序

void main() { delayms(100); init(); //初始化系统 delayms(100); init_wdt(); //初始化看门狗 while(1) { while(!RI_0) //是否收到数据 { clr_wdt(); } RI_0=0; //清除接收中断标志 buffer=S0BUF; if(buffer==0x5a) //检测祯头0 start0=1; if(buffer==0x54) //检测祯头1 start1=1; if(buffer==0x5a) //检测祯尾0 end0=1; if(buffer==0xfe) //检测祯尾1 end1=1; if((start0==1)&(start1==1)) { buff[i]=buffer; //从祯头1开始存储数据 i++; } if((end0==1)&(end1==1)) //是否已经接收祯尾 { count=i; //数据长度为count个 i=1; if((buff[2]==0x03)&(count==107)) //是否422指令 { buff[0]=0x5a; //重填祯头0 buff[count-4]=0; //校验和清零 for(k=2;k<(count-4);k++) //计算校验和 { buff[count-4]+=buff[k]; } for(k=0;k

S0BUF=buff[k]; while(!TI_0); //等待发送完成 TI_0=0; //清除发送中断标志 } reset(); } else if((buff[2]==0x05)&(count==7)) //是否AD测试指令 { sendad(); reset(); } else if((buff[2]==0x18)&(count==7)) //是否发送时序信号指令 { sendpaulse(); reset(); } else //如果接收错误,则恢复各标志位为初始状态以便下次接收 { reset(); } } } } void reset() { start0=0; //祯头祯尾标志位清零 start1=0; end0=0; end1=0; for(k=0;k

单片机与pc串口通信

课程设计报告书课程名称:MCS-51单片机课程设计题目:单片机与PC机之间的通信 姓名:高永强 学号:010700830 学院:电气工程与自动化学院专业:电气工程与自动化 年级:2007级 指导教师:张丽萍

目录 1.引言与系统结构 (2) 2.硬件实现 2.1.AT89C52 (2) 2.2.MAX232芯片 (3) 2.3. 9针串口 (5) 3.虚拟串口调试 (7) 4.Proteus仿真原理图及元件清单 (14) 5.软件设计 (15) 6.主程序代码 (16) 7.心得体会 (18) 8.参考文献 (18)

1.引言与系统结构:利用PC 机配置的异步通信适配器,可以方便的完成 PC 机遇89C52单片机的数据通信。由于89C52单片机输入、输出电平为TTL 电平,而PC 机配置的是RS-232标准串行接口,二者的电器规范不一致,因此采用MXA232单芯片 实现89C52单片机于PC 机的RS-232标准接口通信电路。 如今,在很多场合中,要求单片机不仅能独立完成单机的控制任务,还要能与其他数据控制设备(单片机、PC 机等)进行数据交换。串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到电脑端,而且也能实现电脑对单片机的控制,比如可以很直观地把红外遥控器键值的数据码显示在电脑上,可以使编写红外遥控程序时方便不少,起到仿真器的某些功效。 89C52有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL 电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND.第2脚的RXD.第3脚的TXD 。 图 1 系统结构 2.硬件实现: 2.1 .AT89C52: AT89C52是51系列单片机的一个型号,它是ATMEL 公

用C语言编写串口程序

用C语言编写串口程序 在当今,流行的编程软件种类繁多,它们编程方便、易于维护,但是在与硬 件直接打交道和编制系统软件时却束手无策,于是C语言就有了用武之地。C语言作为汇编语言与高级语言之间的一种过渡语言,兼有汇编语言的高效和高级语言 的方便。 在通讯中,为了保证行运安全可靠,标准的串行口必须具有许多握手信号和 状态信息。这是因为通讯的各个计算机CPU速度不一样(这会导致“错帧”)以 及发送机发送数据速度比接收机接收速度快(这会导致“过冲”)。为解决这个 问题,我们采用一个简单的握手信号,即发送机每次仅发送半个字节(低4位) 的数据,而另外半个字节(高4位)则用来传送信息。我们可以对信息位(高4位)进行如下简单的编码: 0H:发送的是新的半个字节数据 1H:重新发送上次传送错误的数据 2H:文件名结束 3H:文件结束 这样,每当发送机发送一个字节以后,就等待接受机发回送信号,这回送信号就 是发送机发送过来的那个字节。发送机接收到回送信号后,把它与刚发送的字节 相比较,如果相同,就发送新的半个字节,否则就重新发送。新数据与旧数据通 过信息位来区分。下面就是用C语言编写控制串行口的程序。 #include "dos.h" #include "stdlib.h" #include "stdio.h" #define PORT 0 void SendFile(char *fname); /* 发送文件*/ void Send(int s); /*发送一个字节*/ void SendFileName(char *fname); /*发送文件名*/ void ReceiveFile(); /*接收文件*/ void GetFileName(char *f); /*接收文件名*/ void InitPort(int port,unsigned char para); /*初始化端口*/ void SendPort(int port,char c); /*端口发送*/ int ReadPort(int port); /*读端口字节*/ int CheckState(int port); /*检查端口状态*/ int Receive(int port,int *G); /*接收一个字节*/ main(int argc,char *argv[]) { if(argc<2){ printf("Please input R(receive) or S(sent) parametre:"); exit(1); }

AVR单片机串口USART与PC通讯实例

“并行”通讯:是指8位数据同时通过并行线进行传送,这样数据传送速度大大提高,但并行传送的线路长度受到限制,因为长度增加, 干扰就会增加,数据也就容易出错。 “串行”通讯:形容一下就是一条车道,而并口就是有8个车道同一时刻能传送8位(一个字节)数据。但是并不是并口快,由于8位通道 之间的互相干扰。传输时速度就受到了限制。而且当传输出错时,要同时重新传8个位的数据。串口没有干扰,传输重 发一位就可以了。所以要比并口快。 串行通讯协议较多,单片机常用的有USART,SPI,TWI,1-Wire 等。 串行通讯有分为同步和异步通讯:通俗讲同步就是你叫我去吃饭,我听到了就和你去吃饭;如果没有听到,你就不停的叫,直到我告诉 你听到了,才一起去吃饭。异步就是你叫我,然后自己去吃饭,我得到消息后可能立即走,也可能等到下班才去吃饭。 同步通讯:收信发信双方在使用同步时钟,在同一时刻传输线上的数据就是要传输的信息。 异步通讯:以字符为传输单位,字符与字符之间是异步的,而字符的位是同步的 USART:异步串行通讯,常用与单片机和单片机,单片机和PC电脑间的数据传输。 波特率:表征通讯速度的参数,单位是位/秒(b/s),即每秒钟传输的二进制位数,如波特率9600,表示每秒钟传输9600个二进制位 数据。收发双方必须采用同样的波特率。波特率不同将无法正常通讯。 全双工通讯:指是的是可以同时发送和接收数据。 半双工通讯:指的是在同一时刻只能发送或只能接收数据。 单片机与PC通讯的电平转换:单片机的电压一般是TTL电平,电压0v-5v,PC机串口采用的是RS-232协议,它的的电压范围 是-15-+15v,电平不同,无法通讯。要实现通讯,必须进行电平和逻辑关系的转换,一般用 MAX232集成芯片进行电平的转换。 ATmega16 串口结构:有一个全双工的串行口,有两条通讯线,TXD:数据发送线,RXD:数据接收线,对应的单片机外部引脚为PD1,PD0 相关寄存器:UDR 串口数据寄存器, UCSRA 串口控制与状态寄存器A UCSRB 串口控制与状态寄存器B UCSRC 串口控制与状态寄存器C UBRRH,UBRRL 波特率寄存 器

Linux下 QT串口与51单片机通信实例

QT串口与51单片机通信

通过这个小例子主要想说明QT怎样进行线程编程的思想,实例如图,好吧,下面是过程 上一个例子我们采用的是手工编写代码的方法,这个例子我们来玩一下designer,其实Qt4己经把界面与功能分开了,用designer来进行界面 设计,再手工编写一些功能,如信号与槽,这样开发效率会大大提高,呵呵,开一个终端,输入/usr/local/Trolltech/Qt-4.5.1/bin/designer ,如果第一次打开出现字体不对,可以打开qtconfig进行一些相关配置,打开后我们新建一个Main Window,在右边的属性框中设置一下界面大小, 1.我ARM板的LCD大小为320x240,所以我也设为320x240; 2.左边是一些我们常用的窗口部件,这里我们用到一个lable标签来做显示,再放几个pushButton按钮,在属性objectName重新更改它的名字,改为我们记得的,这样在写功能时记得哪个按钮叫什么名字,对于一个初学QT的人来说,很想知道每一个部件到底有什么信号和槽,别急,我们可以这样来看,选中一个lable,按F4,再点击lable拖动出现接地符号时松开,弹出编辑信号与槽,这时左边列出的是信号,右边为槽,这里我们不用配置连接,等下我们再手工写, 3最后我们用到一个lable标签和三个pushButton按钮,并命名为dis_label、writeButton、readButton、closeButton,然后保存为mainwindow.ui,这样designer就完工了,呵呵..

4.下面我们编写一个线程,用于管理串口收发工作,它不涉及到任何界面,只做好它的本份工作就得了,编写一个thread.h文件gedit thread.h, #ifndef THREAD_H #define THREAD_H #include class Thread:public QThread { Q_OBJECT public: Thread(); char buf[128]; volatile bool stopped; volatile bool write_rs; volatile bool read_rs; protected: virtual void run(); }; #endif 我们定义一个Thread类,它继承于QThread,看到只设有一些变量和一个run函数,virtual表示为虚函数,你也可以去掉,加上去会增加一些内存开销, 但提高了效率,对于这个小程序是看不出什么效果的,volatile这个大家都懂了吧,就是防止偷懒,呵呵, 5.再看看thread.cpp #include"thread.h" #include #include #include #include //串口用到的 #include #include #include #include #define BAUDRATE B9600 //#define RS_DEVICE "/dev/ttyS0" //串口1 #define RS_DEVICE "/dev/ttySAC1" //串口1 Thread::Thread() {} //析构 void Thread::run() //这就是线程的具体工作了

c语言串口通信范例

c语言串口通信范例标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一个c语言的串口通信程序范例 标签:分类: 最近接触一个项目,用HL-C1C激光位移传感器+易控组态软件完成生产线高度跳变检测,好久没有接触c c#,一些资料,找来做个记录,也许大家用的着 #include <> #include <> #include <> #include <> #define COM232 0x2f8 #define COMINT 0x0b #define MaxBufLen 500 #define Port8259 0x20 #define EofInt 0x20

static int comportaddr; static char intvectnum; static unsigned char maskb; static unsigned char Buffer[MaxBufLen]; static int CharsInBuf,CircIn,CircOut; static void (interrupt far *OldAsyncInt)(); static void interrupt far AsyncInt(void); void Init_COM(int ComPortAddr, unsigned char IntVectNum, int Baud, unsigned char Data, unsigned char Stop, unsigned char Parity) { unsigned char High,Low; int f; comportaddr=ComPortAddr; intvectnum=IntVectNum; CharsInBuf=0;CircIn=0;CircOut=0; ?

相关主题
文本预览
相关文档 最新文档