当前位置:文档之家› 相似三角形基本图形及练习题绝对经典

相似三角形基本图形及练习题绝对经典

相似三角形基本图形及练习题绝对经典
相似三角形基本图形及练习题绝对经典

A D

B D A

B C

相似中的基本图形练习

相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。

而识别(或构造)A 字型、X 字型、母子相似型、旋转型等基本图形是解证题的关键。 1.A 字型及变形

△ABC 中 , AD=2,BD=3,AE=1 (1)如图1,若DE ∥BC , 求CE 的长

(2)如图2,若∠ADE=∠ACB , 求CE 的长

2.

X 字型及变形

(1)如图1,AB ∥CD ,求证:AO :DO=BO :CO

(2)如图2,若∠A=∠C ,求证:AO ×DO=BO ×CO

3. 母子相似型及变形

(1)如右图,在△ABC 中, AD 把△ABC 分成两个三角形△BCD 和△CAD ,当∠ACD =∠B 时,说明△CAD 与△ABC 相似。

说明:由于小三角形寓于大三角形中,恰似子依母怀,故被称为“母子三角形”

(2)如图, Rt △ABC 中 ,CD ⊥AB, 求证:AC 2=ADxAB,CD 2=ADxBD,

4. 旋转型 如图,若∠ADE=∠B ,∠BAD=∠CAE ,说明△ADE 与△ABC 相似

练习题

1、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC

DE = ;S △GED :S △GBC = ;

2、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ;

3、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 ,

NC

BN

= ; 4、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ;

5、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 二、选择题

6、如图,在△ABC 中,高BD 、CE 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、AD ·AC=AE ·AB D 、CO ·DO=BO ·EO

7、如图,D 、E 分别是△ABC 的边AB 、AC 上的点, AD BD =CE

AE

=3,

且∠AED=∠B ,则△AED 与△ABC 的面积比是( ) A 、1:2 B 、1:3 C 、1:4 D 、4:9

8、已知,如图, 在△ABC 中,DE ∥BC ,AD=5,BD=3,求S △ADE :S △ABC 的值。

9、如图,已知在△ABC 中,CD=CE ,∠A=∠ECB ,试说明CD 2

=AD ·BE 。

A

B C

D E G 图1

A

B

C

D E

图2

A

B C M N

图3

A

B

C

D

E 图4

A B

C

D F

图5

G

E A E B

C D

O

A B

C D

E C

A

B

D E A

B

C

D

E

F

E

D

C

B

A

一、运用新知,解决问题

1、已知两个三角形相似,请完成下列表格

2、如图,D 、E 分别是AC ,AB 上的点,∠ADE =∠B ,AG ⊥BC 于点G ,AF ⊥DE 于点F.若AD =3,AB

=5,求: (1)AG AF

(2)△ADE 与△ABC 的周长之比; (3)△ADE 与△ABC 的面积之比. 二、加强训练,巩固新知

1.若两个相似三角形的相似比是2∶3,则它们的对应高线的比是 ,对应中线的比是 ,对应角平分线的比是 ,周长比是 ,面积比是 。

2.两个等边三角形的面积比是3∶4,则它们的边长比是 ,周长是 。

3.某城市规划图的比例尺为1∶4000,图中一个氯化区的周长为15cm ,面积为12cm 2

,则这个氯化区的实际周长和面积分别为多少?

4、在△ABC 中,DE ∥BC ,E 、D 分别在AC 、AB 上,EC=2AE ,则S △ADE ∶S 四边形DBCE 的比为______

5、如图, △ABC 中,DE ∥FG ∥BC ,AD =DF =FB ,则S △ADE :S 四边形DFGE :S 四边形FBCG =______

三、变式训练,拓广研究

1、过E 作EF//AB 交BC 于F ,其他条件不变,则ΔEFC 的面积等于多少?四边形BDEF 面积为多少?

2.若设S S ABC =?,1S S ADE =?,2S S EFC =?

请猜想:S 与S 1、S 2之间存在怎样的关系?你能加以验证吗?

3、类比猜想

如图,DE//BC ,FG//AB ,MN//AC ,且DE 、FG 、MN 交于点P 。若记

S S ABC =?,1S S ADE =?,2S S EFC =?

请猜想:S 与S 1、S 2之间存在怎样的关系?你能加以验证吗?

A

B

C

D

E F

G A B

C

D

E F G M N

P

S 1

S 2

S 3

A

B

C

D

E

F

全等相似三角形证明经典50题与相似三角形

2016专题:《全等三角形证明》 1. 已知:D 是AB 中点,∠ACB=90°,求证: 1 2 CD AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 4. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 A C D E F 2 1 D A B

5.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 6.已知:AB=CD,∠A=∠D,求证:∠B=∠C 7.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.D C B A F E A B C D

8.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA

9.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): 10.如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 11.如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。

12.AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF 13.如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。 14.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF. 15.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF。

相似三角形经典的基本图形及练习题

D A B C 相似中的基本图形练习 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。 而识别(或构造)A 字型、X 字型、母子相似型、旋转型等基本图形是解证题的关键。 1.A 字型及变形 △ABC 中 , AD=2,BD=3,AE=1 (1)如图1,若DE ∥BC , 求CE 的长 (2)如图2,若∠ADE=∠ACB , 求CE 的长 2. X 字型及变形 (1)如图1,AB ∥CD ,求证:AO :DO=BO :CO (2)如图2,若∠A=∠C ,求证:AO ×DO=BO ×CO 3. 母子相似型及变形 (1)如右图,在△ABC 中, AD 把△ABC 分成两个三角形△BCD 和△CAD ,当∠ACD =∠B 时,说明△CAD 与△ABC 相似。 说明:由于小三角形寓于大三角形中,恰似子依母怀,故被称为“母子三角形” (2)如图, Rt △ABC 中 ,CD ⊥AB, 求证:AC 2=ADxAB,CD 2=ADxBD, 4. 旋转型 如图,若∠ADE=∠B ,∠BAD=∠CAE ,说明△ADE 与△ABC 相似 A D B

练习题 1、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC DE = ;S △GED :S △GBC = ; 2、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ; 3、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 , NC BN = ; 4、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ; 5、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 二、选择题 6、如图,在△ABC 中,高BD 、CE 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、AD ·AC=AE ·AB D 、CO ·DO=BO ·EO 7、如图,D 、E 分别是△ABC 的边AB 、AC 上的点, AD BD =CE AE =3, 且∠AED=∠B ,则△AED 与△ABC 的面积比是( ) A 、1:2 B 、1:3 C 、1:4 D 、4:9 8、已知,如图, 在△ABC 中,DE ∥BC ,AD=5,BD=3,求S △ADE :S △ABC 的值。 9、如图,已知在△ABC 中,CD=CE ,∠A=∠ECB ,试说明CD 2 =AD ·BE 。 A B C D E G 图1 A B C D E 图2 A B C M 图3 A B C D E 图4 A B C D F 图5 G E A E C D O A B C D E C A B D E A B C D E

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相似三角形的几种基本图形复习

相似三角形的几种基本图形: (1)称为“平行线型”的相似三角形. (2)其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形. A B C D A B C D E (3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形. (4)一线三等角型

1、矩形ABCD中,把DA沿AF对折,使D与CB边上的点E重合,若 AD=10, AB= 8,则EF=______ 2、如图,在矩形ABCD中,E在AD上,连结BE、EF、BF。已知 AE=4,ED=2,AB=3,若△ABE和△EDF相似,则 DF=__________。 3、如图,在直角梯形ABCD中,AD∥BC,∠B=900,AD=3, BC=6,点P在AB上滑动。若△DAP与△PBC相似,且 AP=4.5 ,求PB的长。

4、如图,在△ABC中,∠C=90°,BC=8,AC=6.点P从点B出发,沿着BC 方向点C以2cm/s的速度移动;点Q从点C出发,沿着CA向点A以1cm/s的速度移动。如果P、Q分别从B、C同时出发,问:经过多少秒时以C、P、Q为顶点的三角形恰好与△ABC相似?

5、如图,菱形ABCD的边长为24厘米,∠A=60°,点P从点A出发沿线路AB→BD作匀速运动,点Q从点D同时出发沿线路DC→CB→BA作匀速运动. (1)求BD的长; (2)已知点P、Q运动的速度分别为4厘米/秒,5厘米/秒,经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请你确定 △AMN是哪一类三角形,并说明理由; (3)设(2)中的点P、Q分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改变为a厘米/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与(2)中的△AMN相似,试求a的值. 如图, □ABCD中, G是AB延长线上一点, DG交AC A B F C D E G

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

相似三角形知识点梳理

相似三角形知识点大总结 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称 比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式 ::中, a 、d 叫比例外项, b 、 c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2 b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点, (4)其中AB AC 215-=≈0.618AB .即AC BC AB AC == 简记为:1 2 长短==全长 注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2 ::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项): ()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=??, 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=. (4)合、分比性质:a c a b c d b d b d ±±=?=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间

相似三角形经典习题

! 相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB ) 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 ~ 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. ` 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() # A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S :S △DEF =4:25,则DE:EC=() △ABF

初中数学《相似三角形》优秀教案

相似三角形 一、知识概述 (一)相似三角形 1、对应角相等,对应边成比例的两个三角形,叫做相似三角形. 温馨提示: ①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛. 2、相似三角形对应边的比叫做相似比. 温馨提示: ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.

①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理(1):两角对应相等,两三角形相似. 判定定理(2):两边对应成比例且夹角相等,两三角形相似. 判定定理(3):三边对应成比例,两三角形相似. 温馨提示: ①有平行线时,用上节学习的预备定理; ②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理(1)或判定定理(2); ③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等. 2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.

相似三角形经典证明题解析

相似三角形经典证明题 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?

2.如图,已知直线128:33 l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求ABC △的面积; (2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.

3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; (3)若在运动中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由. 4.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式; (3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? N

(相似三角形)证明题

1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。 2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由, 3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值, 4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗?请说明理由;(2)若S =5,BD=10,求DE的长。 5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45. 求AF的长。 6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。 求证: BM·PA=PN·BP

7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。 8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE∥AB交AC的延长线于点E。 9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结 CE,求证:DE2=AE?CE 10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F. (1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长. 11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在 BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少? N P A

相似三角形基本图形

相似中的基本图形练习 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值,而识别(或构造)A字型、X字型、母子相似型、旋转型等基本图形是解证题的关键。 1.A字型及变形 △ABC 中, AD=2,BD=3,AE=1 (1)如图1,若DE∥BC ,求CE的长 (2)如图2,若∠ADE=∠ACB ,求CE的长 2. X字型及变形 (1)如图1,AB∥CD,求证:AO:DO=BO:CO (2)如图2,若∠A=∠C ,求证:AO×DO=BO×CO 3. 母子相似型及变形 (1)如图,在△ABC中, AD把△ABC分成两个三角形△BCD和△CAD,当∠ACD=∠B时,说明△CAD与△ABC相似。

B C (2) Rt △ABC 中,∠C=90°,CD ⊥AB, 求证:AC 2=AD AB ,CD 2= AD BD, 4. 旋转型 如图,若∠ADE=∠B ,∠BAD=∠CAE ,说明△ADE 与△ABC 相似 练习题 1、如图1,在△ABC 中,中线BE 、CD 相交于点G,则BC DE = ;S △GED :S △GBC = ; 2、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ; 3、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 , NC BN = ; 4、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ; 5、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 二、选择题 6、如图,在△ABC 中,高BD 、CE 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、AD ·AC=AE ·AB D 、CO ·DO=BO ·EO 7、如图,D 、E 分别是△ABC 的边AB 、AC 上的点, AD BD =CE AE =3, 且∠AED=∠B ,则△AED 与△ABC 的面积比是( ) A 、1:2 B 、1:3 C 、1:4 D 、4:9 A B C D E G 图1 A B D E 图2 A B M 图3 A B C D E 图4 A B C D F 图5 G E A E C D O A B C D E

相似三角形的几种基本图形

A 相似三角形的几种基本图形: (1)如图:称为“平行线型”的相似三角形. (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“相交线型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (∠B=∠D ) (双垂直) (3)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (4)一线三等角型 二、例题分析 1、下列说法不正确的是( ) A 、 两对应角相等的三角形是相似三角形; B 、两对应边成比例的三角形是相似三角形; C 、三边对应成比例的三角形是相似三角形; D 、以上有两个说法是正确。 2、如图,DE ∥BC ,EF ∥AB ,则图中相似三角形有( ) A 、 2对 B 、3对 C 、4对 D 、5对 3、如图,若P 为△ABC 的边AB 上一点(AB>AC ),则下列条件不一定能保证△ACP ∽△ABC 的有( ) A 、∠ACP=∠ B B 、∠APC=∠ACB C 、AC AP AB AC = D 、AB AC BC PC = 4、如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC=2DE ;②△ADE ∽△ABC ;③ AD AB AE AC =;其中正确的有 ( ) A 、3个 B 、2个 C 、1个 D 、0个 E D C B A B E A C D 1 2 A B C D E B D B E A C D A B D E F A B C P

5、如图AD ⊥AB 于D ,CE ⊥AB 于E 交AB 于F ,则图中相似三角形的对数是 。 ; 6、已知AD 为Rt △ABC 斜边BC 上的高,且AB=15cm ,BD=9cm ,则AD= ,CD= 。 7、如图四,在平行四边形ABCD 中,AB = 4cm ,AD = 7cm , ∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF = ________cm 8、已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽Δ EAD. 9、已知,如图,D 为△ABC 内一点,连结ED 、AD ,以BC 为边 在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD 求证:△DBE ∽△ABC 10、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD 11、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。 A B C D E F A B C D

(精心整理)相似三角形证明题精选题

E A A B P D C 相似三角形证明专题训练精选 1、已知:如图,DE∥BC,AF∶FB=AG∶GE。求证:ΔAFG∽ΔAED。 2、已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB. 3、如图,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,求AD的长 4、已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,△ADQ 与△QCP是否相似?为什么? 5、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。 6、如图,AD是Rt△ABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、 AC E F AF AD BE BD 于、。则吗?说说你的理由。 7、如图,在⊿ABC(AB>AC)的边AB上取一点,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P,求证:BP:CP=BD:CE 8、已知:如图,在△ABC中,AB=AC,AD⊥AB,AD交BC于点E,DC⊥BC,与AD交于点D. 求证:AC2=AE·AD. 9、已知:如图,在△ABC中,∠CAB=90°,AD⊥BC于点D,点E是AC边的中点,ED的延长线与AB的延长线交于点F. 求证:△AFD ∽△DFB. 10、已知:如图,矩形ABCD的对角线AC、BD相交于O,OF⊥AC于点O,交AB于点E,交CB的延长线于点F,求证:AO2=OE · OF. B C D A E D A E O B C D A E F

11、己知:如图,AB ∥CD,AF=FB,CE=EB. 求证:GC 2=GF · GD. 12、已知:如图,ΔABC 中,∠ACB=900,F 为AB 的中点,EF ⊥AB.求证:ΔCDF ∽ΔECF. 13、已知:如图,DE ∥BC,AD 2 =AF ·AB 。求证:ΔAEF ∽ΔACD 。 14、已知:如图,ΔABC 中,∠ABC=2∠C,BD 平分∠ABC.求证:AB ·BC=AC ·CD. 15、已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽ΔEAD. 16、已知:如图,∠1=∠2,∠3=∠4. 求证:ΔDBE ∽Δ ABC. 17、 已知,如图,在平行四边形ABCD 中,E 为AC 三分之一处,即AE = 3 1 AC ,DE 的延长线交AB 于F ,求证:AF = FB D A B C F E 18、如图,∠B=900,AB=BE=EF=FC=1。求证:ΔAEF ∽ΔCEA. 19、如图,在梯形ABCD 中,AB ⊥BC ,∠BAD=90°,对角线BD ⊥DC 。 (1)△ABD 与△DCB 相似吗?请说明理由。 (2)如果AD=4,BC=9,求BD 的长。 20、已知:如图,在△PAB 中,∠APB=120O ,M 、N 是AB 上两点,且△PMN 是等边三角形。 求证: BM ·PA=PN ·BP

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

经典相似三角形练习的题目(附参考答案详解)

实用标准文案 相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC与△BEA的面积之比.

相似三角形典型模型及例题 (1)

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) (平行)(不平行)(二)8字型、反8字型 B C B C(蝴蝶型) (平行)(不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角 形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: (五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: 二:相似三角形判定的变化模型 一线三等角的变形

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。求证:(1)△AME ∽△NMD; (2)ND 2 =NC·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB·DF=AE·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. (2)双垂型 D E A C D E B

基本图形在相似三角形中

相似三角形中的基本图形 1.锐角△ABC 中,BC=6,S △ABC =12,两动点M,N 分别在边AB,AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y(y>0). (1)△ABC 中BC 边上高AD= ; (2)当x= 时,PQ 恰好落在BC 边上(如图1); (3)当PQ 在△ABC 外部时(如图2),求y 关于x 的函数关系式(注明x 的取值范围),并求出x 为何值时y 最大,最大值是多少? 变式:现用一块直角三角形的边角料来加工一个正方形,已知两直角边AC=30cm,BC=40cm.甲,乙两种加工方法如图所示,请你通过计算说明哪种加工方法能使加工成的正方形面积更大。 2. 如图, 边长为4的正方形ABCD 中, P 是边BC 上的一点, QP ⊥AP 交 DC 于Q, 设BP= x, △ADQ 的面积为y. (1) 求y 与x 之间的函数关系式,并求自变量x 的取值范围; (2) 问P 点在何位置时,△ADQ 的面积最小?最小面积是多少? Q B C P D A A A B B C M M N N P P Q Q D D (图1 ) (图2) E E

X 变式1:如图,在直角梯形ABCD 中,AB ∥CD, ∠A=900,AB=2, AD=5,P 是AD 上一动点(不与A 、D 重合),PE⊥BP,PE交DC于点E. (1)△ABP 与△DPE 是否相似?请说明理由; (2)设AP=x DE=y ,求y 与x 之间的函数关系式,并指出自变量x 的取值范围; (3)请你探索在点P 运动的过程中,四边形ABED 能否构成矩形?如果能,求出AP 的长;如果不能,请说明理由; (4)请你探索在点P 运动的过程中,△BPE 能否成为等腰三角形?如果能,求出AP 的长,如果不能,请说明理由。 变式2:如图,梯形ABCD 中 AD ∥BC ,∠ABC=90°,AD=9, BC=12,AB=10,在线段BC 上任取一P ,作射线PE ⊥PD ,与线段AB 交于点E. (1)试确定CP=5时点E 的位置; (2)若设CP=x ,BE=y ,试写出y 关于自变量x 的函数关系式, 并求出自变量x 的取值范围. 变式3:如图,已知抛物线与x 轴交于A 、B 两点,与y 轴交于C 点. (1)求此抛物线的解析式; (2)抛物线上有一点P ,满足∠PBC=90°,求点P 的坐标; (3)在(2)的条件下,问在y 轴上是否存在点E ,使得以A 、O 、E 为顶点的三角形与⊿PBC 相似?若存在,求出点E 的坐标;若不存在,请说明理由. A B D P E C B C A D E P A X=4 2 3 6 C B

(完整版)相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】

相关主题
文本预览
相关文档 最新文档