当前位置:文档之家› 现代优化计算方法课件(未加密版)

现代优化计算方法课件(未加密版)

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

现代设计方法课件----讲稿

讲稿课程名称:现代设计方法 Modern Design Method 课型:选修课 总学时:40 学分数:2 任课教师:ooooo 授课对象:2006级 华中农业大学工学院

《现代设计方法》课程大纲 第一章绪论(2h) 第一节概述 第二节现代设计方法的概念 第三节现代设计方法的主要内容 第四节现代设计方法的学习的目的与意义 第二章优化设计(20h) 第一节优化设计的基本概念与数学模型 第二节优化设计的几何意义与终止准则 第三节一维搜索方法 第四节无约束优化方法 第五节约束优化方法 第六节多目标优化方法与离散变量优化问题 第三章可靠性设计(8h) 第一节可靠性设计概述 第二节可靠性基本概念和理论 第三节系统可靠性模型的建立、可靠性预计和分配 第四节可靠性设计方法 第四章有限元法(8h) 第一节有限元法概述 第二节有限元法的基本思想及其应用 第三节有限元法求解实例 第四节几种大型有限元分析系统简介 第五章其他现代设计方法(2h) 第一节可靠性设计 第二节动态设计 第三节人机工程学 第四节其它方法简介 本章小结

第一章绪论 第一节概述 一、现代设计的概念 设计:设计在通俗中说来是把各种先进技术成果转化为生产力的一种手段和方法。它是从给出的合理的目标参数出发,通过各种方法和手段创造出一个所需的优化系统或结构的过程。 设计方法设计中的一般过程及解决具体设计问题的方法、手段。 传统设计(Traditional Design):人类的设计活动经历了直觉设计阶段、经验设计阶段、半理论半经验设计阶段,即所谓的传统设计阶段。 现代设计(Modern Design):以市场需求为驱动、以知识获取为中心、以现代设计思想、方法和现代技术手段为工具,考虑产品的整个生命周期和人、机、环境相容性等因素的设计。 二、现代设计方法的产生背景(以机械工业为例): 1)设计理论和实践的变化:过去,机械产品设计理论主要以力学为基础,在实践上主要以经验作为基础,现在,作为基础的理论远不止力学,还有系统论、控制论、信息论、传感理论、信号处理理论、电子学、计算机等等,作为实践的基础远不止经验,而且还涉及各有关的学科,同时,自身也在形成自己的学科体系——制造理论、工艺理论。 2)产品功能要求的变化:过去机械产品功能单一化、造型简单化、实用化,新的产品在不同程度上都同微电子技术、微计算机技术相结合,取代、延伸、加强与扩大人脑的部分作用。机械产品的种类和品种正日新月异,老的正在脱胎换骨,新的不断问世,几乎“无所不包”、“无孔不入”。 3)产品制造技术的变化:机械制造技术正在彻底改造,广泛采用各种高新技术,特别是微电子技术与电子计算机技术,从数控化走向柔性化、集成化、智能化,成为现代科技前沿热点之一。 4)机械工程、机械工业的企业管理发生根本性的变化:从以产品为主的管理发展到以面向市场信息为主的管理,并依靠建立在市场信息基础上的管理来实现企业与客户之间的相互沟通。过去主要是注重产品的质量,企业的管理主要集中在产量、产品的质量上;现在,企业在关注产品质量的同时,更多的关注市场需求,“客户需要什么样的产品,就设计什么样的产品”。 这些变化引起人们开始新的思考、新的认识,现代设计方法这门课程就是这些变化的结果,它是一门符合现代市场经济、知识经济时代发展需要的一门课程,作为工科的学生必须了解和掌握有关现代设计的思想和方法,通过这门课程的学习主要了解现代产品设计的主要方法,从思维观点发

计算方法作业第一章

习题二 1. 用二分法求方程0134=+-x x 在区间【0.3,0.4】内的根,要求误差不超过2102 1-?。 3.方程0123=--x x 在1.5附近有根,把方程写成4种不同的等价形式,并建立相应的迭代公式。 (1)231x x +=,32 11n n x x +=+ (2)211x x + =,=+1n x 211n x + (3)1 1 2 -= x x ,=+1n x 1 1-n x

(4)132-=x x ,= +1n x 13-n x 4.用迭代法求02.05 =--x x 的正根,要求准确到小数点后第5位 解:迭代公式:512.0+=+x x n 7.用迭代-加速公式求方程x e x -=在x=0.5附近的根,要求准确到小数点后第4位 解:迭代公式:x n e x -+=1,n n x q q x q x ---= +1111 8用埃特金加速法求方程13 -=x x 在区间【1,1.5】内的根,要求准确到小数点后第4位 解:迭代公式:13 1-=+x x n ,13 12-=++n n x x ,n n n n n n n x x x x x x x +--= ++-++122 1 212

9.用牛顿法求方程0133=--x x 在20=x 附近的根,要求准确到小数点后第3位 解:迭代公式:3 31 32 31 ----=+n n n n n x x x x x 11.分别用单点和双点弦截法求方程013 =--x x 在【1,1.5】内的根,要求 51102 1 ||-+?≤ -n n x x 解:单点:)111() 111()1(1 13 1--------- =+n n n n x x x x 双点:)1() 1()1(3 13 1311--------- =---+n n n n n n n n n n x x x x x x x x x x

现代优化设计方法的现状和发展趋势

M ac hi neBuil di ng Auto m atio n,D ec2007,36(6):5~6,9 现代优化设计方法的现状和发展趋势 王基维1,熊伟2,李会玲1,汪振华3 (1.宁波职业技术学院,浙江宁波315800;2.湖南生物机电职业技术学院,湖南长沙410126; 3.南京理工大学,江苏南京210094) 摘要:优化设计是近年来发展起来的一门新学科,为机械设计提供了一种重要的科学设计方 法。优化设计在解决复杂设计问题时,能从众多设计方案中寻到尽可能完美或最适宜的设计 方案。对现代优化设计方法进行了概括和总结,展望了现代优化设计的发展方向和发展趋势。 关键词:优化设计;机械设计;发展趋势 中图分类号:T H122文献标识码:B文章编号:167125276(2007)0620005202 Develop ing T rend on M odern O pt im a l Design M ethods WANG J i2wei1,XI ONG W ei2,LI H u i2li ng1,WANG Zhen2hua3 (1.Ni ngbo Voca ti on Te chno l ogy C o ll e ge,N i n gbo315800,C h i na; 2.Huna n B i o l ogy Me c ha ni c a la nd E l e c tri c a lP ro f e ss i ona lTe chno l ogy C o ll ege,C ha ngsha410126,C h i na; 3.Na n ji ng Un i ve rs ity o f S c i e nc e a nd Te chno l o gy,Na n ji ng210094,C h i n a) Abstr ac t:As a new d i s c i p l i ne,o p tm i a l de s i gn p rov i de s an m i p o rtan t sc i en tifi c de s i gn m e t h od f o r e ng i nee https://www.doczj.com/doc/de9417303.html, i ng op tm i a ld es i gn, t he y can fi nd o ut a nea rl y pe rf e ct o r op tm i um des i gn s ch em e fr om l o ts o f feas i b l e ap p r o ache s.T he p ape r s um m a ri ze s t he de ve l o p i ng trend a nd d ir e cti o n o f t he m ode rn op tm i a l des i gn m e t hod s. K ey word s:op tm i a ld es i g n;m a ch i n e des i gn;de ve l o p t re nd 0引言 机械设计与制造是机械工程领域中最重要的内容,而机械设计又是机械制造的前提。优化设计(opti m a l de2 si gn)是近年来发展起来的一门新的学科,优化设计为机械设计提供了一种重要的科学设计方法,在机械设计上起着重要的作用,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案[1]。实践证明,在机械设计中采用优化设计方法,不仅可以减轻机械设备质量,降低材料消耗与制造成本,而且可以提高产品的品质和工作性能[2]。文中初步论述了机械优化设计方法的发展现状和趋势。 优化设计方法[3]是数学规划和计算机技术相结合的产物,它是一种将设计变量表示为产品性能指标、结构指标或运动参数指标的函数(称为目标函数),然后在产品规定的性态、几何和运动等其它条件的限制(称为约束条件)的范围内,寻找满足一个目标函数或多个目标函数最大或最小的设计变量组合的数学方法。优化设计方法已成为解决复杂设计问题的一种有效工具。 1优化设计方法及应用现状 优化设计的基础和核心是优化理论和算法。迄今为止,己有上百种优化方法提出,这里重点介绍以下几种优化方法[4,5]。 a)线性逼近法:线性逼近法SLP是将原非线性问题转化为一系列线性优化问题,通过求解线性优化问题得到原问题的近似解。根据形成线性优化的方法不同,可以得到不同的线性逼近法。常用的线性逼近法有近似规划法和割平面法; b)遗传算法[2,6,14]:遗传算法GA(genetic a l gorith m s)是一种基于生物自然选择与遗传机理的随机搜索算法。它是1962年首先由美国密执安大学的J.H.H olland教授提出、随后主要由他和他的一批学生发展起来的[7],并在1975年的专著中作了介绍,首先提出了以二进制串为基础的基因模式理论,用二进制位串来模拟生物群体的进化过程。进化结束时的二进制所对应的设计变量的值即为优化问题的解。GA方法的主要优点是具有很强的通用优化能力,它不需要导数信息,也不需要设计空间或函数的连续性条件,其优化搜索具有隐性并行性,可以多点同时在大空间中作快速搜索,因此有可能获得全局最优解。由于G A有着其他优化算法不可比拟的优点,因此,GA的应用非常广泛,取得大量研究应用成果。在结构优化设计方面的如离散结构的遗传形状优化设计[8]、悬臂扭转结构和梁结构的优化设计[9]、桁架和薄壁的结构优化问题[10]等。在文献[11]中对平面四杆机构的遗传优化设计进行了研究。文献[12]介绍了一个用于ZL40装载机的直齿圆锥齿轮差速器的优化设计问题,用GA中的实数编码进行优化求解,取群体大小为50,交叉率为0.2,变异率为0.5,经过120代的进化并经圆整后得到最优解。文献[15]中通过把机械方案设计过程看作是一个状态空间的求解问题,用遗传算法控制其搜索过程,完善了新的遗传编码体系,为了适应新的编码体系重新构建了交叉和变异等遗传操作,并利用复制、交换和变异等操作进行一次次迭代,最终自动生成一组最优的设计方案。 此外,G A还应用在函数优化、机械工程、结构优化、电工、神经网络、机器学习、自适应控制、故障诊断、系统工程调度和运输问题等诸多领域中[13]; #5 #

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

计算方法第一章习题

第一章习题 2.按四舍五入原则,将下列各数舍入成5位有效数字: 816.9567 6。000015 17。32250 1.235651 93。18213 0。01523623 答案:816。96 6。0000 17。323 1.2357 93。182 0。015236 3.下列各数是按四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0。00813 6。32005 0。1800 答案:5 3 6 4 4.若1/4用0。25来表示,问有多少位有效数字? 答案:任意多位 5.若a=1.1062 , b=0.947 是经过舍入后得到的近似值,问:a+b, ab 各有几位有效数字? 答案:3 , 3 因为45110211021--?=?= da 33102 11021--?=?=db 31234102 1102110211021)(----?=?≤?+?=+=+db da b a d 4)15(102110121---?=??=a d r ,2)13(1018 110921---?=??=b d r 22410181101811021)(---?≈?+?=+=b d a d ab d r r r 6.设y 1=0.9863, y 2=0.0062是经过舍入后作为x 1和x 2的近似值,求1/y 1和1/y 2的计算值与真值的相对误差限及y 1y 2和真值的相对误差限。 答案: 53)14()1(*1*111*11*1*11*11*1*1 1106.51018 110921102111 11------?=?=??=?≤-=-=-=-n y y y y y y y y y y y y y y α也可用5)14(111 121111106.5109 21111)1(1---?=??====y dy y dy y y y d y d r 同理 31)12()1(*2*22*2*2 2103.81012 11062110211 11------?=?=??=?≤-==-n y y y y y y α 3 35*2*22)1*11*2*1*2*12*12*121*2*1*2 *121104.8103.8106.5---?≈?+?≤-+-=-+-=-y y y y y y y y y y y y y y y y y y y y y y

第二十三章现代优化算法简介

第二十三章 现代优化算法简介 §1 现代优化算法简介 现代优化算法是80年代初兴起的启发式算法。这些算法包括禁忌搜索(tabu search ),模拟退火(simulated annealing ),遗传算法(genetic algorithms ),人工神经网络(neural networks )。它们主要用于解决大量的实际应用问题。目前,这些算法在理论和实际应用方面得到了较大的发展。无论这些算法是怎样产生的,它们有一个共同的目标-求NP-hard 组合优化问题的全局最优解。虽然有这些目标,但NP-hard 理论限制它们只能以启发式的算法去求解实际问题。 启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法(Ant Colony Algorithms )。有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。 现代优化算法解决组合优化问题,如TSP (Traveling Salesman Problem )问题,QAP (Quadratic Assignment Problem )问题,JSP (Job-shop Scheduling Problem )问题等效果很好。 本章我们只介绍模拟退火算法,初步介绍一下蚁群算法,其它优化算法可以参看相关的参考资料。 §2 模拟退火算法 2.1 算法简介 模拟退火算法得益于材料的统计力学的研究成果。统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形成处于低能状态的晶体。 如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了退火过程。假设材料在状态i 之下的能量为)(i E ,那么材料在温度T 时从状态i 进入状态j 就遵循如下规律: (1)如果)()(i E j E ≤,接受该状态被转换。 (2)如果)()(i E j E >,则状态转换以如下概率被接受: KT j E i E e )()(- 其中K 是物理学中的波尔兹曼常数,T 是材料温度。 在某一个特定温度下,进行了充分的转换之后,材料将达到热平衡。这时材料处于状态i 的概率满足波尔兹曼分布: ∑∈--==S j KT j E KT i E T e e i x P )()()( 其中x 表示材料当前状态的随机变量,S 表示状态空间集合。 显然

现代优化计算方法的发展历程

现代优化计算方法的发展历程 【摘要】:对具有代表性的现代优化计算方法:遗传算法、人工神经网络、模拟退火算法的产生、发展进行了详细的叙述,并对它们的应用领域和研究方向做了细致的介绍,最后对三种算法分别作了总结和展望。 【关键词】:遗传算法;人工神经网络;模拟退火算法;组合优化 随着20世纪80年代初期遗传算法、人工神经网络、模拟退火、禁忌搜索算法的兴起,科学工作者对这些算法的模型、理论和应用技术等一系列问题进行着深入的研究,并将这些算法统称为现代人优化算法。 1. 遗传算法 1.1 遗传算法的产生和发展 遗传算法是近年来迅速发展起来的一种全新的随机搜索与优化算法,其基本思想是基于Darwin 的进化论和Mendel 的遗传学说。该算法由密歇安大学教授Holland 及其学生于1975 年创建。其主要特点是采取群体搜索策略和在群体中个体之间进行信息交换,利用简单的编码技术和繁殖机制来表现复杂的现象,不受搜索空间的限制性假设的约束,不要求诸如连续性,导数存在和单峰等假设。此后,遗传算法的研究引起了国内外学者的关注。 1.2 遗传算法的应用领域和研究方向 遗传算法是多学科结合与渗透的产物,已经发展成一种自组织、自适应的综合技术,广泛应用在计算机科学、工程技术和社会科学等领域。其研究工作主要集中在基础理论、分布并行遗传算法、分类系统、遗传神经网络、进化算法。 1.3 遗传算法的展望 遗传算法的长期发展是一个不断跳跃的过程。做为一个优秀的老资格算法它的实用价值绝对值得肯定,但它也存在一些无法摆脱的算法局限性。例如遗传算法不能保证在多项式时间内找到NP完全问题的最优解,而它经常能找到组合问题很好的次优解。但可喜的是,新世纪的计算机数字时代遗传算法已经引起了计算机界人士的广泛注意。当今计算机科学的各个领域几乎都显示出向并行计算过渡这一趋势。在这场变革中,一个鼓舞人心的结果就是信的应用领域不断发展,诸如格子气流体,神经网络和遗传算法,这些领域的研究从一开始就是基于并行处理。遗传算法的实际应用效能将会扮演越来越重要的角色。在遗传算法的研究过程中还将会出现新的困难,但是人们不得不正视大量的研究成果为此研究领域所展示的巨大潜力。 2. 人工神经网络

计算方法(李有法版)第一章课件

第一章 误差 §1.误差的来源 实际问题——?建立数学模型—?确定数值计算方法——?编制程序上机算出结果 模型误差 截断误差或方法误差 舍入误差 §2. 绝对误差、相对误差与有效数字 (1) 绝对误差与绝对误差限 定义: 绝对误差 x x x e e ?==***)( . 近似值------↑ ↑------精确值 通常,由于x 不知道,所以无法得*e ,故估计*e 的上界*ε,即 ***||||ε≤?=x x e 或 **ε±=x x . ↑------称为近似值*x 的绝对误差限,简称误差限。 (2) 相对误差与相对误差限 110 ,210021±=±=x x 定义: 相对误差 .)(**** x x x x e x e e r r ?=== 由于x 未知,所以** * x e e r ≈; Q **2*****1)(x e x e x e x e ?=?,当||**x e 较小时,***x e x e ?是**x e 的平方级,可以忽略不计,∴ 取** *x e e r =. 与绝对误差类似,只能估计相对误差绝对值的某个上界*r ε,即 **||r r e ε≤ ↑------近似值*x 的相对误差限, 得(差)。(好),%1010 1|)(| %21002|)(|2*1*=≤=≤x e x e r r .

(3) 有效数字 若近似值*x 的误差不超过某位数字的半个单位,而从该位数字到*x 最左边的那个非零数字(即自左向右看,第一个出现的非零数字)共有n 位,那么这n 位数字都称有效数字,并称*x 具有n 位有效数字。 X XX x L L =* 自左向右看,第一个非零数----↑ ↑-----误差不超过该位数的半个单位 例:L 14159.3==πx ,若取近似值14.3*≈x ,则01.0210015.0|)(|*×≤=L x e ,故*x 具有三位有效数字。 (4) 有效数字、绝对误差、相对误差之间关系如何呢? 一般(*) )1010(10)1(121*???×++×+×±=n n m a a a x L 01≠a ,即n a a a ~ ;9~1:21是.9~0 且1)1(*102 1101021||+???×=××≤?n m n m x x m m a x a 10)1(||101*1×+≤≤×Q 111121***10211010| |||||+?+?×=××≤?=∴n m n m r a a x x x e 定理1:若用) (*式表示的近似值*x 具有n 位有效数字,则其相对误差满足不等式 11 *1021||+?×≤n r a e 其中1a 为*x 的第一个非零数字。 反之,有 定理2:若近似值*x 的相对误差满足不等式 11*10) 1(21||+?×+≤n r a e 其中1a 为*x 的第一个非零数字, 则它至少具有n 位有效数字。 证明: ,102 110)1(10)1(21||||||1111***+?+?×=×+?×+≤?=?n m m n r a a x e x x 所以*x 至少具有n 位有效数字。

相关主题
文本预览
相关文档 最新文档