当前位置:文档之家› 时间序列分析(张能福)第四章

时间序列分析(张能福)第四章

时间序列分析(张能福)第四章
时间序列分析(张能福)第四章

第一节模型的识别单变量时间序列的Box-Jenkins 模型识别方法主要是根据样本自相关和偏自相关函数的截尾和拖尾性来判断序列所适合的模型。平稳序列的自相关函数和偏自相关函数的统计特性对非零均值序列的处理计算样本均值,将每一序列值减去样本均值。将序列均值作为一未知参数处理。例如AR 模型例:,Xt 的均值是多少?判定在m步之后截尾的做法是:判定在n步之后截尾的做法是:拖尾:即被负指数控制收敛于零。若序列自相关函数和偏自相关函数无以上特征,而是出现缓慢衰减或周期性衰减情况,则说明序列不是平稳的。例:见演示试验。第二节模型的定阶自相关函数和偏自相关函数定阶法自相关函数和偏自相关函数不但可以用来进行模型的识别,同样也可以用来进行AR 模型和MA 模型的定阶。该方法对ARMA 模型定阶较为困难,同时,用该方法定的阶数也只能作为初步参考值。残差方差定阶法残差方差定阶法借用了统计学中多元回归的原理。假定模型是有限阶的自回归模型,如果选择的阶数小于真正的阶数,则是一种不足拟合,因而剩余平方和必然偏大,残差方差也将偏大;如果选择的阶数大于真正的阶数,则是一种过度拟合,残差方差并不因此而显著减小。AR 、MA 、ARMA 三种模型的残差方差估计式分别为:F检验定阶法基本过程:对N个独立的观察值,建立回归模型:若舍弃后面S个因子,另建一个回归模型:检验舍弃的回归因子对Y的影响是否显著,等价于检验原假设:最佳准则函数定阶法对于AR 模型,AIC 函数可取:BIC 定阶理论上AIC 准则不能给出模型阶数的相容估计,即当样本趋于无穷大时,由AIC 准则选择的模型阶数不能收

敛到其真值(通常比真值高)。另一个定阶选择是BIC 准则:对于AR 模型:还可以定义其它类型的准则函数,如自回归移动平均模型的参数矩估计:将模型分成两个部分,先对AR 部分应用YULE-WALKER 方程,计算得到剩余序列,对剩余序列应用MA 模型的参数估计方法。

二、最小二乘估计(LS )三、极大似然估计(ML )极大似然估计有条件极大似然估计和完全极大似然估计之分。最小二乘估计是条件极大似然估计。具体过程可参看其它参考书。第四节模型的检验参数估计值检验显著性检验残差序列的检验相关性检验显著性检验常用的有t检验和F检验* 在自回归的形式下,t 检验和F检验均为渐近有效。在原假设成立的条件下,有于是检验序列的独立性问题转化为检验若Q < 2 ( K - n - m) ,则接受H0 。若Q > 2 ( K - n - m) ,则拒绝H0 。* 第四章平稳时间序列模型的建立拖尾拖尾截尾偏自相关函数拖尾截尾拖尾自相关函数ARMA(n,m) MA(m) AR(n) 模型图时间序列模型建立流程模型定阶确定ARIMA 中的参数d, p, q 参数估计矩、OLS 、ML 等对初步选取的模型进行参数估计诊断与检验包括参数的显著性检验和残差的随机性检验模型可取吗检验序列的零均值性和平稳性否则进行零均值化和平稳化模型识别用相关图和偏相关图识别模型的类型模型应用YES NO 自相关和偏自相关函数截尾的判定ARMA 模型:MA 模型:AR 模型:基本思想:首先用ARMA(n,m) 进行过度拟合,再令高阶系数中某些取值为零,用F检验判定阶数降低之后的模型与ARMA(n,m) 之间是否存在显著性差异。如果有显著性差异,阶数能够升高;如果没有差异,阶数可以降低。

设为的最小二乘估计。则,残差平方和为:设为的最小二乘估计。则,残差平方和为:是否成立。借助有关回归理论:对于给定的显著性水平,计算统计量若F>Fα,则拒绝原假设,表示两个模型存在显著性差异。对于前面实例,首先拟合AR (1)和AR (2)模型,其残差平方和分别为1619.236 和1474.032 ,则若F>Fα=3.84, 说明两个模型存在显著性差异,阶数仍有上升可能。再拟合AR (3)模型,残差平方和为1473.784 ,与AR (2)比较,有:F< Fα=3.84 ,说明AR (2)与AR3 )模型无显著性差异。原理:构造一个准则函数,该函数既要考虑用某一模型对原始数据拟合的接近程度(残差的大小),同时又要考虑模型中所含待定参数的个数。建模时,根据函数的取值确定模型优劣,使准则函数值达到最小的模型是最佳模型。此方法中最常用的AIC 定阶和BIC 定阶。基本思想:建立模型时,根据准则函数取值来判断模型的优劣,使准则函数达到极小的是最佳模型,该准则是在模型极大似然估计的基础上建立起来的。基本理论:最小信息准则AIC 函数的一般形式:AIC 定阶该方法由日本人赤池提出可用于AR 模型或ARMA 模型定阶式中“模型极大似然度”一般用似然函数表示。设样本长度N充分大时,ARMA 模型得到近似极大似然估计的对数似然函数为:于是得到采用ARMA (n,m )模型拟合的AIC 准则函数:对事先给好最高阶数M(n) ,若则取n0 为最佳模型阶数。其中K是模型的自由参数个数,对于ARMA(n,m) 模型,K=n+m+1 。若某一阶数n/0 满足则取n/0 为最佳阶数。式中常数C 用来在拟合残差与参数个数之间权衡第三节参数估计自回归模型的

参数估计:采用YULE-WALKER 方程一、矩估计移动平均模型的参数估计上述方程为非线性方程,通常要用特定的数值计算方法求解。AR 模型的LS 估计是无偏,渐近一致的,若at 为正态列,其还是渐近有效的。t, F 统计检验为渐近有效检验。MA 模型的LS 估计可以采用如下方法首先递推出at 利用LS 方法估计各参数ARMA 模型的LS 估计可以采用两阶段法:先用LS 法估计AR 部分利用残差列估计MA 部分也可以将上述估计值做为初值,代入模型重新进行非线性LS 估计。相关性检验散点图法相关系数法自相关和偏自相关图 F 检验法卡方检验法当N很大时,并且这k个量近似为相互独立的正态分布,*Ljung 和Box 给出了对上面统计量的一种修正形式:Eviews 软件中即采用的就是这种修正形式。*

统计基础知识第五章时间序列分析习题及答案

第五章时间序列分析 一、单项选择题 1.构成时间数列的两个基本要素是( C )(2012年1月) A.主词和宾词 B.变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数 2.某地区历年出生人口数是一个( B )(2011年10月) A.时期数列 B.时点数列 C.分配数列 D.平均数数列 3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10) A.时期指标 B.时点指标 C.前者是时期指标,后者是时点指标 D.前者是时点指标,后者是时期指标 4.累计增长量( A ) (2010年10) A.等于逐期增长量之和 B.等于逐期增长量之积 C.等于逐期增长量之差 D.与逐期增长量没有关系 5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10) 万元万元万元万元 6.下列指标中属于时点指标的是( A ) (2009年10) A.商品库存量 B.商品销售量 C.平均每人销售额 D.商品销售额 7.时间数列中,各项指标数值可以相加的是( A ) (2009年10) A.时期数列 B.相对数时间数列 C.平均数时间数列 D.时点数列 8.时期数列中各项指标数值( A )(2009年1月) A.可以相加 B.不可以相加 C.绝大部分可以相加 D.绝大部分不可以相加 10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月) %+15%+18%%×15%×18% C.(108%+115%+118%)-1 %×115%×118%-1 二、多项选择题 1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月) A.序时平均数 B.动态平均数 C.静态平均数 D.平均发展水平 E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月) A.相邻两个环比发展速度之商等于相应的定基发展速度 B.环比发展速度的连乘积等于定基发展速度

应用时间序列分析第4章答案

河南大学: 姓名:汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x@@; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

第四章教案++时间序列分析

第四章时间序列分析 (一)教学目的 通过本章的学习,掌握时间序列的概念、类型,学会各种动态分析指标的计算方法。 (二)基本要求 要求学会各种水平和速度指标的计算方法,并能对时间序列的长期趋势进行分析和预测。 (三)教学要点 1、时间序列的概念与种类; 2、动态分析指标的计算; 3、长期趋势、季节变动的测定。 (四)教学时数 7——10课时 (五)教学内容 本章共分四节: 第四章时间数列分析 本章前一部分利用时间数列,计算一系列分析指标,用以描述现象的数量表现。后一部分根据影响事物发展变化因素,采用科学的方法,将时间数列受各类因素(长期趋势、季节变动、循环变动和不规则变动)的影响状况分别测定出来,研究现象发展变化的原因及其规律性,为预测未来和决策提供依据。 第一节时间数列分析概述 一、时间数列的概念 时间数列:亦称为动态数列或时间序列(Time Series),就是把反映某一现象的同一指标在不同时间上的取值,按时间的先后顺序排列所形成的一个动态数列。 时间数列的构成要素: 1.现象所属的时间。时间可长可短,可以以日为时间单位,也可以以年为时间单位,甚至更长。 2.统计指标在一定时间条件下的数值。 二、时间数列的分类 时间数列的分类在时间数列分析中具有重要的意义。因为,在很多情况下,时间数列的种类不同,则时间数列的分析方法就不同。因此,为了能够保证对时间数列进行准确分析,则首先必须正确判断时间数列的类型。而要正确判断时间数列的类型,其关键又在于对有关统计指标的分类进行准确理解。 由于时间数列是由统计指标和时间两个要素所构成,因此时间数列的分类实际上和统计指标的分类是一致的。 时间数列分为:总量指标时间数列、相对指标时间数列和平均指标时间数列。 (一)总量指标时间数列 总量指标时间数列:又称为绝对数时间数列,是指由一系列同类的总量指标数值所构成的时间数列。它反映事物在不同时间上的规模、水平等总量特征。总量指标时间数列又分为时期数列和时点数列。 1.时期数列:是指由反映某种社会经济现象在一段时期内发展过程累计量的总量指标所构成的总量指标时间数列。

spss教程第四章时间序列分析

第四章时间序列分析 由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。因此学习时间序列分析方法是非常必要的。 本章主要内容: 1. 时间序列的线图,自相关图和偏自关系图; 2. SPSS 软件的时间序列的分析方法季节变动分析。 §4.1 实验准备工作 §4.1.1 根据时间数据定义时间序列 对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。定义时间序列的具体操作方法是: 将数据按时间顺序排列,然后单击Date Define Dates打开Define Dates对话框,如图4.1所示。从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。 图4.1 产生时间序列对话框 §4.1.2 绘制时间序列线图和自相关图 一、线图 线图用来反映时间序列随时间的推移的变化趋势和变化规律。下面通过例题说明线图的制作。 例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。

试根据这些的数据对汗衫背心零售量进行季节分析。(参考文献[2]) 表4.1 某地背心汗衫零售量一览表单位:万件 1979 1980 1981 1982 1 23 30 18 22 2 3 3 37 20 32 3 69 59 92 102 4 91 120 139 155 5 192 311 324 372 6 348 334 343 324 7 254 270 271 290 8 122 122 193 153 9 95 70 62 77 10 34 33 27 17 11 19 23 17 37 12 27 16 13 46 解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。具体操作如下: 1. 在数据编辑窗口单击Graphs Line,打开Line Charts对话框如图4. 2.。从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。 图4.2 Line Charts对话框 2. 单击Define,打开对话框如图4.4所示。选择分析变量进入Line Represents,,在Category Labels 类别标签(横坐标)中选择Case number数据个数(或变量年 度 月 份

【经济预测与决策】时间序列分析预测法

经济预测与决策第四章时间序列分析预测法时间序列分析预测法时间序列分析预测法是将预测目标的历史数据按照时间的顺序排列成为时间序列,然后分析它随时间的变化趋势, 外推预测目标的未来值。本章学习目的与要求通过本章的学习,了解时间序列的概念;掌握移动平均法和指数平滑法。本章学习重点和难点重点是移动平均法;难点是指数平滑法。本章内容提示第一节时间序列第二节移动平均法第三节指数平滑法第一节时间序列一、时间序列二、时间序列的影响因素三、时间序列因素的组合形式四、时间序列预测的步骤一、时间序列时间序列是指某种经济统计指标的数值,按时间先后顺序排列起来的数列。时间序列是时间t 的函数,若用Y 表示,则有:Y=Y(t )。时间序列时间序列按其指标不同,可分为绝对数时间序列、相对数时间序列和平均数时间序列三种。 绝对数时间序列是基本序列。可分为时期序列和时点序列两种。时期序列是指由反映某种社会经济现象在一段时期内发展过程的总量指标所构成的序列。如各个年度的国民生产总值。时点序列是指由反映某种社会经济现象在一定时点上的发展状况的指标所构成的序列。如各个年末的人口总数。 二、时间序列的影响因素一个时间序列是多种因素综合作用的结果。这些因素可以分为四种:1. 长期趋势变动2. 季节变动3. 循环变动4. 不规则变动1. 长期趋势变动长期趋势变动又称倾向变动,它是指伴随着经济的发展,在相当长的持续时间内,单方向的上升、下降或水平变动的因素。它反映了经济现象的主要 变动趋势。长期趋势变动是时间t 的函数,它反映了不可逆转的倾向的变动。长期趋势变动通常用T表示,T=T( t )。2.循环变动循环变动是围绕于

第五章 时间序列的模型识别

第五章时间序列的模型识别 前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下: 图5.1 建立时间序列模型流程图 在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。 对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关

时间序列分析——基于R(王燕)第四章

第四章:非平稳序列的确定性分析 题目一: ()()()()()()()12312123121231 ?14111??2144451 . 1616T T T T T T T T T T T T T T T T T T T T T x x x x x x x x x x x x x x x x x x x x x -------------=+++?? =+++=++++++????=+++ 题目二: 因为采用指数平滑法,所以1,t t x x +满足式子()11t t t x x x αα-=+-,下面式子 ()()1 1111t t t t t t x x x x x x αααα-++=+-??? =+-?? 成立,由上式可以推导出()()11111t t t t x x x x αααα++-=+-+-????,代入数据得:2 =5 α. 题目三: ()()()2122192221202019200 1 ?1210101113=11.251 ? 1010111311.2=11.04.5 ???10.40.6.i i i x x x x x x x x αα-==++++=++++===+-=?∑(1)(2) 根据程序计算可得:22?11.79277.x = ()222019181716161?2525x x x x x x =++++(3)可以推导出16,0.425a b ==,则4 25 b a -=-. 题目四: 因为,1,2,3, t x t t ==,根据指数平滑的关系式,我们可以得到以下公式: ()()()()()()() ()()()()()()()() 2 2 1 2 21 11121111 1111311. 2t t t t t t t x t t t x t t αααααααααααααααααααα----=+-------=-+---+--+++2+, + +2+用(1)式减去(2)式得: ()()()()()2 21=11111. t t t t x t αααααααααααα------------- 所以我们可以得到下面的等式: ()()()()()()1 2 2111=11111=. t t t t t x t t αααααααα +---------- -------

应用时间序列分析 第5章

佛山科学技术学院 应用时间序列分析实验报告 实验名称第五章非平稳序列的随机分析 一、上机练习 通过第4章我们学习了非平稳序列的确定性因素分解方法,但随着研究方法的深入和研究领域的拓宽,我们发现确定性因素分解方法不能很充分的提取确定性信息以及无法提供明确有效的方法判断各因素之间确切的作用关系。第5章所介绍的随机性分析方法弥补了确定性因素分解方法的不足,为我们提供了更加丰富、更加精确的时序分析工具。 5.8.1 拟合ARIMA模型 【程序】 data example5_1; input x@@; difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 ; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; estimate p=1 noint; forecast lead=5id=t out=out; proc gplot data=out; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay; symbol1c=black i=none v=star; symbol2c=red i=join v=none; symbol3c=green I=join v=none;

时间序列分析方法第章预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 §4.1 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理4.1 使得预测均方误差达到最小的预测是给定t X 时,对1 +t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义4.1 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理4.2 在所有线性预测当中,线性投影预测具有最小的均方误差。

应用时间序列分析第4章答案

大学: :汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

时间序列分析第五章作业

时间序列分析第五章作业 班级:09数学与应用数学 学号: 姓名: 习题5.7 1、 根据数据,做出它的时序图及一阶差分后图形,再用ARIMA 模型模拟该序列的发展,得出 预测。根据输出的结果,我们知道此为白噪声,为非平稳序列,同时可以得出序列t x 模型 应该用随机游走模型(0,1,0)模型来模拟,模型为:,并可以预测到下一天 的收盘价为296.0898。 各代码: data example5_1; input x@@; difx=dif(x); t=_n_; cards ; 304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271 273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 ; proc gplot ; plot x*t difx*t; symbol v =star c =black i =join; proc arima data =example5_1; identify Var =x(1) nlag =8 minic p = (0:5) q = (0:5); estimate p =0 q =0 noint; forecast lead =1 id =t out =results; run ; proc gplot data =results; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay ; symbol1 c =black i =none v =star; symbol2 c =red i =join v =none; symbol3 c =green i =join v =none l =32; run ; 时序图:

时间序列分析法原理及步骤(精)

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 (1)非平稳 (2) (3)典型的具有单调趋势的时间序列样本自相关图 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

(1)自相关系数为: (2)平稳序列 (3)白噪声序列 ,序列不能视为纯随机序列。LB=,LB统计量对应的分位点为,P值为。显著性水平=0.05 (1)时序图与样本自相关图如下 (2)非平稳 (3)非纯随机

(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 1715φ=,2115 φ= ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 证明: 该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根: 11λ= ,2λ= 3λ= 无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。证毕。 (1)错 (2)错 (3)对 (4)错 (5) 该模型有两种可能的表达式:11 2 t t t x εε-=-和12t t t x εε-=-。 将123100.50.8t t t t t x x C εεε---=++-+等价表达为 ()23 23223310.82010.510.8(10.50.50.5)t t t B CB x B B CB B B B εε-+-=-=-+++++ 展开等号右边的多项式,整理为

时间序列分析与预测论文

对1950-2009年的新疆社会消费品零售总额的时间序列分析与预测 利用1950-2009年的新疆社会消费品零售总额(记为:save,单位:万元) 的时间序列数据进行分析,建立时间序列ARIMA模型,并预测未来10年的社会 消费品零售总额。 表1 1950-2009年的新疆社会消费品零售总额 数据来源:《新疆统计年鉴2010》,《新疆五十年》 模型应用 data a; input date cost; cards; 1950 21920 1951 29023 1952 36646 1953 43198 1954 52216 1955 61379 1956 71464

1957 85578 1958 92490 1959 110526 1960 119059 1961 106780 1962 105454 1963 100837 1964 105406 1965 112970 1966 121349 1967 129530 1968 122971 1969 131318 1970 132306 1971 137958 1972 143416 1973 154676 1974 158035 1975 168486 1976 181377 1977 193457 1978 218865 1979 247796 1980 293590 1981 340739 1982 364133 1983 413324 1984 461439 1985 573842 1986 638981 1987 723913 1988 886986 1989 981497 1990 1043041 1991 1215180 1992 138**** **** 1683737 1994 1971086 1995 2536475 1996 2953597 1997 3104197 1998 3275210 1999 3473958 2000 3744999

时间序列分析方法第资料章范文预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 § 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理 使得预测均方误差达到最小的预测是给定t X 时,对1+t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理 在所有线性预测当中,线性投影预测具有最小的均方误差。 证明:假设t X g '是任意一个线性预测,则对应的均方误差可以分解为: 由于t X α'是线性投影,则有:

(完整版)应用时间序列第四章第5题答案

第四章 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 data wangbao4_5; input x@@; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; proc autoreg data=wangbao4_5; model x=time; output out=out p=wangbao4_5_cup; run; proc gplot data=out; plot x*time=1 wangbao4_5_cup*time=2/overlay; symbol2c=red v=none i=join w=2l=3; run; proc forecast data=wangbao4_5 method=stepar trend=2 lead=5 out=out outfull outest=est; id time; var x; proc gplot data=out; plot x*time=_type_/href=2008; symbol1i=none v=star c=black; symbol2i=join v=none c=red; symbol3i=join v=none c=black l=2; symbol4i=join v=none c=black l=2; run; 分析过程: 1、时序图

第13章时间序列分析和预测

第13章时间序列分析和预测 三、选择题 1.不存在趋势的序列称为()。 A. 平稳序列B. 周期性序列 C. 季节性序列D. 非平稳序列 2.包含趋势性、季节性或周期性的序列称为()。 A. 平稳序列B. 周期性序列 C. 季节性序列D. 非平稳序列 3.时间序列在长时期内呈现出来的某种持续向上或持续下降的变动称为()。A. 趋势B. 季节性C. 周期性D. 随机性 < 4.时间序列在一年内重复出现的周期性波动称为()。 A. 趋势B. 季节性C. 周期性D. 随机性 5.时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动称为()。A. 趋势B. 季节性C. 周期性D. 随机性 6.时间序列中除去趋势、周期性和季节性之后的偶然性波动称为()。A. 趋势B. 季节性C. 周期性D. 随机性 7.从下面的图形可以判断该时间序列中存在()。 A. 趋势B. 季节性C. 周期性D. 趋势和随机性 8.增长率是时间序列中()。 … A. 报告期观察值与基期观察值之比 B. 报告期观察值与基期观察值之比减1后的结果 C. 报告期观察值与基期观察值之比加1后的结果 D. 基期观察值与报告期观察值之比减1后的结果 9.环比增长率是()。 A. 报告期观察值与前一时期观察值之比减1 B. 报告期观察值与前一时期观察值之比加1 C. 报告期观察值与某一固定时期观察值之比减1 D. 报告期观察值与某一固定时期观察值之比加1 10.定基增长率是()。 , A. 报告期观察值与前一时期观察值之比减1

B. 报告期观察值与前一时期观察值之比加1 C. 报告期观察值与某一固定时期观察值之比减1 D. 报告期观察值与某一固定时期观察值之比加1 11.时间序列中各逐期环比值的几何平均数减1后的结果称为 ( )。 A. 环比增长率 B. 定基增长率 C. 平均增长率 D. 年度化增长率 12.增长1个百分点而增加的绝对数量称为 ( )。 A. 环比增长率 B. 平均增长率 C. 年度化增长率 D. 增长1%绝对值 * 13.判断时间序列是否存在趋势成分的一种方法是 ( )。 A. 计算环比增长率 B. 利用回归分析拟合一条趋势线 C. 计算平均增长率 D. 计算季节指数 14.指数平滑法适合于预测 ( )。 A. 平稳序列 B. 非平稳序列 C. 有趋势成分的序列 D. 有季节成分的序列 15.移动平均法适合于预测 ( )。 A. 平稳序列 B. 非平稳序列 C. 有趋势成分的序列 D. 有季节成分的序列 16.下面的哪种方法不适合于对平稳序列的预测 ( )。 # A. 移动平均法 B. 简单平均法 C. 指数平滑法 D. 线性模型法 17.下面的公式哪一个是均方误差 ( )。 A.n Y E Y i i i ∑???? ???-100 B. n E Y i i ∑- C. () n E Y n i i i ∑=-12 D. ()n E Y n i i i ∑=-1 18.通过对时间序列逐期递移求得平均数作为预测值的一种预测方法称为 ( )。 A. 简单平均法 B. 加权平均法 C. 移动平均法 D. 指数平滑法 19.指数平滑法得到t+1期的预测值等于 ( )。 A. t 期的实际观察值与第t+1期指数平滑值的加权平均值 @ B. t 期的实际观察值与第t 期指数平滑值的加权平均值 C. t 期的实际观察值与第t+1期实际观察值的加权平均值 D. t+1期的实际观察值与第t 期指数平滑值的加权平均值 20.在使用指数平滑法进行预测时,如果时间序列有较大的随机波动,则平滑系数α的取值 ( )。 A. 应该小些 B. 应该大些

时间序列分析与预测论文

对1950-2009年的新疆社会消费品零售总额的时间序列分析与预测 利用1950-2009年的新疆社会消费品零售总额(记为:save,单位:万元)的时间序列数据进行分析,建立时间序列ARIMA模型,并预测未来10年的社会消费品零售总额。 表1 1950-2009年的新疆社会消费品零售总额 数据来源:《新疆统计年鉴2010》,《新疆五十年》 模型应用 dataa; input date cost; cards; 1950 21920 195129023 1952 36646 195343198 195452216 1955 61379 1956 71464 1957 85578

1958 924901959 110526 1960 119059 1961 106780 1962 105454 1963 100837 1964105406 19651129701966121349 1967 129530 19681229711969 131318 1970 132306 1971 137958 1972 143416 1973 154676 1974158035 1975 168486 1976 181377 1977193457 1978 2188651979 247796 1980 293590 1981340739 1982 364133 1983413324 1984 461439 1985 573842 1986638981 19877239131988 8869861989 981497 1990 1043041 19911215180 199213824521993 1683737 19941971086 1995 2536475 1996 2953597 1997 3104197199832752101999 3473958 2000 3744999 2001 4063487

王燕时间序列分析第四章SAS程序

第三章20题 data yx_320; input x@@; t=intnx('quarter','1jul1971'd,_n_-1); format t yyq4; cards; 63.2 67.9 55.8 49.5 50.2 55.4 49.9 45.3 48.1 61.7 55.2 53.1 49.5 59.9 30.6 30.4 33.8 42.1 35.8 28.4 32.9 44.1 45.5 36.6 39.5 49.8 48.8 29 37.3 34.2 47.6 37.3 39.2 47.6 43.9 49 51.2 60.8 67 48.9 65.4 65.4 67.6 62.5 55.1 49.6 57.3 47.3 45.5 44.5 48 47.9 49.1 48.8 59.4 51.6 51.4 60.9 60.9 56.8 58.6 62.1 64 60.3 64.6 71 79.4 59.9 83.4 75.4 80.2 55.9 58.5 65.2 69.5 59.1 21.5 62.5 170 -47.4 62.2 60 33.1 35.3 43.4 42.7 58.4 34.4 ; proc gplot data=yx_320; plot x*t=1; symbol1c=red i=join v=circle; run; proc arima data=yx_320; identify var=x nlag=12; run; identify var=x nlag=12minic p=(0:6) q=(0:6); run; estimate p=1q=3; run; estimate p=1q=2noint; run; forecast lead=5id=t out=yx_320; run; proc gplot data=yx_320; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay; symbol1c=balck i=none v=star; symbol2c=red i=join v=none; symbol3c=blue i=join v=none l=32; run;

时间序列分析第五章上机指导

第五章 拟合ARIMA模型 由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在了ARIMA过程中。我们已经在第3章进行了ARMA模型拟合时介绍了ARIMA过程的基本命令格式。再次以临时数据集example5_1的数据为例介绍ARIMA模型拟合与ARMA模型拟合的不同之处。 data example5_1; input x@@; difx=dif(x); t=_n_; cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; run; 输出时序图显示这是一个典型的非平稳序列。如图5-49所示 图5-49 序列x时序图 考虑对该序列进行1阶差分运算,同时考察查分后序列的平稳性,在原程序基础上添加相关命令,程序修改如下: data example5_1; input x@@; difx=dif(x);

cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; forecast lead=5 id=t ; run; 语句说明: (1)DATA步中的命令“difx=dif(x);”,这是指令系统对变量x进行1阶差分,差分后的序列值赋值给变量difx。其中dif()是差分函数,假如要差分的变量名为x,常见的几种差分表示为: 1阶差分:dif(x) 2阶差分:dif(dif(x)) k步差分:difk(x) (2)我们在GPLOT过程中添加绘制了一个时序图“difx*t”,这是为了直观考察1阶差分后序列的平稳性。所得时序图如图5-50所示。 图5-50 序列difx时序图 时序图显示差分后序列difx没有明显的非平稳特征。 (3)“identify var=x(1);”,使用该命令可以识别查分后序列的平稳性、纯随机性和适当的拟合模型阶数。其中x(1)表示识别变量x的1阶差分后序列。SAS支持多种形式的差分序列识别:var=x(1),表示识别变量x的1阶查分后序列Δxt; var=x(1,1),表示识别变量x的2阶查分后序列Δ2xt; var=x(k),表示识别变量x的k步差分后序列Δkxt;

相关主题
文本预览
相关文档 最新文档