当前位置:文档之家› 添加剂在锌电沉积中的行为研究进展

添加剂在锌电沉积中的行为研究进展

添加剂在锌电沉积中的行为研究进展
添加剂在锌电沉积中的行为研究进展

二次碱性电池锌电极的研究进展

二次碱性电池锌电极的研究进展 郎俊山付强 (中国船舶重工集团公司七一二研究所,武汉430064) 摘要:介绍了二次碱性电池锌电极近年来的研究进展,综述了现有的制备手段和电化学性能改进研究状 况,指出锌电极现存的变形、枝晶生长、自腐蚀及钝化等主要问题,并展望了其未来的应用领域。 关键词:二次碱性电池锌电极电化学性能 中图分类号:TM912.2 文献标识码:A文章编号:1003-4862 (2010) 07-0047-04 Development of Zinc Electrodes for Secondary Akaline Batteries Lang Junshan,Fu Qiang (Wuhan Marine Electric Propulsion Research Institute, CSIC, Wuhan, 430064, China) Abstract:This paper introduce reseach and development of the zinc electrodes for secondary zinc electrodes. It summarizes the way to prepare the zinc electrodes and the research on the improvement of the electrochemistry performance, and indicates the major problems, such as deformation, dendrite growth, self-corrosion and passivation. It also prospects its application fields. Key words: Secondary alkaline batteries; zinc electrodes; electrochemical performance 1 引言 与其它碱性电池用电极相比,二次锌电极具有比能量高、价格低廉,原料来源广且对环境无害等优点。因此,锌电极可以和很多材料组合成化学电源,广泛应用于航空、军事、能源等多个领域。表1比较了锌电池与铅酸电池的理论/实际比能量。由于锌电极在充放电循环过程中会出现锌“形变”、锌枝晶、腐蚀及钝化等问题,造成锌电池循环寿命低,在很大程度上限制了锌电池的应用。解决或减少锌电极所存在的这些问题是加快、加大锌电池商业化的关键。本文综述近年来有关二次碱性电池锌电极的研究和开发情况。 表1 几种锌电池与铅酸电池的理论比能量与实际比能量 2 锌电极的制备方法 目前,市场上的锌粉大致分为雾化锌粉和电沉积锌粉两大类。 2.1 雾化法 雾化锌粉是将原料锌通过熔化进入带有高温塔盘的精馏塔内使其雾化为锌蒸气并进行精馏,利用各组分的熔点和比重不同,进行除杂、提纯;然后将锌蒸气引入主冷凝器中急剧冷凝,主冷凝 电池类型负极正极开路电压 ( V) 标称电压 ( V) 理论比能量 (Wh/kg) 实际比能量 (Wh/kg) 铅酸蓄电池Pb Pb2O 2.1 2V 175.5 30~50 锌镍蓄电池Zn Ni氧化物 1.73V 1.6V 372 60 银锌蓄电池Zn Ag氧化物 1.85V 1.5V 487.5 100~150 锌空蓄电池Zn 环境空气 1.65V 1.5V 1350(不计O2重) 100~250 收稿日期:2009-12-21 作者简介:郎俊山(1983-),男,硕士研究生,从事化学 电源方面的研究工作。 47

脱硫剂的介绍

脱硫剂的介绍 一、常温氧化铁脱硫剂 1. 常温氧化铁脱硫剂主要活性组份是水含氧化铁Fe2O3·H2O,它是一种高分数散活性物质,对H2S有很高的反应活性和吸收能力;常温下就能有效地脱除H2S,且精度也高,硫容可达25%以上。工厂使用脱H2S情况见表1、表2。 表1年产3万吨合成氨厂CNJT-01脱硫情况[1] 表2氧化铁进出口H2S测试情况[2]

常温氧化铁脱硫剂型脱硫剂由于活性组份高的分散度和大的比表面积,对有机硫也有一定的脱除能力,见表3。 表3常温氧化铁脱硫剂脱除有机硫情况[3]

从表1、表2和表3可见,常温氧化铁脱硫剂脱硫剂在空速~300H-1可将高达~200PPm H2S脱至~1PPm;而脱有机硫效果差、波动大,且脱除量很小,主要为吸附。 2. 常温氧化铁脱硫剂的特性活性氧化铁Fe2O3·H2O3脱H2S的有效性与使用的环境有关。在处于碱性条件下发生如下反应。 3H2S+Fe2O3·H2O3 = Fe2O3·H2O+21.76KJ/mol (1) (红褐) (黑) 该反应是H2S分子在碱性液膜中溶解及离解而进行的。除脱硫剂本身具有一定碱度外,气氛为碱性环境也是有利的(如含一定的氨);水份含量对脱硫剂也是至关重要,以~10%为宜,使用中气体中水汽含量以接近或达到饱和状态为好,如在20~40℃水汽车含量为~4%即可。这有助于抑制气流将脱硫剂中水份带走;但应避免大量水蒸气在床层中冷凝或带水而造成微孔堵塞和损坏强度。 气体中含有一定的氧可发生再生反应,对脱硫有利。 Fe2O3·H2O+3/2O2 = Fe2O3·H2O+3S+197KJ/mol (2) 反应(1)和(2)均为放热反应,低温有利于反应平衡,速度不利,通常以20~40℃为宜。当氧含量达到O2∕H2S>2.5时,反应生成的硫化物可实现连续再生。则反应(1)和反应(2)合并为: Fe2O3·H2O H2S+1∕2 O2----------H2O+S 水合氧化铁Fe2O3·H2O相当于催化剂。

氧化锌纳米棒研究进展汇总

氧化锌纳米棒研究进展** 孔祥荣*, 邱晨, 刘强, 刘琳, 郑文君 (南开大学化学学院材料系,天津,300071) Kxr0918@https://www.doczj.com/doc/de5739256.html, 摘要:氧化锌纳米棒由于具有新奇的物理化学性质而成为研究的热点,本文就近年来氧化锌纳米棒在制备方法和反应机理及应用研究等方面予以综述。 关键词:氧化锌; 纳米棒; 制备; 反应机理 1 引言 近年来,低维纳米结构的半导体材料引起了广泛的关注,尤其是一维(1-D纳米材料在维数和大小物理性质的基础研究中有潜在的优势,同时在光电纳米器件和功能材料中的应用研究成为热点。氧化锌由于在室温下较大的导带宽度和较高的电子激发结合能(60meV 及光增益系数(300 cm 而使之具有独特的催化、电学、光电学、光化学性质,在太阳能电池、表面声波和压电材料、场发射、纳米激光、波导、紫外光探测器、光学开关、逻辑电路 [5,6][1]-1[2][3][4] 等领域潜在的应用等方面均具有广泛的应用前景。本文就氧化锌纳米棒及其阵列的制备、反应机理、应用研究等进行简要的综述。 2 氧化锌纳米棒的制备 2.1 超声波法和微波法 刘秀兰等在低温反应条件下(冰水浴),通过超声的方法,采用醋酸锌和水合肼为原料,[7] 以DBS 作为表面活性剂,制备了ZnO 纳米棒,截面为六方型,直径100nm ,长度1μm。研究表明:与其它制备方法相比,低温与超声技术可以更为方便获得分布均

一、长径比较小的ZnO 纳米棒。Hu等分别用超声和微波辐射两种方法得到了交联(二聚体,三聚体(T形,四聚体(X[8] 形))的ZnO纳米棒。超声辐射法和微波辐射法具有一个共同的特点,反应速度快,设备要求简单。 2.2 水热法 Liu 等用六水合硝酸锌和氢氧化钠为原料配成溶液,180 ℃水热处理20h 得到晶化程度[9] 很高的直径的为50 nm的高长径比的氧化锌纳米棒。Vayssieres [10]用硝酸锌盐和等摩尔的六次甲基四胺在水热条件下95 ℃几小时就可以在底物上得到了直径100~200 nm ,长度为10 μm 氧化锌纳米棒及其阵列。Wang 等[11]报道用Zn 作为底物同时作为反应物水热条件下得到了形貌可控的ZnO 纳米棒。陶新永等[12]采用PEG 辅助水热法合成了ZnO 纳米棒。研究发现,氢 [13]氧化钠浓度和反应时间对产物形貌和尺寸有较大的影响。Tang 等用H 2O 2、NaOH 和Zn 箔为 [14]原料辅助的水热法来合成具有良好光学性质的ZnO 纳米棒阵列。Wu 等用溴化十六烷三甲 基铵(CTAB 表面活性剂作导向剂在水热条件下,通过粒径几十纳米的纳米晶自组装得到了ZnO 单晶纳米棒。Guo 等[15]用氧化铟锡(ITO )底物上用简单的水热法通过改变温度成功的 [16]合成了粒径长度可控的分布较窄的高趋向的ZnO 纳米棒阵列。郭敏等采用廉价低温的水 热法, 在基底上制备高质量、高取向统一、平均直径小于50 nm 并且直径分布很窄的ZnO 纳米棒阵列薄膜。

镍电沉积及镀层的结构与性能的测试--开题报告

开题报告 镍电沉积及镀层的结构与性能的测试——电沉积工艺条件―Hull槽试验及镀层的 结构与性能的测试 开题报告 一、课题的名称:镍电沉积及镀层的结构与性能的测试 二、课题的目的和意义: 目的: 1.熟悉Hull 槽试验的基本原理、实验操作和结果分析。 2.试验并了解添加剂糖精、苯亚磺酸钠、镍光亮剂XNF 和十二烷基硫酸钠对电沉积光亮

镍的影响。 意义: 不锈钢具有良好的耐蚀性,但不锈钢硬度较低,表面强度低,耐磨性差,摩擦因数较大,在碰撞或者磨损环境中工作时,易发生局部损伤和表面钝化膜受损而导致局部腐蚀。所以为了提高不锈钢的耐磨性和耐蚀性,常对其表面进行处理,通过对不锈钢表面镀镍来改善材料的外观、耐腐蚀性和耐磨损性性能结构。 三、镍电沉积及镀层的特点及国内外研究现状: 镍具有银白色(略呈黄色)金属光泽,具有铁磁性,密度为8.9,原子量为58.71,标准电极电位为一0.25伏。镍具有很强的钝化能力,在空气中能迅速地形成一层极薄的钝化膜,使其保持经久不变的光泽。常温下,镍能很好地防止大气、水、碱液的浸蚀。在碱、盐和有机酸中很稳定,在硫酸和盐酸中溶解很慢,易溶于稀硝酸。 由于镍的硬度较高(HV 240-500),所以镍层可以提高制品表面硬度,并使其具有较好的耐磨性。镍是铁族元素,属于电化学极化较大的元素,当电解时能产生较大的极化作用,即使在很小的电流密度下,也会产生显著的极化作用。因此,镀镍与镀锌、镀铜不同,它不需要特殊添加剂。因为电沉积镍时有较大的极化作用,所以在强酸性介质中,根本不可能把它沉积出来,只能使用弱酸性电解液。 化学镀镍技术具有悠久的历史,但其技术的广泛运用还是在近期。化学镀镍的发展史是化学镀发展的重要组成部分。在1947年美国国家标准局A.Brenner和G.Riddell提出了沉积非粉末状镍的方法,并弄清楚了形成镀层的催化特性,奠定了化学镀镍技术的基础。化学镀镍技术的最早工业应用是1955年在美国通用运输公司(GATC)在系统研究该技术后建立的第一条生产线。早期化学镀镍技术的应用极少,直到70年代末化学镀镍技术才被大规模地运用到工业中。为了满足复杂的工况、获得更多的性能,近年来又发展起来了化学复合镀镍技术。化学镀镍技术的核心是镀液的组成及性能,所以化学镀镍发展史中最值得注意的是镀液本身的进步。20世纪60年代前后,由于化学知识贫乏,只有中磷镀液配方,镀液不稳定(往往只能稳定数小时),工艺落后。70年代后出现了络合剂、稳定剂等多种添加剂,经过大量的实验研究、筛选、复配以后,新发展的镀液均采用“双铬合”或“双铬合、双稳定、双促进”配方,极大地提高了镀液的稳定性,镀速加快,大幅度增加了镀液对亚磷酸根的容忍性、目前,化学镀液均已商品化,根据用户要求有各种性能化学镀的开缸及补加浓缩液的出售,施镀过程中只需要按消耗的主盐、还原剂、PH调节剂及适量添加剂进行补充,使用十分方便。 在化学镀镍溶液质量提高的基础上,化学镀镍生产线的装备和技术发展迅速,逐渐从小槽

溶液中锌与铁沉积电位的比较

溶液中锌与铁沉积电位的比较 1 KCl镀锌溶液中锌与铁沉积电位的比较 在KCl镀锌溶液中,ZnCl2浓度约0.5mol/L,铁的含量太高(例如超过100mg/L),在高电流密度区和低电流密度区等敏感部位镀层光亮度受到不良影响,色泽发暗[1];Fe2+质量浓度达0.2g/L时,就会严重影响高、中电流区镀层质量[2],试片高端20mm出现烧焦和粗糙区,达0.3g/L时,试片几乎一半烧焦,同时低电流密度区镀层发灰。 锌与铁的沉积电位究竟是多少呢?下面做一分别计算: 在ZnCl2浓度约0.5mol/L时,ZnCl2的活度系数[3]为0.394,Zn2+的有效浓度为[Zn2+]=0.394×0.5mol/L=0.197mol/L,锌离子的平衡电位 EZn2+/Zn=E0Zn2+/Zn + 0.059/2㏒[Zn2+] = -0.7618 + 0.059/2㏒0.197 = -0.7818V 对于高浓度电解质溶液,目前尚无较准确的离子活度系数定量计算公式[4]。因此当铁的质量浓度在0.167g/L时,Fe2+有效浓度仍然约按0.003mol/L 计算。 Fe2+浓度约为0.003mol/L时,铁的平衡电位 EFe2+/Fe=E0Fe2+/Fe+0.059/2㏒[Fe2+] = -0.447 + 0.059/2㏒0.003 = -0.521V 铁的析出电位为铁的平衡电位+铁的过电位,即-0.521V+铁的过电位;锌的析出电位为锌的平衡电位+锌的过电位,即 -0.7818V+锌的过电位。铁的过电位比较大,可达几百毫伏,而锌的过电位只有几十毫伏,因此,铁的析出电位比锌的析出电位可能要负一些,锌有先析出的可能。当阴极电位较负(即电流密度比较大)时,也可以达到铁的析出电位,使铁析出。阴极电流密度对镀层含铁量有明显影响,镀层含铁量随电流密度对提高而增加[5]。 实际上铁杂质的危害就表现在高、中电流密度区。锌铁合金的电沉积为异常共沉积[5],那只是简单比较了锌和铁的标准电极电位,没有比较实际析出电位的缘故。一般金属的析出电位与标准电位是有较大差别的,如离子的配合状

纳米氧化锌的研究进展

学号:201140600113 纳米氧化锌的制备方法综述 姓名:范丽娜 学号: 201140600113 年级: 2011级 院系:应用化学系 专业:化学类

纳米氧化锌的制备方法综述 姓名:范丽娜学号: 201140600113 内容摘要:介绍了纳米氧化锌的应用前景及国内外的研究现状,对制 备纳米氧化锌的化学沉淀法、溶胶凝胶法、微乳液法、水热合成法、 化学气相法的基本原理、影响因素、产物粒径大小,操作过程等进行 了详细的分析讨论;提出了每种创造工艺的优缺点,指出其未来的研 究方向是生产具有新性能、粒径更小、大小均一、形貌均可调控、生 产成本低廉的纳米氧化锌。同时也有纳米氧化锌应用前景的研究。 Describes the application of zinc oxide prospects and research status, on the preparation of ZnO chemical precipitation, sol-gel method, microemulsion, hydrothermal synthesis method, chemical vapor of the basic principles, factors, product particle size, operating procedure, carried out a detailed analysis and discussion; presents the advantages and disadvantages of each creation process, pointing out its future research direction is the production of new properties, particle size is smaller, uniform size, morphology can be regulated, production cost of zinc oxide. There is also promising research ZnO. 关键字:纳米氧化锌制备方法影响研究展望 正文:纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生 变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效 应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在

湿法电解锌工艺流程选择概述

湿法电解锌工艺流程选择概述 1.。1 工艺流程选择 根据原料成份采用常规的工艺流程,技术成熟可靠,劳动环境好,有较好的经济效益,同时综合回收铜、镉、钴等伴生有价金属。工艺流程特点如下: (1)挥发窑产出的氧化锌烟尘一般含气氟、氯、砷、锑杂质,且含有较高的有机物,影响湿法炼锌工艺,所以通常氧化锌烟尘需先进多膛焙烧脱除以上杂质。 (2)氧化锌烟尘和焙砂需分别进行浸出,浸出渣采用回转窑挥发处理,所产氧化锌烟尘送多膛焙烧炉处理。 (3)氧化锌烟尘浸出液返焙砂系统,经中性浸出浓密后,上清液送净液车间处理,净液采用三段净化工艺流程。 (4)净化后液送往电解车间进行电解。产出阴极锌片经熔铸后得锌锭成品。 (5)净液产出的铜镉渣和钴渣进行综合回收(或外卖)。 1.6.2 工艺流程简述 焙砂经中浸、酸浸两段浸出、浓密、过滤,得到中浸上清液及酸浸渣。酸浸渣视含银品位进行银的回收后送回转窑挥发处理得氧化锌,经脱氟、氯,然后进行单独浸出,浸液与焙砂系统的浸出液混合后送净液。回转窑渣送渣场堆存。产出的中浸上清液经三段净化,即第一段用锌粉除铜镉;第二段用锌粉和锑盐高温除钴;第三段再用锌粉除复溶的镉,以保证新液的质量,所得新液送电解。电解采用传统的电解沉积工艺,用人工剥离锌片,剥下的锌片送熔铸,产出锌锭。

采用上述工艺流程的理由:主要是该工艺流程基建投资省,易于上马,建设周期短、见效快、效益高。这在株冶后10万吨电锌扩建、广西、云南、贵州等多家企业的实践中,已得到充分证实和肯定。 对净液工艺的选择,目前国内外湿法炼锌净液流程的发展趋势,主要是溶液深度净化。采用先冷后热的净液流程,为保证净液质量,设置三段净化,当第二段净化质量合格时,也可以不进行第三段净化,直接送电解。该流程稳妥可靠,净化质量高,能满足生产0#锌和1#锌的新液质量要求。 作业制度,拟采用连续操作,国内西北冶、株冶等都有生产经验。与间断操作相比,可大减少设备的容积,减少设备数量,相应可减少厂房建筑面积,故可大幅度降低基建投资。 1..3 综合利用及环境保护 浸出渣可根据含银品位高低进行银的回收后再送回转窑处理,所得氧化锌经脱氟、氯后进入氧化锌浸出系统,进一步回收锌、铟等有价金属。 净液所得铜镉渣经低酸浸出后,所得铜渣可作为炼铜原料出售。 浸出液经锌粉置换,所得贫镉液含锌很高,返回锌浸出车间,所得海绵镉进一步处理后,获得最终产品镉锭出售。 净液所得钴渣,经酸洗脱锌后根据含钴品位再考虑是否回收钴,暂时先堆存(或外卖)。 熔铸所得浮渣,其粗粒可返回熔化或作生产锌粉用。处理所得氧化锌可作为生产硫酸锌或氯化锌的原料,根据需求而定。 各湿法炼锌车间的污酸、污水,经中和沉处理后,可达到国家工业排放标准。

纳米氧化锌的研究进展

收稿日期:2002209212;修回日期:2002211205 3通讯联系人 文章编号:100421656(2003)0520601206 纳米氧化锌的研究进展 辛显双,周百斌3,肖芝燕,徐学勤,吕树臣 (哈尔滨师范大学理化学院,黑龙江哈尔滨 150080) 摘要:本文对纳米氧化锌的制备技术进行了全面介绍并客观地指出其优缺点,概括了常用的表征方法,着重对纳米氧化锌的应用与研究前沿作了系统的阐述,并展望了纳米氧化锌的应用前景。关键词:纳米氧化锌;制备;表征;应用;展望中图分类号:O6141241 文献标识码:A 纳米ZnO 是当前应用前景较为广泛的高功 能无机材料。由于其颗粒尺寸的细微化,比表面积急剧增加,表面分子排布、电子结构和晶体结构都发生变化,具有表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等。从而使纳米ZnO 具有一系列优异的物理、化学、表面和界面性质,在磁、光、电、催化等方面具有一般ZnO 所无法比拟的特殊性能和用途,由它构成的二维薄膜和三维固体也不同于常规薄膜和块状固体材料[1~5]。本文对ZnO 的制备方法、结构的表征及用途进行了综述,并对纳米氧化锌的应用前景进行了展望。 1 纳米ZnO 的制备方法 纳米ZnO 的制备方法有物理方法和化学方法。物理方法是将常规的粉体经机械粉碎、球磨而制得。其特点是方法简单,但产品纯度较低,颗粒分布不均匀。化学方法是从原子或分子成核,生成纳米级的超微细粒子,这里主要介绍制备纳米ZnO 的化学方法。111 固相反应法 以Na 2C O 3和ZnS O 4?7H 2O 为原材料,分别研磨,再混合研磨,进行室温固相反应[6],首先合成前驱体ZnC O 3,然后于200℃热分解,用去离子水和无水乙醇洗涤,过滤,干燥后制得纯净的ZnO 产品,粒径介于610~1217nm 。石晓波[7]等以草酸和醋酸锌为原料,用室温固相反应首先制备前驱物二水合草酸锌,然后在微波场辐射分解得到 纳米氧化锌,平均粒径约为8nm 。室温固相反应法成本低,实验设备简单,工艺流程短,操作方便。且粒度分布均匀,无团聚现象,工业化生产前景乐观。112 气相反应法 激光技术气相沉积法 这种技术的主要工艺[8]是利用激光蒸发和在扩散云室中的可控凝聚相结合,从而控制粒子的尺寸分布和化学组成。E L -shall M Samy [9]等采用激光蒸发、凝聚技术,在极短时间内使金属产生高密度蒸气,形成定向高速金属蒸气流。然后用金属蒸气与氧气反应而制备出粒径为10~20nm 的ZnO 。此种方法具有能量转换效率高、可精确控制的优点。但成本较高,产率低,难以实现工业化生产。 喷雾热解法 喷雾热解法是将锌盐的水溶液经雾化为气溶胶液滴,再经蒸发、干燥、热解、烧结等过程得到产物粒子。Y un Chankang [10]等用此技术合成了纯度较高的纳米ZnO 。该法过程简单,粒度和组成均匀,但粒径较大。113 液相反应法 直接沉淀法 直接沉淀法是以可溶性锌盐与沉淀剂(如NH 3?H 2O ,(NH 4)2C O 3,NaOH 等)直接沉淀后,经过滤、洗涤、干燥、焙烧得纳米ZnO 。靳建华[11]等用直接沉淀法在无水介质所得的纳米ZnO 粒径为6~17nm 。直接沉淀法操作简单易行,对设备、技术要求不高,且成本低,产品纯度高。但由于此反应是沉淀剂与反应物直接接触而沉淀,因此会造成局部浓度不均匀、分散性较差及 第15卷第5期2003年10月 化学研究与应用Chemical Research and Application V ol.15,N o.5 Oct.,2003

干法脱硫氧化锌脱硫解析

合成氨脱硫干法脱硫 采用的是氧化锌脱硫,针对的是处理天然气经过湿法后含硫量的还是超过了国标后的处理方法,以达到国家生产含硫的标准。

目录 1.基本原理 (2) 1.1基本原理 (2) 1.2氧化锌脱硫剂 (2) 1.3工艺条件 (4) 2.合成氨工艺氧化锌脱硫槽计算工段设计 (4) 2.1脱硫剂的选择 (5) 2.2选择条件 (6) 3.脱硫剂填装量的计算 (6) 3.1填料层高度计算 (6) 3.2床层压降计算 (7) 3.3器壁厚度计算 (7) 3.4管口设计 (8) 3.5封头设计 (8) 3.6物料衡算 (8) 3.7热量衡算 (9)

干法脱硫氧化锌脱硫 1.基本原理 氧化锌脱硫剂是以活性氧化锌为主要成分、内表面积较大、硫容较高的一种无机固体脱硫剂,不仅能快速脱除硫化氢,也能快速脱除除噻吩之外的有机硫。净化后的气体中总硫含量一般小于3×10 6,最低可达0.1×10.6以下,因此无论从工艺的合理性还是经济性考虑,氧化锌脱硫法是原料气精细脱硫的首选方法。 1.1基本原理 ① 化锌脱硫剂可直接脱除硫化氢和硫醇,反应式为 S H +ZnS S H +nZnO 22→ △H 一一76.62kJ /mol O H +H C +ZnS SH H C +ZnO 26252→ △H 一一137.83kJ /tool ②对于硫氧化碳和二硫化碳等有机硫,则部分先转化为硫化氢,然后再被氧化锌吸收;部分有机硫可直接被氧化锌吸收,反应过程为 S 2H +CH 4H +CS 2422→ S H +CO H +CO 222→ 22CO +ZnS CO +ZnO → △H 一一126.40Kj/mol 22CO +2ZnS CS +ZnO → △H 一一283.45kJ /mol 氧化锌脱硫剂对噻吩的转化能力很弱,又不能直接吸收,因此单独使用氧化锌脱硫剂是不能把有机硫完全脱除的。氧化锌脱硫的化学反应速率很快,硫化物从脱硫剂外表面通过毛细也到达其内表面,内扩散速度较慢,无疑是脱硫过程的控制步骤。因此氧化锌脱硫剂粒度小,孔隙率大,有利于脱硫反应的讲行.同样压力高也有利于提高脱硫反应速度和脱硫剂利用率。 1.2氧化锌脱硫剂 氧化锌脱硫剂是以氧化锌为主体,约占95%左右,并添加少量氧化锰、氧化铜或氧化镁为助剂。根据脱硫温度的不同又可分高温脱硫氧化锌脱硫剂和常温

锌电解工操作规程

锌电解工操作规程 5.1内容与范围 本规程规定了锌电解的操作程序。 本规程适用于锌电解车间。 5.2 循环物料及工艺条件 5.2.1循环物料 从电解槽出来的废电解液,先在溜槽中汇集,以后流入贮槽。约十分之一废电解液用泵送回浸出车间,作为浸出焙烧矿的稀硫酸使用。而从净液车间送来的中性电解液(亦称新液)用其余经过冷却的废电解液按一定的比例(约1:8~12)混合,保持适当的酸锌比(2.0~3.8),供给电解槽。 由于电解液体积的平衡,送出的废电解液和供给的新液体积基本相同,按设计生产能力电解车间处理新液量为每日3343立方米。 5.2.2工艺条件 5.2.2.1正常生产情况下工艺条件见表1 表1正常生产情况下工艺条件

5.2.2.2开停车时工艺条件见表2 表2开停车时工艺条件 5.3车间正常操作 5.3.1 新液泵操作 5.3.1.1开泵前,先用手盘车,检查转动是否灵活,如安装或检修后的泵应检查旋转方向是否正确。 5.3.1.2 停泵时,切断电源,关闭进口阀门,放出泵内溶液,避免结晶。 5.3.1.3 注意观察新液质量,发现新液浑浊等异常现象时,要立即报告车间调度,不合格新液未征得调度同意,不得使用。 5.3.1.4 根据化验结果控制混合液锌、酸含量在技术卡片规定范围内,如生产不正常而达不到规定要求时,应向车间调度报告。 5.3.1.5 新液泵操作安全注意事项 5.3.1.5.1 上岗前穿戴好各种劳保用品。 5.3.1.5.2 开泵前应先盘车,并按操作规程中的一系列要求做好检查工作。 5.3.1.5.3 检查电机是否接地,转动部分有无安全装置和障碍物,当

运转中一旦发现故障应及时停车处理。 5.3.1.5.4 严禁用水冲洗电器设备。 5.3.1.5.5 不准用湿手或金属棒启动电器设备。 5.3.1.5.6 清扫设备时,必须停车后方可进行。 5.3.2 废液泵及循环泵操作 5.3.2.1 开泵:开泵前先用手盘对轮1~2圈,检查有无故障和轴封填料口松紧程度。打开进液阀,检查泵的进液端是否漏液。确认无故障,方可启动。启动后检查响声是否正常,转动是否正确,电流指示是否在正常范围内,震动是否太大。确认无误后,便可全部打开进液阀,投入正常运行。 5.3.2.2 停泵:先关进液阀,只稍留缝隙,然后停车,待管道内余液全部倒完后,再关紧进液阀,防止滴漏,注意换泵时应先开后停。 5.3.2.3 控制好废液的送出量,保证电解生产的正常进行,正常情况下,保持贮槽液面在堰上0.5米(约五块砖)。 5.3.2.4 按时检查泵的电流表、电机温度并注意查看泵体和管道是否漏液。 5.3.2.5 安全注意事项 5.3.2.5.1 上岗前穿戴好各种劳保用品。 5.3.2.5.2 启动设备前,作好操作规程中的一系列检查工作,特别要注意电机的接地是否安好,转动部分有无安全装置和障碍物,运转中

纳米氧化锌的综述

纳米ZnO的制备综述 纳米ZnO的制备综述 引言:纳米ZnO是一种面向21世纪的新型高功能精细无机产品,其粒径介于 1~100纳米,又称为超微细ZnO。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米ZnO产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米ZnO在磁、光、电、化学、物理学、敏感性等方面具有一般ZnO产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。 关键字:纳米ZnO 性质制备应用 一.纳米ZnO的性能表征 纳米级ZnO的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统ZnO的双重特性。与传统ZnO产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等

一系列独特性能。 纳米ZnO粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。纳米ZnO粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米ZnO。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米ZnO,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 由于纳米ZnO具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米ZnO表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米ZnO粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 二、纳米ZnO的制备方法 制备纳米ZnO材料的方法按物质的原始状态分为固相法、液相法、气相法3类。 2.1 固相法: 固相法是按照一定比例混合金属盐或金属氧化物,并研磨煅烧,使其发生固相反应而直接得到纳米粉末。 (1)将摩尔比1:1的Zn(NO 3) 2 ·6H 2 O和Na 2 CO 3 分别研磨10min,然后再混合研磨 20min,分别用去离子水和乙醇洗涤,80℃下干燥4h,待冷却后研细再置于马弗炉中,加热升温至400℃并保温3h,得到浅黄色纳米ZnO。或将硫酸锌和氢氧化钠按照摩尔比1:2的量置于研钵中,并向其中加入NaCl,研磨40min,完全反应后分别使用蒸馏水和乙醇洗涤2~3次,室温下干燥,得到纳米ZnO样品。 (2)沉淀法 将ZnSO 4 配制成浓度为1.5mol/L的溶液,加热至30~80℃,然后在搅拌下慢 慢滴加l:lNH 3·H 2 O使之生成Zn(OH) 2 胶体,搅拌、陈化。将配制好的(NH 3 ) 2 CO 3 , (0.5mol/L)溶液慢慢加人到Zn(OH) 2 胶体中不断搅拌,滴加完后继续搅拌反应, 过滤,用去离子水洗涤至无SO 42-(0.1mol/L 的BaCl 2 溶液检定无白色BaSO 4 沉 淀).将滤饼于100℃下烘干即得到前驱体。将前驱体置于马福炉中,以2℃·min-1的升温速率分别在300℃、400℃、500℃条件下分解,自然冷却,即得到ZnO样品。 2.2 气相法: 气相法是指用气体或将初始原料气态化,从而使其在气态条件下直接产生物理或化学反应,然后经冷却而凝聚为纳米微粒。气相法又可以分为化学气相氧化法、气相反应合成法、化学气相沉积法以及喷雾热分解法等。 (1)化学气相氧化法 化学气相氧化法是指将金属单质或金属化合物蒸发,在气相中被氧化而产生金属氧化物,经冷却后金属氧化物蒸气凝聚为纳米微粒。纳米ZnO粉体的合成是通过单质Zn蒸气在O 2 氛围中被氧化而得到。以高化学纯Zn粉作为原材料,在真空室内采用感应加热的方法将Zn粉原材料融化,原子化的Zn将在水冷壁上凝结为Zn 纳米颗粒,用2kW 级连续CO 2 激光器以输出功率600W进行照射,同时在激光照射过程中,向真空室内引入0.8~1.2kP的空气即可得到ZnO纳米颗粒。

锌电解槽计算

3.1概述 工业上从硫酸锌水溶液中电解沉积锌有三种工艺:即低酸低电流密度法(标准法);中酸中电流密度法(中间法)和高酸高电流密度法。目前我国多采用中酸中电流密度法的下限,低酸低电流密度法上限的电解法。表3-1为三种方法的比较。 表3-1 锌电积三种工艺的比较 工艺方法电解液含 H2SO4(克/升)电流密度 (安/米2) 优缺点 酸低电流密度法(标准法)110--130 300--500 耗电少,生产能力小, 基建投资大 中酸中电流密度法(中间法) 130--160 500--300 生产操作比前者简单, 生产能力比前者大但 比后者小基建投资小 高酸高电流密度法220--300 800~1000 甚至大于 1000 生产能力大;耗电多; 电解槽结构复杂。 3.2 设计任务 设计生产能力为7万吨锌锭的电解设备 3.3 原始资料 3.3.1 设进入电解槽的电解液成份如表3-2所示: 表3-2 进入电解槽的电解液成份(克/升) 组成 Zn Fe Cd Cu CO Mn (克/升) 120 0.045 0.005 0.0004 0.005 4.720 3.3.2 电解后电解废液成份如表3-3所示 表3-3 电解废液成份(克/升) 组成 Zn Fe Cd Cu CO Mn (克/升) 46 0.028 0.003 0.0002 0.005 3.217 3.3.3 一些技术条件及技术经济指标 用于制造锌粉之锌锭占年产锌锭量的百分比,β=0.028;年工作日为330日。 阴极锌熔铸直收率η 1 = 97%

阴极电流密度 D 阴 = 520安培 槽电压 V 槽 = 3.20伏 电流效率 ηi = 98% 阴极规格 长×宽×厚= 1000×666×4(毫米) 3.4 工艺过程及设备计算 3.4.1物料平衡及电解槽计算 阴极锌成份的计算 在电积过程中,一部分铜、铁、镉与锌一齐在阴极上沉积,一升电解液得到的阴极锌含金属量如表3-4所示。 表3-4 一升电解液沉积的金属量(克) 组 成 Zn Fe Cd Cu 共计 (克) 64.00 0.005 0.002 0.0002 64.0072 铅-银阳极在电解过程中被腐蚀,使一部分铅进入到阴极锌中。设阴极锌含铅0.006%则进入到阴极锌中铅的量为: 0038.0100 006 .00072.64=?克 那么阴极锌的成份如表3-5所示。 表3-5 阴 极 锌 成 份 组成 Zn Pb Fe Cd Cu 共计 重量(克) 64.00 0.0038 0.0050 0.0020 0.00020 64.0110 % 99.983 0.006 0.0078 0.003 0.0003 100 3.4.2 所需电解槽数量的计算 (1)每日应产出的阴极锌量的计算。 Q 1= η βm Q ) 1(+吨 式中: Q 1----每日应产出阴极锌的数量,吨; Q ----设计生产能力,吨锌锭/年;

锌电解沉积

锌电解沉积 electrowinning of zinc x}nd一anJ一e ehenjl 锌电解沉积(eleetrowinning of:inc)采用不溶阳极,在直流电作用下使硫酸锌电解液中的锌沉积在阴极上的过程,为湿法炼锌流程的重要组成部分。工艺将已净化合格的硫酸锌溶液(简称新液)和返回的电解液(简称废液)按一定的比例混合后,连续不断地从电解槽的进液端送入电解槽,槽中插入用铅银合金板制成的阳极和压延纯铝板做的阴极。当通入直流电时,在阴极发生析出锌的反应: ZnZ++Ze—Zn 在阳极则发生水被分解成H+和氧气的反应: HZO一Ze—ZH十+l/202 锌电解沉积的总反应为: ZnSO;+HZO一Zn+HZSO‘+l/202 随着锌不断地在阴极上电解沉积,电解液中含锌量逐渐减少,而硫酸却相应增加。为使电解槽内电解液中锌和硫酸的浓度稳定地保持在规定范围,并维持稳定的电解液液面,须连续向电解槽加入新液,从另一端排出含锌50一609/L、硫酸120一2609/L 的废液。部分废液冷却后返回电解配液,以使电解槽内的电解液达到必要的循环速度。每隔一定周期(24~48h)取出沉积锌的阴极,经洗净后剥离锌。阴极锌经干燥后,送熔铸成产品锌锭。阴极铝板经刷洗处理,再装入电解槽中继续使少月。主要技术经济指标锌电积的主要技术条件和指标有电能消耗、电流效率、槽电压和电锌质量。电能消耗湿法炼锌每生产h电锌锭消耗电能3800一400Okw·h,电耗是构成电锌成本的重要部分。而锌电解沉积的电单耗达300。一3500kw·h,为总电能耗的79%一55%。因此,降低锌电解沉积的电能消耗,对降低电锌成本意义重大。从电解沉积电能消耗公式: 电能消耗(kW·h/t)~ 槽电压(V)只100 锌的电化当量(g/(A·h))x电流效率(环) 可知,锌的电化当量为一恒量,为降低电能消耗,应采取一切措施提高电流效率和降低槽电压。电流效率定义为实际产出的锌量和通过相同电量时,理论上应得的锌量比的百分数。生产中,除由于漏电和短路引起电流效率下降外,阴极上氢的析出是使电流效率下降的主要原因。因此,提高氢在阴极L的超电位,就可以提高锌电解沉积的电流效率。生产上常采用提高电流效率的措施有:提高电流密度(阴极电流密度一般为35。~600A/mZ),控制好电解液的温度(常控制在308~313K),加速电解液的循环,稳定电解液成分并合理使用添加剂。正常生产的锌电解沉积的电流效率为88%一92%。槽电压是影响锌电解沉积电能消耗的重要技术参数,降低槽电压就能相应降低电能消耗。槽电压由硫酸锌分解电压(占槽电压的75%一80%),电解液电阻电压降(占13%一17%),阴、阳极极板电阻电压降(占1%一1,3%),阳极泥电阻电压降(占5%一6写)及各接触点电阻电压降(1%一1.4%)组成。一般工厂的锌电解沉积槽电压多控制在3.3一3.4V,如电流密度和极间距过大,也可能达到3.5一3.6V。可采取降低槽电压的措施有:使接触点导电良好,定期刷洗阳极泥,保持电解液中合适的镁、锰等离子的浓度。电锌质量电锌中的主要杂质有铅、福、铜。福主要来自新液,铜则是由于电解槽槽面操作不洁净引入的,铅基合金阳极是杂质铅的主要来源。生产实践中影响电锌质量的主要杂质是铅,铅是由于阳极腐蚀进入电解液,在电解沉积过程中沉积入阴极锌中的。因此,大多数的锌电积厂都采用耐腐蚀性能好的含银0.5% 一1%的铅银合金或铅、银、钙、惚四元合金制造的阳极。由于直接生成的PbO,膜较间接生成的致密,许多工厂采用预先镀膜的阳极,以减少从阳极进入电解液中的铅量。电解液中氯离子含量增加或电解液温度升高,都会引起阳极中铅的溶解,但当电解液中Mn与Cl 的浓度比大于3~3.5时,氯的有害影响受到明显抑制。提高电流密度以提高单位时间内锌的析出量,可相应降低电锌含铅量。向进槽电解液中添加铭或钡的碳酸盐,使之与铅形成溶解度更小的类质同晶硫酸盐共沉淀,可有效地降低电锌中的铅。设备锌电解沉积系统由贮槽、电解槽、阴极板、阳极板、废液冷却塔、管道、溜槽、输送泵和供电系统等组成。电解槽是一个钢筋混凝土制成的矩形槽子,内衬软聚氯乙烯塑料或环氧玻璃钢,也有用辉绿岩制成的。用单槽供液。阳极板材料一般为含

纳米氧化锌表面修饰的研究进展

纳米氧化锌表面修饰的研究进展 刘莹1,何领号1,宋锐1,2* (1郑州轻工业学院材料与化学工程学院郑州 450003 2中国科学院研究生院化学与化学化工学院 北京 100049) 摘要本文综述了纳米ZnO表面修饰的最新进展,介绍了几种表面修饰方法,对各种方法的特点、修饰机理进行了归纳,并对修饰后的纳米氧化锌的表征进行简要介绍。 关键词纳米ZnO 表面修饰机理表征 Progress on surface-modification of ZnO nanoparticles Abstract The new development of surface-modification of ZnO nanoparticles is reviewed. The methods of surface-modification as well as their featuers and mechanisms were summarized. The methods of the characterization were also introduced. Key words nano-ZnO, surface-modification, mechanism, characterization 上世纪90年代中期,国际材料会议上提出了纳米微粒(1~100nm)表面工程的新概念。近年来,纳米微粒的表面修饰已形成一个研究领域,通过研究人们不但更深入认识纳米微粒的基本物理效应,而且也扩大了纳米微粒的应用范围。 表面修饰法(又称表面衍生法),是在无机纳米微粒的表面化学键合或者物理包覆上一层有机(或无机)化合物的方法。利用溶液中金属离子、阴离子和修饰剂的相互作用,在无机纳米层的金属离子或非金属离子表面形成表面修饰层,得到表面修饰的无机物纳米微粒。通过对纳米微粒表面的修饰,可以达到以下目的:1)改善或改变纳米粒子的分散性;2)提高微粒表面活性;3)使微粒表面产生新的物理、化学、机械性能及新的功能;4)改善纳米粒子与其它物质之间的相容性。纳米ZnO粉体的表面修饰就是通过物理方法或化学方法对粒子表面进行处理,有目的地改变微粒表面的物理化学性质。根据修饰剂与粉体表面的作用机理,可将纳米ZnO的修饰方法分为表面物理作用修饰和表面化学反应修饰两大类。 1 表面物理修饰 表面物理修饰是利用修饰剂与纳米ZnO粉体间的物理作用,如吸附、涂敷、包覆等,对其进行表面改性。常用的修饰方法有微乳液法、微胶囊法、复合法等。 1.1微乳液法 利用微乳液中的水核作为“微反应器”来制备改性纳米ZnO,能在ZnO粒子表面包覆一层表面活性剂分子,使粒子间不易团聚,从而达到对超细ZnO改性的目的。通过选择不同的表面活性剂,可对粒子表面进行修饰,并控制微粒的大小。 杨治中等[1]利用不同分子量的聚乙二醇如PEG-200、PEG-400,在特定的胶束浓度范围和介质体系中形成超分子模板, 以之作为“微反应器”,并利用PEG与无机物之间的协同作用,控制模板水核中的水 2007-01-26收稿,2007-04-09接受

湿法电解锌工艺流程选择概述

湿法电解锌工艺流程选择概述 Ko 1工艺流程选择 根据原料成份采用常规得工艺流程,技术成熟可靠,劳动环境好,有较好得经济效益,同时综合回收铜、镉、钻等伴生有价金属。工艺流程特点如下:(1)挥发窑产出得氧化锌烟尘一般含气氟、氯、碑、铮杂质,且含有较高得有机物,影响湿法炼锌工艺,所以通常氧化锌烟尘需先进多膛焙烧脱除以上杂质。 (2)氧化锌烟尘与焙砂需分别进行浸出,浸出渣采用回转窑挥发处理,所产氧化锌烟尘送多膛焙烧炉处理。 (3)氧化锌烟尘浸出液返焙砂系统,经中性浸出浓密后,上清液送净液车间处理,净液采用三段净化工艺流程。 (4)净化后液送往电解车间进行电解。产出阴极锌片经熔铸后得锌锭成品O (5)净液产出得铜镉渣与姑渣进行综合回收(或外卖)o 1.6.2 工艺流程简述 焙砂经中浸、酸浸两段浸出、浓密、过滤,得到中浸上清液及酸浸渣。酸浸渣视含银品位进行银得回收后送回转窑挥发处理得氧化锌,经脱氟、氯,然后进行单独浸出,浸液与焙砂系统得浸出液混合后送净液。回转窑渣送渣场堆存。产出得中浸上清液经三段净化,即第一段用锌粉除铜镉;第二段用锌粉与钱盐高温除姑;第三段再用锌粉除复溶得镉,以保证新液得质量,所得新液送电解。电解采用传统得电解沉积工艺,用人工剥离锌片,剥下得锌片送熔铸,产出锌锭。 采用上述工艺流程得理由:主要就是该工艺流程基建投资省,易于上马,建设周期短、见效快、效益高。这在株冶后10万吨电锌扩建、广西、云南、贵州等多家企业得实践中,已得到充分证实与肯定。

对净液工艺得选择,目前国内外湿法炼锌净液流程得发展趋势,主要就是溶液深度净化。采用先冷后热得净液流程,为保证净液质量,设置三段净化,当第二段净化质量合格时,也可以不进行第三段净化,直接送电解。该流程稳妥可靠,净化质量高,能满足生产0#锌与1#锌得新液质量要求。 作业制度,拟采用连续操作,国内西北冶、株冶等都有生产经验。与间断操作相比,可大减少设备得容积,减少设备数量,相应可减少厂房建筑面积,故可大幅度降低基建投资。 1、、3综合利用及环境保护 浸出渣可根据含银品位高低进行银得回收后再送回转窑处理,所得氧化锌经脱氟、氯后进入氧化锌浸出系统,进一步回收锌、锢等有价金属。 净液所得铜镉渣经低酸浸出后,所得铜渣可作为炼铜原料出售。 浸出液经锌粉置换,所得贫镉液含锌很高,返回锌浸出车间,所得海绵镉进一步处理后,获得最终产品镉锭出售。 净液所得姑渣,经酸洗脱锌后根据含姑品位再考虑就是否回收姑,暂时先堆存(或外卖)。 熔铸所得浮渣,其粗粒可返回熔化或作生产锌粉用。处理所得氧化锌可作为生产硫酸锌或氯化锌得原料,根据需求而定。 各湿法炼锌车间得污酸、污水,经中与沉处理后,可达到国家工业排放标准。 为合理使用电能,本设计根据国外电解工厂得经验,电流密度采用白天低(400A/ m2)夜间高(500A/ m2)得操作制度;根据比利时老山锌公司、日本得彥岛、饭岛、小鸣浜与安中等国外诸多10万吨/年以上电锌厂电解车间采用自然通风、局部强制通风与两班制剥锌得生产经验,本设计采用车间自然通风,所有可能产生酸雾得溜槽与贮槽均加盖并予以强制抽风,剥锌厂房局部強制通

相关主题
文本预览
相关文档 最新文档