当前位置:文档之家› 制动盘模态分析

制动盘模态分析

基于Hypermesh的车架结构模态分析(1)

计算机工程应用技术本栏目责任编辑:贾薇薇 基于Hypermesh的车架结构模态分析 卢立富1,岳玲1,黄雪涛2 (1.泰安东岳重工有限公司技术中心,山东泰安271000;2.中国五征集团汽车设计院,山东日照262300) 摘要:应用Hypermesh分析某中型载货汽车车架的固有频率,验证与外部激励发生共振的可能性,同时得出分析结论。 关键词:Hypermesh;车架结构;有限元 中图分类号:TP202文献标识码:A文章编号:1009-3044(2008)12-20569-02 TheModalAnalysisofMobileFrameBasedonHypermesh LULi-fu1,YUELing1,HUANGXue-tao2 (1.Tai'anDongyueHeavyIndustryCo.Ltd.TechnologyCenter,Tai'an271000,China;2.ChinaAutomotiveGroup5levyDesignInstitute,Rizhao262300) Abstract:Thispapermainlydealswiththeanalysisofthefrequenciesofmedium-sizedlorrycar,itverifiestheresponancepossibilityofthefrequencieswiththeexteriorencourageandbringsforwardtheanalysisresult. Keywords:Hypermesh;FrameStructure;FiniteElement 1概述 Altair公司研发的HyperWorks系列产品可以解决工程优化及分析问题,其中的Hypermesh软件可以完成有限元前处理任务,它可以很好的对几何模型数据完整读取,进行有限元的四面体网格和六面体网格的剖分,还有设置完备的网格检查功能,如今Hy-perwork已成为航空、航天、汽车等领域CAE应用的利器之一。 车架结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标而且反映了汽车车身的整体刚度性能,而且,应作为汽车新产品开发的强制性考核内容。实践证明,用有限元法对车架结构进行模态分析,可在设计初期对其结构刚度、固有振型等有充分认识,尽可能避免相关设计缺陷,及时修改和优化设计,使车架结构具有足够的静刚度,以保证其装配和使用的要求,同时有合理的动态特性达到控制振动与噪声的目的。使产品在设计阶段就可验证设计方案是否能满足使用要求,从而缩短设计试验周期,节省大量的试验费用,是提高产品可靠性的有效方法。 2车架有限元模型的建立 车架的Ug模型和有限元模型分别如图1和图2所示。有限元建模在前处理软件HyperMesh中进行。为了保证计算结果的正确性和经济性,在建模过程中尽量保持和原始结构一致的同时,也需要进行必要的简化。因为过于细致地描述一些非关键结构,不但增加建模难度和单元数目,还会使有限元模型的单元尺寸变化过于剧烈而影响计算精度。对于必要的简化要以符合结构主要力学特性为前提。车架结构中的小尺寸结构,如板簧吊耳、副簧限位件等,对车架的整体振型影响不大,可以忽略不计。而对于链接两个零件的铆钉,则采用刚性单元代替。 图1车架模型在UG环境下的实现图2车架结构有限元模型车架结构都采用板壳单元进行离散。单元形态以四边形单元为主,避免采用过多的三角形单元引起局部刚性过大;为了使整个车架有限元模型规模不致过大保证计算的经济性,单元尺寸控制在10~25mm。 车架板壳结构的材料参数取:弹性模量E=2.1e11pa,伯松比u=0.3,密度均取:ρ=7900kg/m3。模型规模:车架单元总数为36378个,节点总数为39064个。 3车架结构振动分析 在汽车设计领域,伴随着计算技术的迅猛发展,有限元分析在汽车数字化开发过程中获得了广泛的应用,尤其是对轿车承载式车身基本力学性能的分析,已经作为新产品开发设计中结构分析的主要内容。然而对于载货车,由于其非承载式的结构且在行驶过程中悬架系统和挠性橡胶垫较好的缓冲、吸振、吸能作用,故对其强度刚度和振动模态特性的要求要低于承载式车身,目前还没有 收稿日期:2008-03-12 569

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

基于Workbench的赛车车架模态分析

基于Workbench 的赛车车架模态分析 摘要:参照中国大学生方程式汽车大赛竞赛规则,利用SolidWorks 软件建立了车架三维模型,在Workbench 中建立车架梁单元模型,并对车架进行模态分析,求取其前阶模态频率,并利用其振型动 画,找到试验模态的最佳激励点和悬挂点,接着通过试验模态的方法对车架 进行模态测试,将试验数据与仿真结果进行对比,前五阶频率误差不超过 2Hz,结果表明,通过梁单元建立的车架模型会有较高的精 度,可以进行后续的优化设计。 关键词:赛车车架;固有频率;模态测试;模态分析车架作为赛车总成最重要的一部分,其上安装着所有的 零部件,承载着来自各个系统的载荷,车架的结构设计在汽车总体设计中显得非常重要。赛车车架承受着来自道路的各种复杂载荷,在行驶时会由于各种不同振动源激励而产生振动。由于全国方程式赛车比赛时在良好道路条件下进行的,因此路面的激励不是主要激励,发动机激励为赛车车架的主要激励源。本文采用有限元软件Workbench 对某赛车车架进行模态分析,并与实际试验数据进行对比,结果表明利用梁单元建立的车架模型具有较高的精度,可以利用此模型进行后续的优化设计。

1.发动机激励分析 发动机激励是整车最为重要的激励源,如果车架的某阶 频率与发动机激励频率接近,车架将会发生严重的振动,从 而影响赛车的平顺性及可靠性。方程式赛车采用CRF-450单缸4 冲程发动机,转速区间900-9500r/min 。发动机2 阶点火激励为最主要的激励,其频率可以表示为: 2.车架模态测试 2.1模态试验原理试验时赛车车架采用自由悬挂方式,赛车车架用四 根弹 簧绳悬挂,模拟自由约束状态。试验原理图如图1 所示,由 于赛车车架质量只有32.6kg,使用激振器不方便安装,试验 过程中容易晃动造成试验数据不准确,所以试验时使用50KN 的冲击力锤产生激励信号。6 个单向加速度传感器,用于测 量各拾振点的振动信号,DH8302 采集系统用于数据采集及 分析。加速度传感器通过磁座安装在车架钢管上。 2.2模态测试测点和激振点选择与布置方案根据赛车车架的结构特 点,对其进行模态测试时,布置 了一个激振点,57 个测点,分别测取x、y、z 三个方向的加取平均值,模态测试测点及激振点布置如图3 所示,其中红色点位测点位置。 速度信号,为提高测试结果的精度,每个测点敲击4 次,求 2.3模态试验结果

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

机械结构实验模态分析实验报告书

《机械结构实验模态分析》实验报告 开课实验室:汽车结构实验室 2019年月日 学院 姓名 成绩 课程 名称 机械结构实验模态分析 实验项目 名 称 机械结构实验模态分析 指导教师 教师评语 教师签名: 年 月 日 机械结构实验模态分析实验报告 一、实验目的和意义 模态分析技术是近年来在国内外得到迅速发展的一门新兴科学技术,广泛应用于航空、航天、机械制造、建筑、汽车等许多领域,在识别系统的动力学参数、动态优化设计、设备故障诊断等许多方面发挥了日益重要的作用。 本实验采用CCDS-1模态分析微机系统,对图1所示的框架结构进行分析。通过该实验达到如下目的: 212019 1817 16 1514 13121110 987 6 5 4 3 222120 20 202090 9090 90 90909090113 113 113 113 113 113 115 115 115 115 图1 框架结构图 详细了解CCDAS-1模态分析微机系统,并熟练掌握使用本系统的全过程,包括 了解测量点和激振点的选择。 了解模态分析实验采用的仪器,实验的连接、安装和调整。 1、 激励振时各测点力信号和响应信号的测量及利用这些测量信号求取传递函数,并分析影响传递 函数精度的因素。 2、 SSDAS-1系统由各测点识别出系统的模态参数的步骤。 3、 动画显示。 4、 灵敏度分析及含义。 通过CCDAS-1模态分析的全部过程及有关学习,能祥述实验模态的一般步骤。 通过实验和分析,大大提高综合分析能力和动手能力。

CCDAS-1系统模态分析的优缺点讨论并提出改进实验的意见。 二、测试及数据处理框图 加速度传感器 力传感器 脉冲锤 四个点由橡胶绳悬挂 1724 打印机 IBM PC 微型计算机 含AD板 CCMAS-1模态分析软件 双通道低 通滤波器 电荷放大器 电荷放大器 图2 测量及数据处理系统框图 三、实验模态分析的基本原理 对于一个机构系统,其动态特性可用系统的固有频率、阻尼和振型来描述,与模态质量和模态刚度一起通称为机械系统的模态参数。模态参数既可以用有限元的方法对结构进行简化得到,也可以通过激振实验对采集的振动数据进行处理识别得到。通过实验数据求取模态参数的方法就是实验模态分析。只要保证测试仪器的精度、实验条件和数据分析处理的精度就能获得高质量的模态参数。 一个线性系统,若在某一点j 施加激振力j F ,系统各点的振动响应为i X 1,2,...,i n =,系统任意两点的传递函数ij h 之间的关系可用矩阵表示如下: 11112122122212()... 0()...()...()...0n n j n n n nn x h h h x h h h F x h h h ωωωω?????? ???????????? =??? ??????????????? ??????M M M O M (1-1) 可记为:{}{}[]X H F = []H 称为传递函数矩阵。其中的任意元素ij h 可以通过激振实验得到 () () i ij j X h F ωω= ()i X ω,()j F ω分别表示响应i X 与激振力j F 的傅立叶变换。 测量方法是给系统施加一有限带宽频率的激振力(冲击也是一有限带宽激振力),同时测量系统的响应,将力和响应信号进行滤波,A/D 转换并离散采样,进行双通道FFT 变换,计算出激振力j F 与响应i X 之间的传递函数ij h 。 对测量的传递函数进行曲线拟和得到模态参数,一个多自由度系统曲线拟和传递函数的解析式为:* * 1 ()[]n ijk ijk ij k k k r r h S S P S P == - --∑ (1-3)

制动盘模态试验分析

制动盘模态试验分析 作者:上海汇众汽车制造有限公司陈晓鹏 模态分析技术是用于对零部件或工程结构系统进行动力学分析的现代化方法和手段,借此可以解决很多工程实际问题。对零部件进行模态分析有利于优化运动机械的整体性能。以汽车制动盘为例,制动盘的模态决定着车辆在制动过程中的部分振动、噪声性能,并对制动盘的寿命、异常磨损等产生影响,测量并确定制动盘的模态频率与振型是研究并解决车辆制动引起振动与噪声的重要手段。 本文利用LMS公司有关模态测试软件对我公司某车型前制动盘进行比较完整的模态测量后,得出了制动盘的各种模态特性;并利用测试软件对测试方法进行了简短的分析,给出了在仅仅想得到零部件固有频率的试验要求下可以简化几何模型、减少测量次数,从而达到最快得到试件固有频率的目的。 制动盘模态特性及要求 作为高速旋转部件,制动盘具有中心对称特性。对于制动盘制动摩擦面,其振型主要是沿圆周均匀分布的变形(对于矩坐标系,相同θ角的各点位相相同,沿圆周呈波浪分布)及相同r(在矩坐标系中)具有相同形变(幅值与位相均相同)的变形。当与制动系统中其他部件组合后,如果某种激励正好位于某一固有频率下,模态被激发,处于共振情形中的这种自身变形会产生强烈的振动与噪音。前一种模态发生共振的可能性更大。通常,制动盘处于本文后面所提到的0/4模态占优势,在产品设计与开发阶段要特别注意此类模态的特性。 测量与分析 利用LMS TestLab 中的MODAL IMPACT模块可对制动盘进行模态测量。用弹性绳把制动盘悬挂起来,将由试件与软绳所组成的系统振动的固有频率控制在5Hz以下,就能完全满足测试要求。 制动盘具有中心对称轴,以中心轴为Z轴,建立柱坐标系。显然,制动盘除Z轴外的其他两方向的刚度比Z轴方向的刚度要大得多,在常规频段振动主要是沿着Z轴方向发生,因此只测定Z轴方向的加速度值即可。制动盘结构相对较小,质量不大,因此在粘贴传感器

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

车架的模态分析知识讲解

车架的模态分析

Frame模型的模态分析 班级:T943-1 姓名:王子龙 学号:20090430124

Frame模型的模态分析 T943-1-24王子龙20090430124 一、模型问题描述 1、如图所示1,机架为一焊接件,材料为结构钢,在两根长纵梁的八个圆孔内表面采用Cylinder Support约束,分析结构的前6阶固有频率。 2、在短纵梁2另一侧增加一短纵梁,使其于短纵梁1对称,分析新结构的前6阶固有频率,并与 原结构对比。 短纵梁 短纵梁 图1 机架模型 二、模型分析 (一)无预紧力情况 1、导入模型:打开ANSYS Workbench,从左侧工具栏中双击Modal(ANSYS),右击A3项,右键选择 Import Gemetry→Browse,找到文件Frame.x_t点击打开,然后双击A4栏,打开Mechanical窗口。 2、施加约束:选择左侧结构树中的Modal,选择两根长纵梁的八个圆孔内表面,右键选择Insert→ Cylindrical Support,如图2所示。

图2 八圆孔内表面施加约束 3、在solution(A6)中插入Toal Deformation,点击Solve求解,求解结果如图3所示。

图3 无应力时的变形图及6阶频率 (二)有预紧力情况 1、回到Workbench界面,从左侧工具栏中的Static Structural(Ansys)拖至A4栏,如图4所示,双 击B5栏,进入Mechanical窗口。 图4 拖拽Static Stuctual(ANSYS)到A4 2、按住“shift”键,选择A5分支中Cylindrical Support,右键选择Copy,右键单击B5项,选择 Paste。 3、在Static Structual(B5)中施加载荷:选择焊接件底面insert→Force,Force=4000N,如图5所 示。

制动盘模态试验分析

制动盘模态试验分析 陈晓鹏 上海汇众汽车制造有限公司研究开发中心 上海 200122 〔摘要〕本文叙述了利用LMS TestLab模态测试软件测取某轿车制动盘的各种模态,并对其模态进行了简单的分析。探讨了利用更简单的几何模型及对部分测量点进行激励时对模态测量的影响,指出如果只要求测定固有频率而不关心具体的振型,可以采用简单的几何模型及进行部分点的测试。 关键词:制动盘 模态 试验 key words: brake disc, modal, test 1 前 言 汽车工业的发展对零部件的开发也提出了越来越高的要求。制动盘的模态决定着车辆在制动过程中的部分振动、噪声性能,并对制动盘的寿命、异常磨损等产生影响。 模态分析技术是用于对零部件或工程结构系统进行动力学分析的现代化方法和手段,借此可以解决很多工程实际问题。测量并确定制动盘的模态频率与振型是研究并解决车辆制动引起振动与噪声的重要手段。 本文利用LMS公司有关模态测试软件对某车型的前制动盘进行比较完整的模态测量后,得出了制动盘的各种模态特性;并利用测试软件对测试方法进行了简短的分析,给出了在仅仅想得到零部件的固有频率的试验要求下可以简化几何模型、减少测量次数,从而达到最快得到试件的固有频率的目的。 2 制动盘模态特性及要求 作为高速旋转部件,制动盘具有中心对称特性。对于制动盘制动摩擦面,其振型主要是沿圆周均匀分布的变形(对于矩坐标系,相同θ角的各点位相相同,沿圆周呈波浪分布)及相同 r(在矩坐标系中)具有相同形变(幅值与位相均相同)的变形。当与制动系统中其它部件组合后,如果某种激励正好位于某一固有频率下,模态被激发,处于共振情形中的这种自身变形会产生强烈的振动与噪音。前一种模态发生共振的可能性更大。通常,制动盘处于本文后面所提到的0/4模态占优势,在产品设计与开发阶段要特别注意此类模态的特性。

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

盘式制动器的发展与现状

工学院毕业设计(论文综述) 题目:普通轿车前轮盘式制动器的设计 专业:车辆工程 班级: 07车辆(4)班 姓名:徐玉林 学号: 21 指导教师:李同杰 日期: 2010年12月 盘式制动器的现状与发展趋势 车辆工程07级(4)班 学号:21 姓名:徐玉林 指导教师:李同杰 摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。本文 主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器 制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展 望。 关键词:现状发展趋势 Pro/E 盘式制动器 一、盘式制动器介绍 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。

盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。[1] 结构型式主要有点盘式和全盘式。点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。有固定卡钳式和浮动卡钳式两种。为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。制动转矩较大时,可采用多对制动缸。必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。全盘式:这种制动器结构紧凑,摩擦面积大。 现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经常处于高温状态,就会阻碍能量的转换过程,造成制动性能下降。越是跑得快的汽车,制动起来所产生的热量越大,对制动性能的影响也越大。解决好散热问题,对提高汽车的制动性能也就起了事倍功半的作用。所以,现代轿车的车轮除了使用铝合金车圈来降低运行温度外,还倾向于采用散热性能较好的盘式制动器。当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。[2] 一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳

EA888型发动机缸体模态分析

第32卷第3期 2 0 1 7年8月 青岛大学学报(工程技术版) JOURNAL OF QINGDAO UNIVERSITY (E&T) V ol. 32 No. 3 A u g.2 0 17 文章编号:1006 - 9798(2017)03 -0140 - 05; DOI:10.13306/j.1006 - 9798.2017.03.026 EA888型发动机缸体模态分析 王楠1,张洪信1,赵清海2,尹怀仙1,张铁柱2 (1.青岛大学机电工程学院,山东青岛266071; 2.青岛大学动力集成及储能系统工程技术中心,山东青岛266071) 摘要:为了避免共振并满足发动机缸体的强刚度要求,本文以E A888发动机缸体为研究对象,对 发动机缸体进行模态分析。分别利用C A T I A和有限元软件H y p e r m e s h l l. 0建立了发动机缸体 实体模型和有限元模型,然后进行网格划分及模态计算,最后利用L M S振动模态分析系统对缸体 的模态进行实验分析,并与有限元计算模态结果进行对比。分析结果表明,两者所得固有频率吻合 性较高,验证了有限元分析结果的正确性。该研究为缸体振动特性分析和结构优化奠定了基础。 关键词:发动机缸体;有限元模态分析;实验模态分析;振动特性 中图分类号:U464. 13 文献标识码:A 随着经济和社会的发展,环境问题越来越严重,汽车发动机产生的振动也受到人们的关注[1]。发动机的振动 不仅损坏机器本身,而且其发出的噪声会危害人们的健康[2]。因此,在发动机的设计阶段进行模态分析,控制 发动机缸体的振动、降低噪声成为发动机设计研究的一个重要方向[3]。高艳霞等人[4]利用A n s y s软件建立发动 机缸体的有限元模型,并进行了计算模态分析以及振动响应分析,对发动机缸体的设计以及生产有一定的指导作 用;石勇等人[5]利用有限元分析软件A B A Q U S对某柴油机缸体进行了自由模态计算分析,得到了发动机缸体的 前10阶固有频率和振型,利用D A S P系统对其进行了试验模态分析,并对有限元结果和试验模态结果进行对比,计算得到固有频率和试验值最大相差5. 7%,一定程度上验证了仿真模型的准确性。但以上研究只对比了前 10阶固有频率,而没有对比振型结果。基于此,本文以E A8888发动机缸体为研究对象,建立了发动机缸体的有 限元仿真计算模型。基于L M S振动模态分析系统的Pre- T e s t模块,以有限元模型的模态分析为基础,以各个 点的相关性最小为原则确定测点布置方案;利用L M S软件振动模态[6]分析系统进行了缸体的模态实验分析,得 到模态置信矩阵,各个点的频响函数、相干函数和稳态图等指标验证了试验模态的准确性。最后与有限元计算模 态结果对比分析,两者所得固有频率吻合性较高,验证了有限元分析结果的正确性。该研究为缸体振动特性分析 和结构优化奠定了基础。 1缸体有限元模型的建立 发动机缸体是铸造的箱类零件,形状和结构都很复杂[7]。气缸机是整个发动机的最主要的部件,它将发动机 的各个气缸和曲轴箱连接在一起,是安装曲轴、活塞以及其他零部件的支承骨架[8]。本文利用C A D法国达索公 司的C A T I A建立发动机缸体的三维实体模型。 在计算缸体结构固有振动特性时,网格划分应均勻。由于气缸体固有频率和振型与它本身质量和刚度分布 有关,气缸体不存在应力集中现象,因此采用相对较均勻的四面体网格划分,对于气缸体结构的质量和刚度矩阵 的分布元素相差不大,分析的实体固有频率和振型较准确[9]。采用S〇lid45计算实体自由模态,单元大小为4 m m,每个单元有8个节点,每个节点有三个方向自由度,适合不规则模型网格划分[1°]。该缸体由灰铸 铁铸成,设置材料相关参数为:弹性模量£=1〇〇 G P a,泊松比M=0.3,密度^0=7 OCX)k g/m3。划分后缸体节点数 为139 452,单元数为586 700。 收稿日期:2017 - 01 -03;修回日期:2017 - 04 - 20 作者筒介:王楠(1988 -),男,山东省惠民县,硕士研究生,主要研究方向为节能与新能源汽车。 通讯作者:赵清海(1985 -),男,博士,主要研究方向为车辆新型动力传动技术及其电子化。Email:zqhbit@https://www.doczj.com/doc/de17755360.html,

预应力大变形模态分析到 PSTRES 和 SSTIF 的辨异

一,前言: 在ANSYS中有两个命令可以将预应力效应激活并考虑在求解方程计算中,但是他们是有区别,最近在论坛上出现很多的帖子讨论预应力大变形模态分析,但是好象大家对以上两个命令出现一定程度的混淆,本文结合例子对以上两个命令及相关问题做以阐释。不妥之处,欢迎高手批评指正 二,例子简单介绍: 借用网友的例子进行说明,下面简单介绍以下我们分析的问题。 实际的问题是两根拉索,通过圆钢管联系在一起成以下平面形状,拉索中通过施加应变yingbian=3.51e-3考虑索中的预应力。本文将对以下结构进行静力求解和模态求解。 三,静力求解结果分析: 本文采用以下四种不同的求解方式进行求解,并对结果进行分析: SOLUTION 1 小变形求解,不激活以上两个命令,使用以下命令流: Nlgeom,off Sstif,off Pstres,off Solv SOLUTION 2-1 小变形求解,激活Pstres命令,使用以下命令流: Nlgeom,off Pstres,on solv SOLUTION 2-2 大变形求解,激活Pstres命令,使用以下命令流: Nlgeom,on Pstres,on solv SOLUTION 2-2 大变形求解,激活SSTIF,on命令,使用以下命令流: Nlgeom,on Sstif,on solv 经过求解分别得到以下计算结果:以UX变形为例 结论:通过以上结果可见,PSTRES,ON 是不适合用于大变形分析,因为该命令不会激活△U的附加刚度矩阵。 四,命令辨析: 为从根本上阐明以上问题,我们先从两个命令的说明上进行对比,区分其中的不同之处。4-1PSTRES 命令 PSTRES, Key Specifies whether *1pstress effects are calculated or included. 注1,Pstres主要为激活预应力效应,注意和SSTIF使用目的的区别 Notes Specifies whether or not prestress effects are to be calculated or included. Prestress effects are calculated in a static or transient analysis for inclusion in a buckling, modal, harmonic (Method = FULL or REDUC), transient (Method = REDUC), or substructure generation analysis. If used in SOLUTION, this command is valid only*2within the first load step.

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

车架模态分析报告

110ZH车架模态分析报告 编制: 审核: 批准: 2006年 3 月 15 日

第一章 车架模态分析 一、模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了某结构在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 由于车架的结构振动会直接引起驾驶室振动,所以分析三轮摩托车振动时,应对车架进行模态和响应分析,优化车架结构,并从工艺设计上保证乘客的安全、舒适。三轮摩托车车架是一个多自由度弹性振动系统,作用于这个系统的各种激扰力就是使摩托车产生复杂振动的动力源。引起各种激扰力的因素可概括为两类:一是摩托车行驶时路面不平度对车轮作用的随机激振;二是发动机运转时引起的简谐激振。如果这些激励力的激振频率和车架的某一固有频率相吻合时,就会产生共振,并导致在车架上某些部位产生数值很大的共振动载荷,影响乘骑的舒适性,而且往往会造成车架有被破坏的危险。因此,车架的动态设计要求车架具有一定的固有频率和振型,这样才能保证车架具有良好的动态特性。 本次分析主要针对车架进行模态分析,以期预计车架主要模态的固有频率和形状,并借以指导车架改进设计,达到优化摩托车动态性能的目的。 1、模态分析处理 本次分析采用自由边界条件下的模态分析(即不添加任何边界支撑和约束力,计算车架的自由模态。)和添加6个车架的边界条件状态下的模态分析(左右板簧4个,前轮支撑轴承处2个)。 1.1、模型材料参数 车架材料为:Q235,有限元分析过程中材料参数为: 密度 7829 kg/m^3

盘式制动器模态分析与阻尼测试

第57卷 第3期Vol. 57 No. 3 2019年3月 March 2019农业装备与车辆工程 AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING doi:10.3969/j.issn.1673-3142.2019.03.014 盘式制动器模态分析与阻尼测试 张雪刚,曾康 (200093 上海市 上海理工大学 机械工程学院) [摘要] 基于有限元理论和试验模态方法,对盘式制动器进行模态分析。通过CATIA软件建立制动盘的三 维几何模型,之后导入到有限元软件ABAQUS中进行模态分析,得到制动盘的固有频率和模态振型。利 用DASP和RTE两种设备对制动盘进行模态试验,得到制动盘的固有频率,并与有限元仿真的结果做对比。 结果表明,利用3种方法测得的固有频率相差很小,误差在允许范围内,试验结果和仿真结果可以接受。 最后,利用DASP和RTE两种设备测量制动盘的阻尼并做对比,所得的研究成果为进一步提高盘式制动 器制动性能提供了可靠试验依据。 [关键词] 盘式制动器;模态分析;固有频率;阻尼;ABAQUS;DASP;RTE [中图分类号] U463.51 [文献标识码] A [文章编号] 1673-3142(2019)03-0062-05 Modal Analysis and Damping Test of Disc Brake Zhang Xuegang, Zeng Kang (School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China) [Abstract] Based on finite element theory and experimental modal method, modal analysis of disc brakes is carried out. The 3D geometric model of the brake disc is established by CATIA software. Then, import the model into the finite element software ABAQUS for the modal analysis to obtain the natural frequency and mode shape of the brake disc. At the same time, the modal test of the brake disc is carried out by using two kinds of equipment, DASP and RTE. The natural frequency of the brake disc is obtained and compared with the result of the finite element simulation. The results show that the difference between the natural frequencies measured by the three methods is very small, the error is within the allowable range, and the experimental results and the simulation results can be accepted. After that, the damping of the brake disc is measured by using two kinds of DASP and RTE equipment, and the results obtained provide a reliable experimental basis for further improving the brake performance of disc brake. [Key words] brake disc; modal analysis; natural frequency; damping; ABAQUS; DASP; RTE 0 引言 盘式制动器具有结构简单、体积小、制动力矩大、操作维护方便等特点,是目前常用的一种安全制动装置,被广泛应用于车辆、矿井提升机、带式输送机等各个领域。制动盘在制动过程中产生制动噪声,制动噪声的频率范围较宽,通常可以分为1 kHz以内的低频噪声和1 kHz以上的高频噪声。低频噪声主要包括groan和judder,高频噪声主要包括squeal,而实际中发生较多的噪声问题是频率在1 kHz以上的高频制动尖叫声[1~2]。制动噪声长期以来一直困扰着汽车制造商,消除和限制制动噪声是一个迫切需要解决的课题。 制动噪声发生机理和影响因素比较复杂,20世纪80年代中期以来,许多学者从制动器结构设计角度研究制动尖叫的发生机理。文献[3-4]借助于有限元和模态综合技术,建立了盘式制动器制动尖叫的摩擦耦合模型,文献[4]的试验表明,制动尖叫的频率主要集中在1~10 kHz之间。文献[5]针对制动噪声,进行了盘式制动器零部件实模态分析,认为制动器各零部件动力学参数匹配不当是引起制动尖叫的主要因素,并通过建立制动器的动力学模型,从理论上对制动尖叫进行定性定量的分析。本文基于有限元理论和试验模态方法,对制动系统中的关键部件制动盘进行模态分析,以了解制动噪声的动态特性,为制动盘设计和结构优化提供一些有意义的依据。 1 模态分析基本理论 模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型,通 收稿日期: 2018-03-08 修回日期: 2018-03-16

相关主题
文本预览
相关文档 最新文档