当前位置:文档之家› 储层岩石物性及孔隙结构特征

储层岩石物性及孔隙结构特征

储层岩石物性及孔隙结构特征
储层岩石物性及孔隙结构特征

3. 储层岩石物性及孔隙结构特征

本章将重点分析柴西北区N1

2 ~N2

2

储层岩石的孔隙度、渗透率、储集空间类

型及分布、大小等反映储层孔隙结构特征的性质,区域上仍以南翼山、油泉子、尖顶山和咸水泉作为研究对象。

3.1 储层岩石物性分析

3.1.1 南翼山储层岩石物性

南翼山构造位于青海省柴达木盆地西部北区,属于西部坳陷区——茫崖凹陷南翼山背斜带上的一个三级构造。该构造为两翼基本对称的大而平缓的箱状背斜构造,两翼倾角20°左右,构造轴线近北西西向,长轴50km,短轴15km,闭合面积620km2,闭合高度820m。构造的基本模式为两断夹一隆,南翼山背斜的形成主要受控于翼北、翼南两组断层,由于该断层的控制作用,使得本区产生了一个宽缓的背斜构造,主体构造两翼基本对称。浅层(N21以上)构造隆起幅度较中深层要略小,表现为轴部地层较薄,两翼地层增厚的特征。

N21~N22时期柴西北区广泛发育较深湖、浅湖和滨湖相。南翼山地区N21时期为较深湖—浅湖沉积,该地区中部受构造古隆起的控制主要为浅湖沉积;N22时期随着湖盆沉积中心的进一步往北东方向迁移,主要沉积浅湖相。

共收集该区N22~N21储层岩石Ⅰ~Ⅵ油层组18口井钻井取心样品物性分析资料,其中孔隙度1802块、渗透率1897块,碳酸盐含量933块、氯离子含量514块。物性统计结果见表3-1。

21

从统计结果来看,南翼山油田除Ⅰ+Ⅱ油组孔隙度和渗透率稍高些,Ⅲ+Ⅳ和Ⅴ+Ⅵ油层组物性基本一致,均表现出物性总体较差,属典型中-低孔隙度、低-特低渗透率储层。图3-1是该油田统计的所有样品的孔隙度与渗透率关系图。

图3-1 南翼山N22-N21储层岩石孔渗关系

由图3-1可以看出,该区孔渗分布存在明显的两个区域(图中大圈和小圈),小圈内的孔渗稍高些,是浅部Ⅰ+Ⅱ油层组岩石的孔渗分布,孔隙度一般大于25%,而深透率一般在10mD左右。而大圈内是Ⅲ+Ⅳ和Ⅴ+Ⅵ油层组岩石的孔渗分布,孔隙度一般在5%-20%之间,渗透率在0.01mD-10mD之间。

由于南翼山浅部Ⅰ+Ⅱ油层组埋深浅,岩石受压实作用较弱,岩性以泥质粉砂岩、粉砂质泥岩为主,部分保留了原生粒间孔隙,因此储层物性相对较好,但其岩石成岩性极差,泥质含量高,岩石固结疏松,因此给开采带来很大的难度。下部的Ⅲ+Ⅳ和Ⅴ+Ⅵ储层岩石其成岩性明显好于上部Ⅰ+Ⅱ油层组,岩石胶结较致密,岩性以含灰泥岩以及灰质泥岩为主,水平纹层发育,另有部分砾屑、砂屑、生屑、球粒支撑的颗粒灰岩及含藻屑泥灰岩(风暴岩)。此类岩石其原生粒间孔隙几乎全部损失,除仍保存大量微孔隙外,有效储集和渗流空间仅为溶蚀孔隙和微裂缝,而且孔隙和微裂缝内往往被方解石充填,因此物性较差。

另外,在进行孔渗测量的同时,部分样品同时还测定了碳酸盐含量及氯离子含量。通过分析,各油层组碳酸盐含量随深度有增加趋势,而氯离子含量有减少趋势,但变化不明显。各油层组碳酸盐含量平均不到40%,仅有部分样品超过50%。

碳酸盐含量与孔隙度、渗透率关系不明显。而碳酸盐含量与氯离子含量具有较明显的相关性,氯离子含量减少,碳酸盐含量增加,说明盐度高的水不利于碳酸盐沉积,而淡水中碳酸盐沉积增加。见图3-2和图3-3。

图3-2 南翼山N

22-N

2

1储层岩石碳酸盐含量与孔隙度关系

图3-3 南翼山N

22-N

2

1储层岩石碳酸盐含量与氯离子含量关系

3.1.2 油泉子、尖顶山、咸水泉储层岩石物性

油泉子构造位于柴达木盆地西部坳陷区茫崖坳陷亚区,是油泉子—开特米里克背斜带上的一个三级构造。该构造地下浅部形态与地面构造形态相似,为一北

陡南缓顶部宽平的半箱状构造。构造长47km,宽25km,面积1000km2,长轴方向110°,闭合面积228km2,闭合高度为2000m。

尖顶山油田位于柴达木盆地西部坳陷区大风山隆起亚区尖顶山背斜带,为一穹隆状背斜。构造长轴18km,短轴7.8Km,构造闭合面积38Km2,闭合高度520m。构造上下符合,有南北两个高点,北高点为主高点。

咸水泉构造位于柴达木盆地西部北区,区域构造为西部坳陷区茫崖凹陷亚区,属红沟子-干柴沟断鼻构造带上的一个三级构造。咸水泉构造由三个高点组成,由北到南分别为石油沟、华岩山和咸水泉高点。

共收集以上三个构造N22~N21储层岩石14口井钻井取心样品物性分析资料,其中油泉子地区包括油8、油15井、油109井、油112井、油116井和Q13-13井,尖顶山地区主要包括尖101井、尖102井和浅80井,咸水泉地区主要包括咸19井、咸20井、咸21井、咸心1和咸东1井,各构造统计物性资料见表3-2。

表3-2 油泉子、尖顶山、咸水泉N2221储层岩石物性参数统计表

由表可知,在统计的上述三个构造的物性分析数据中,除尖顶山外,油泉子和咸水泉储层岩石也属于中-低孔隙度、低-特低渗透率级别,而尖顶山物性相对较好。

尖顶山共统计3口井(尖101、尖102、浅80),其中尖101和尖102为2007年新钻井,此两口共分析孔隙度105块,其值介于4.9%-33.2%之间,平均20.3%;渗透率分析103块,介于0.01-31.2mD之间,平均2.8 mD,也属于中-低孔隙度、低-特低渗透率级别。浅80井为1967年钻井,共分析孔隙度107块,其值在16.7%-34.6%之间,平均26.8%;分析渗透率103块,其值介于0.1-809.4 mD之间,平均66.1mD。由于该井孔渗较高,因此在统计表中表现出尖顶山物性相对较好。

在统计的碳酸盐含量分析中,与南翼山类似,其平均含量也不到50%,仅有部分样品的碳酸盐含量大于50%,且碳酸盐含量的高低基本与物性无关(图3-4)。

图3-4 油泉子N

22-N

2

1储层岩石碳酸盐含量与氯离子含量关系

3.2 孔隙结构特征分析

在第二章中已对柴西北区N22~N21储层岩石的孔隙类型通过铸体薄片的镜下观察进行了大量分析,在此主要通过压汞资料对孔隙结构进行分析。

3.2.1 南翼山储层岩石孔隙结构特征

收集南翼山Ⅰ~Ⅵ油层组岩心压汞195块,考虑到分析样品的代表性,在此仅选取渗透率大于0.1mD、孔隙度大于5%、且进汞饱和度大于50%的压汞样品进行分析。

南翼山Ⅰ+Ⅱ油层组压汞样品较少,选取南浅607井(9块)、南浅617井(4块)、南浅233井(6块)和南浅733井(4块)共21块压汞样品,此31块样品的毛管力曲线见图3-5。

南翼山Ⅲ+Ⅳ油层组压汞样品较多,选取南浅3-3井、南浅5-5井、南浅11-11和南浅21-13井共计72块压汞样品,此72块样品的毛管力曲线见图3-6。

南翼山Ⅴ+Ⅵ油层组压汞样品较多,选取南浅3-09井、南102井和南105井共计102块压汞样品,此102块样品的毛管力曲线见图3-7。

图3-5 南翼山Ⅰ+Ⅱ油层组21块毛管力曲线

图3-6 南翼山Ⅲ+Ⅳ油层组72块毛管力曲线

图3-7 南翼山Ⅴ+Ⅵ油层组102块毛管力曲线

通过图3-5~图3-7以及表3-3可以看出,南翼山N22~N21储层岩石的毛管力曲线以及孔隙结构特征参数与常规砂岩储层是不同的。该区毛管力曲线总体上表现出较为明显的两部分,即右边的OA斜线段和左边的AB斜线(曲线)段。OA 线段对应的是低毛管压力下的大孔隙,所占全部孔隙空间的约10%左右;AB斜线段对应的高毛管力压力下的细孔喉,约占全部孔隙空间的90%。OA段为一较为竖直的近似倾斜直线,而AB段为一较为水平的近似一光滑曲线,A点可以看作是毛管力曲线上的一个较为明显的拐点。

为了更好地说明该区毛管力特征曲线,以南浅3-09井一块样品毛管力曲线加以说明,见图3-8,与该图对应的孔喉半径分布直方图见图3-9。

图3-8 南浅3-09井典型毛管力曲线

图3-9 南浅3-09井典型毛管力曲线

图3-8中O点为初始毛管力压力下对应汞饱和度为零的点,随着压力增高,汞开始进入岩石孔隙内,压力升至A点时,毛管压力24.81 MPa,进汞饱和度为18%;随后进一步增加压力,此时毛管力曲线改变了原有的趋势,几乎水平方向延伸至B点,即最大压力点(110.28MPa),对应的最大汞饱和度为81.4%。OA 段对应的岩石孔隙虽然仅为18%,孔喉半径却较大,主要分布在17.78~0.10μm 之间,平均 2.712μm。这类孔隙一般对应的是溶蚀粒间孔和微裂缝,虽然数量不多,但对油气在储层中流通贡献很大。而AB段对应的孔隙几乎占据了80%以上岩石孔隙空间,但孔隙半径却极小,主要分布在0.01μm~0.02μm之间,这

类孔隙一般为微孔隙,即使数量较多,但流体几乎在其内无法流动,对渗透率的贡献几乎为零。图3-10是此块样品对应的铸体薄片图像,照片中显示数条微裂缝。

图3-10 南浅3-09 1548.70米。2#,单偏光,x100,灰质泥岩

顺层微裂缝发育,部分沸石充填

通常情况下,按照一般的砂岩毛管力曲线形态,拐点A点对应的压力即为排驱压力(或沿AB线段作一切线交与压力轴对应的压力),由此求出排驱压力为24.8 MPa,此压力对应的最大连通孔喉半径即为0.03μm。此块样品的渗透率为2.2 mD,如果最大孔喉半径仅为0.03μm,显然是与实际不符的。与常规砂岩的粒间孔隙结构分析不同,对于微裂缝或溶蚀孔隙较为发育的岩石,应按照不同孔隙大小对岩石渗透率贡献值,求出主要孔喉流动半径大小来分析孔隙结构。具体做法如下:

P.C.Carman和J.Kozeny给出了岩石喉道大小与渗透率之间的关系式为:K=Φr2/(8τ2)

式中:K-岩石绝对渗透率(统称为岩石渗透率), μm 2;

r-岩石平均喉道半径,μm,压汞实验时,r=0.735/Pc。

Φ-岩石孔隙度(单位:小数);

Pc-毛管压力,即压汞分析中进汞压力,MPa;

τ-岩石孔隙曲迂度,表示岩石孔喉弯曲程度的物理量,一般大于1,

此值越大说明孔道弯曲程度越大。

基于Carman-Kozeny公式,可计算每一喉道半径(r i)的岩石渗透率(K i),即K i=Φr i2/(8τ2)×△S i。

那么该岩石的渗透率K=∑[Φr i2/(8τ2)],每一块样品来说,趋于度τ可看作一个不变的常数,因此,每一喉道半径r i下的渗透率贡献值(K贡献i)为:K贡献i=K i/K×△Si=r i2/∑(r i2×△Si)。

式中:△Si-进汞毛管力曲线上的汞饱和度增量,即汞梯度,%;

K贡献i-每一喉道半径r i下的渗透率贡献值,%;

对于任一样品的毛管力曲线上,从初始汞饱和度零点起即可计算每一孔喉下的渗透率贡献值,然后进行累计,直到最大进汞饱和度累计渗透率贡献达100%,由此可求出岩石的主要孔喉半径。一般认为当渗透率贡献达到95%时对应的孔喉半径为主要孔喉流动半径,由于柴西北区渗透率普遍较差,如果按此计算主要孔喉流动半径仍存在一定矛盾。

由于该区毛管力普遍存在一个较为明显的拐点,从毛管力曲线的初始部分即从零点至拐点处的曲线一般反映了微裂缝和较大溶孔的特征,这部分孔隙应是主要的储集空间组成,对岩石渗透率贡献较大。而自拐点至最大进汞饱和度处的曲线基本反映了微孔隙的特征,这部分孔隙对岩石渗透率的共献相对较小。因此,在计算主要孔喉流动半径时,首先从零点汞饱和度(O)开始计算至拐点(A)所对应的渗透率贡献,求出该部分的平均孔喉半径。如果此时累计渗透率贡献已达95%,那么即可认为此时求出的平均孔喉半径即为主要流动孔喉半径。如果累计渗透率贡献不足95%,或某些毛管力曲线不存在拐点,则按照累计渗透率贡献达到95%时求出相应的主要流动孔喉半径。

表3-3是南浅3-09井一块样品的计算实例。自起始点O(即序号1)计算孔喉半径及相应的累计渗透率贡献,至拐点A处(序号16)对应的孔喉半径为0.0296μm。按加权平均方法求出OA段(序号1至16)的平均孔喉半径为2.712μm,此时累计渗透率贡献已达99.9964%,已超出95%。尽管此时汞饱和度仅为18.0%,而剩余的82%储集空间对渗透率已基本没有什么贡献,因此计算到拐点处的平均孔喉半径足可以代表岩石的主要孔喉流动半径。

对于某些拐点不明显的毛管力曲线仍需计算到累计渗透率贡献超过95%。一般具有明显拐点的岩石样品,基本反映了两种不同的孔隙类型,即双重孔隙介质

储集空间(裂缝和孔隙),而对于没有拐点或拐点不明显的岩石样品,基本反映了一种孔隙类型,一般为孔隙型储集空间。

表3-3 南浅3-09井一块样品主要流动孔喉半径计算实例

根据上述方法,对选取的南翼山195块压汞样品进行了孔隙结构参数计算,见表3-3。

尽管按照传统方法计算的排驱压力难以有效分析该区岩石孔隙结构特征,但难以找到较好的方法,因此排驱压力仍然按通常的方法求取。求取的排驱压力普遍很高,平均为14.78 MPa。与通常的砂岩样品不同,该区的排驱压力与岩石渗透率之间几乎不存在任何相关性。见图3-11。

按照累计渗透率贡献超过95%计算出主要流动孔喉半径,南翼山Ⅰ+Ⅱ、Ⅲ+Ⅳ、Ⅴ+Ⅵ油层组分别为2.560μm、2.348μm、3.092μm,总平均为2.760μm。此外,还求出了对应的主要储集空间所占全部孔隙空间的百分数,三个油层组自

上而下分别为23.8%、13.8%、17.5%,总平均为16.8%。主要流动孔喉半径与渗透率之间存在明显的相关性。见图3-12。

表3-3 南翼山N22~N21储层岩石孔隙结构特征参数

图3-11 南翼山N22-N21储层岩石渗透率与排驱压力关系

图3-12 南翼山N22-N21储层岩石渗透率与主要孔喉半径关系

由于该区储层岩石中存在大量的微孔隙,约占整个孔隙空间的80%以上,因此按照通常的加权平均方法,不考虑储集空间的孔隙类型,求出整块岩石的平均孔喉半径则要小的多。三个油层组自上而下分别为0.277μm 、0.247μm 、0.356μm ,总平均为0.307μm 。尽管按照此方法求得的平均孔喉半径与渗透率之间也存在较好的相关性(见图3-13),但难以合理解释储层岩石的孔隙结构,因为求出的孔喉半径太小,无法说明储层储集空间的有效性。

图3-12 南翼山N22-N21储层岩石渗透率与平均孔喉半径关系

对统计的195块压汞资料,发现退汞效率与孔隙度之间存在较好相关性,孔隙度越高,退汞效率也大。见图3-13。

图3-13 南翼山N22-N21储层岩石退汞效率与孔隙度关系

3.2.2 油泉子、尖顶山、咸水泉岩石孔隙结构特征分析

收集油泉子、尖顶山、咸水泉地区N22~N21储层岩石压汞69块,该区压汞样品分析数量相对较少,油泉子地区40块,其中油15井20块、油112井20块;尖顶山地区15块,其中尖101井6块、尖102井9块;咸水泉地区14块,其中咸21井1块、咸19井2块、咸东1井11块。三个地区的压汞毛管力曲线见图3-14~图3-16。

由图中毛管力曲线可以看出,上述三个地区的毛管力曲线与南翼山地区类似,有相当一部分样品为两部分组成,存在一个较为明显的拐点,但也有相当一部分样品拐点不明显,说明储层岩石既有裂缝+空隙的双重孔隙介质,也有单一孔隙型储集空间。

图3-14 油泉子N

22~N

2

1储层岩石压汞毛管力曲线

图3-15 尖顶山N

22~N

2

1储层岩石压汞毛管力曲线

图3-16 咸水泉N

22~N

2

1储层岩石压汞毛管力曲线

根据压汞曲线计算的反映储层微观孔隙结构的参数列于表3-4中。与南翼山类似,油泉子、尖顶山、咸水泉三个地区的储层岩石的排驱压力仍然较高,分别为5.672MPa、3.893MPa、5.277MPa,总平均为5.205MPa。按照加权平均法求出的平均孔喉半径分别为0.337μm、0.4127μm、0.189μm,总平均为0.323μm。

21

按照累计渗透率贡献求出的主要流动孔喉半径分别为2.618μm、3.545μm、1.665μm,总平均为2.626μm。该区岩石渗透率与主要流动孔喉半径也存在一定相关性,见图3-17。而主要储集空间占全部储集空间的百分比分别为22.9%、20.7%、15.6%,总平均为20.9%。由此可以看出,油泉子、尖顶山、咸水泉三个地区的有效储集空间仍然较少,80%的孔隙空间为微孔隙,对地下油水流体的渗流基本没有贡献,尽管该区孔隙可能达到中孔隙度水平,但多数由微孔隙组成,而对地下流体提供渗流通道的孔隙主要为微裂缝、粒间孔、溶蚀孔,但数量不多。油气储层保护中应主要保护此类储集空间不再受到伤害损失,尤其是微裂缝储集空间要比孔隙性储集空间易发生堵塞伤害,因为裂缝的数量相对较少,一旦堵塞,地下流体将无法像在孔隙型储层那样可以绕过堵塞区域,因此裂缝型储层更加敏感。

图3-18是该区岩石孔隙度与退汞效率之间的关系,与南翼山地区一样,孔隙度与退汞效率之间也存在较好相关性,孔隙度高,退汞效率也相对较高。

图3-17 油泉子、尖顶山、咸水泉N22-N21储层岩石渗透率与主要孔喉半径关系

图3-18 油泉子、尖顶山、咸水泉N22-N21储层岩石孔隙度与退汞效率关系

3.3 储层微观非均质性分析

由于研究区域内储存岩石孔隙类型多样,既有陆源碎屑颗粒组成的粒间孔隙,也有碳酸盐矿物、生物藻屑溶蚀形成的溶蚀孔隙,还存在大量的微裂缝等,因此存在一定的储层微观非均质性。另外,该区岩石主要为水平微细层理发育的泥灰岩和具有藻屑、粒屑等具有扰动构造的灰泥岩(风暴岩类),这两类岩石储

层物性均较低,但在水平方向和垂向上两者渗透率的变化情况是各不相同的,水平纹层发育的泥灰岩,水平及垂向渗透性的变化相差很大,而风暴岩类两个方向上的渗透率相差很小。这里主要讨论储层岩石的微观孔隙结构非均质性和渗透性的水平及垂向上的变化情况。

3.3.1 储层孔隙结构微观非均质性

柴西北区N22~N21储层岩石孔隙类型大多具有微裂缝和孔隙双重孔隙介质。微裂缝主要为层间缝和构造缝,且许多裂缝发生了充填或溶蚀作用。在孔隙空间中,包括粒间孔隙、溶蚀孔隙(粒间溶孔、粒内溶孔、晶间溶孔),还有大量的泥质杂基内微孔隙和晶间微孔隙等。压汞毛管力曲线多具有明显的两条线段,存在明显一个拐点,说明储集空间类型的明显不同。薄片镜下鉴定和扫描电镜也观察到了复杂多样的孔隙类型。

为研究该区储层孔隙结构的非均质性,在进行上述分析的同时,还选取柴西北区部分岩石样品进行核磁共振分析,通过核磁共振来反映储层微观孔隙结构特征。

核磁共振通过测量岩石孔隙内流体的T2弛豫时间谱图即可获得岩石孔隙结构特征的信息。T2谱实际上代表了岩石内的孔隙半径的分布情况。图3-19给出了不同岩性典型的T2谱图。不同大小孔隙中的流体具有不同的弛豫时间,因此弛豫时间T2谱在油层物理上的含义为岩石中不同大小的孔隙占总孔隙的比例。每一块含有油水流体的岩石通过核磁分析即可得到一个T2谱,根据此块样品的T2谱,即可获得表述该岩石样品的孔隙分布状况。

对于一般砂岩来说,孔隙类型主要为原生粒间孔隙,孔隙类型单一,因此在T2谱图中主要表现为图中(a)形式,一般有两个相连的峰,右边的峰反映较大孔隙,左边的峰反映较小孔隙,但两峰几乎连在一起。泥岩样品的孔隙空间大多为微孔隙组成,因此一般仅有一个峰,峰值对应的T2时间很短(图中b)。而对于砾岩或带有裂缝、溶洞的灰岩,由于孔隙类型复杂,因此在T2谱图中表现出两个或三个以上的峰,且各峰之间几乎不再像砂岩那样联系紧密。

图3-19 不同岩性典型的T2谱图

选取南翼山南浅607井20块样品和油泉子油15井6块样品进行了核磁共振分析,两口井的核磁T2谱图见图3-20和图3-2。核磁分析的同时,可以获得孔隙度、渗透率、可动流体百分数等参数,虽然这些参数与岩心常规分析存在一定的误差,但仍能反映储层的优劣。具体分析数据见表3-6。

核磁分析表明,两口井的核磁T2谱图均有两个几乎不相连的大峰和小峰组成,大峰的T2值低,一般在20ms以内,这部分反映的即是微孔隙系统,而小峰的T2时间一般在100ms以上,反映的则是由溶蚀孔隙或微孔隙组成的孔隙系统。两组峰几乎不相连,说明反映的两种孔隙类型截然不同。

由表3-5可也看出,26块样品测得的孔隙度平均为21.7%,而测得的核磁渗透率平均则为0.504mD,可动流体饱和度为10.66%。这也说明了该区储层岩石孔隙度相对较高,而渗透率很低,岩石内的流体大多是不可动的束缚流体,仅有约10%储集空间内的流体是可以流动的,相应的储集空间为有效孔隙空间。

图3-20 南翼山南浅607井6块样品核磁分析T2谱图

图3-21 油泉子油15井20块样品核磁T2谱图

3.3.2 储层岩石渗透率各项异性

储层岩石渗透率各项异性分析主要是了解储层纵、横向上的岩石微观非均质性质,如果差异很大,则对油田开发有较大的影响。通常情况下,一般弱水流或静水沉积如湖相沉积的岩石,往往发育水平层理,渗透率各项异性较强,即岩石的水平渗透率远远大于垂向渗透率。而对于水流较强的沉积尤其是风暴浪作用下的沉积,水平层理不发育,岩石颗粒混杂排列,其水平渗透率与垂向渗透率差异相对较小。

第二章岩石中的孔隙与水分

第二章岩石中的空隙与水分 一、名词解释 1.岩石的透水性:岩石允许水透过的能力。 2.孔隙:松散岩石中,颗粒或颗粒集合体之间的空隙。 3.孔隙度:松散岩石中,某一体积岩石中孔隙所占的体积。 4.裂隙:各种应力作用下,岩石破裂变形产生的空隙。 5.裂隙率:裂隙体积与包括裂隙在内的岩石体积的比值。 6.岩溶率:溶穴的体积与包括溶穴在内的岩石体积的比值。 7.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。 8.给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积。 9.重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。 10.毛细水:受毛细力作用保持在岩石空隙中的水。 11.支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。 12.悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。 13.容水度:岩石完全饱水时所能容纳的最大的水体积与岩石总体积的比值。 14.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。 15.持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。 二、填空 1.岩石空隙是地下水储存场所和运动通道。空隙的多少、大小、形状、连通情况和分布规律,对地下水的分步和运动具有重要影响。 2.岩石空隙可分为松散岩石中的孔隙、坚硬岩石中的裂隙、和可溶岩石中的溶穴。3.孔隙度的大小主要取决于分选程度及颗粒排列情况,另外颗粒形状及胶结充填情况也影响孔隙度。 4.松散岩层中,决定透水性好坏的主要因素是孔隙大小;只有在孔隙大小达到一定程度,

微观孔隙结构类型划分及特点

第二章微观孔隙结构类型划分及特点 2.1 微观孔隙结构类型的研究方法 随着油田开采技术的发张,从一开始单纯依靠天然能量驱油逐渐发展到用注水注气疯方法开采石油,于是开始出现了多相渗流,贝克莱—勒弗莱脱关于水驱油非活塞式驱替理论的提出,奠定了多相渗流的基础,拟压力方法的引入使油气两相渗流得到了有效的解决。 油气储集层是油气储集的场所和油气云翳的通道。它有着极其复杂的内部空间结构和不规则的外部集合形状,它是渗流的前提条件,所以必须对其进行了解。按其成因可分为:原生孔隙、次生孔隙、混合空隙。 (1)原生孔隙 指原始沉积物固有的空隙,如(陆源碎屑)粒间孔、(陆源碎屑)粒内孔等。原生粒间孔经机械压实作用改造后变小,习惯上称之为原生缩小粒间孔,此类孔隙在本区不甚发育(图2-5, 图2-6)。 图2-5少量原生缩小粒间孔;单偏光10×10 Fig. 2-5 Fine-grained arkose lithic sandstone 图2-6少量原生粒间孔;单偏光:10×10 Fig. 2-6 Fine-grained arkose lithic sandstone (2)次生孔隙 经次生作用(如淋滤、溶解、交代、重结晶等成岩作用)所形成的空隙称为次生孔隙。构成本区砂岩主要储集空间的次生孔隙由溶解成岩作用形成。主要包括粒内溶孔、铸模孔隙和胶结物内溶孔。

图 2-7长石粒内溶孔;单偏光10×10 Fig. 2-7 Arcosic intergranular dissolved pore, plainlight 10×10 图2-8岩屑粒内溶孔;单偏光10×10 Fig. 2-8Lithic intergranular dissolved pore, plainlight 10×10 粒内溶孔见于易溶的陆源长石颗粒、岩屑和内源介形虫骨壳。其中长石粒内溶孔常依长石颗粒的解理缝、双晶缝、裂隙外延伸展(图2-7)。陆源岩屑遭受部分溶蚀后形成岩屑粒内溶孔,粒内见有难溶组分(图2-8)。本区还可见介形虫化石,体腔内先期充填的碳酸盐胶结物后来发生溶解,形成溶蚀孔隙。特征是介形虫壳体基本完整,体内见有残余的碳酸盐矿物(图2-9)。 图2-9 介形虫体腔内溶孔;单偏光10×10 Fig. 2-9 Within mussel-shrimp dissolved porem plainlight 10×10 图2-10长石铸模孔隙., 单偏光10×20 Fig. 2-10 Arcosic matrix pore, plainlight 10×20 溶解作用强烈可使陆源碎屑、内源颗粒(如生物介壳、鲕粒等)被全部溶解掉,若该颗粒外形轮廓、解理缝、岩石结构等自身特征尚可辨识时,称此种空隙为铸模孔隙。本区的铸模孔隙有长石铸模孔隙和岩屑铸模孔隙,前者发育(图2-10)。

储层岩石力学概述

储层岩石力学概述 发表时间:2019-09-11T14:30:47.063Z 来源:《基层建设》2019年第11期作者:王祥程 [导读] 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。 成都理工大学能源学院 610059 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。深入了解研究岩石力学的性质和相关参数对于工程上的开发具有十分重要的作用。 关键词:岩石力学;石油工程;研究方法 1. 岩石力学的概述 岩石包括组成岩石的固体骨架、孔隙、裂缝以及其中的流体,因此岩石力学往往会应用到弹性力学、塑性力学、流体力学、渗流力学等力学学科的诸多理论方法。岩石的性质几乎牵涉到所有力学分支,岩石力学的研究是各种力学理论的综合运用。不同岩石力学问题的研究,可能包括瞬时变形运动,也可能包含与地质演化时间相关的长期变形运动。 岩石力学是力学的一部分。岩石材料赋存于地下,其力学性质难于直接测试和观察,而若将其取至地面进行测试则岩石的力学性质往往发生了较大的变化,加之岩石中的流体存在于裂隙或孔隙之中,与岩石骨架相互作用,使岩石的受力情况更加复杂。 2.岩石力学的研究方法 岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。岩石具有特殊的固体介质力学特性,这个特殊的力学性质与它所处的环境有关,如天然岩石所处应力状态一般称为岩石的初始应力状态。在岩石受到工程活动扰动后,岩体的应力出现了变化,这时岩石所处的应力状态称为次生应力状态。此时将岩石力学和工程地质相结合进行研究是十分重要和必要的。对于节理岩体,特别需要了解岩体结构面的分布、网络特性、岩体结构类型,才能进行岩体的数值模拟和分析。 一般而言,岩石力学的研究方法可分为如下四大类: (1)地质研究方法:对岩体进行地质方面的研究始终是岩石力学研究的基础,在整个岩石工程过程中,地质性质的研究应当列在第一位。①岩石岩相、盐层特征的研究,如软弱岩体的成分、可溶盐类、含水蚀变矿物、不抗风化岩体成分以及原生结构。②岩体结构的地质特性研究,如断续结构面的几何特征、岩体力学特征、软弱面的充填物及地质特性。③赋存地质环境的研究,如地应力的成因、地下水分布与化学特征以及地质构造对环境的影响。 (2)物理力学研究方法:①岩体结构的探测,应用地球物理化学方法和技术来探查各种结构面的力学特征和化学特征。②地质环境的物理性质分析与测量,如地应力的形成机制及分布、地质环境中热力与水力存在的性状、水化学的分布特征,应用大规模地质构造层析技术、地质雷达探测技术确定岩体构造。③岩体物理力学性质的测定,如岩块力学特性的室内试验、原位岩体的力学性质测试、钻孔测试、工程变形监测、位移反分析等。主要运用的手段是基于震动的动态测试,如超声波测试、地震波测试、电磁波测试、计算机层析方法(CT)测试。这些测试利用岩体的波动特性,来研究岩体的力学特性。 (3)数学力学分析方法:岩石力学的研究,除了以上地质方法、物理力学方法的研究外,还要进行数学力学方法研究,从而构成岩石力学的理论基础,包括:①岩石本构关系的研究-对岩石进行宏观到细观甚至微观的力学特性研究。②数值分析方法。由于计算机计算性能的发展,岩石力学的数值分析方法得到了大力发展。在数值分析方法方面,由岩体连续力学发展到非连续力学,出现了离散元法(DEN)和不连续变形分析法(DDA)、流形法(BEM)、无单元法(EFM)和快速拉格朗日法(FLAC)。③多元统计和随机分析。这两种方法可以深人地研究因岩体介质的随机分布特性而造成传统方法难以解决的问题。④物理和数值模拟仿真分析。 (4)整体综合分析法:就整个工程进行多种分析的方法,并以系统工程为基础的综合分析。 3.石油工程岩石力学研究对象及特点 石油工程岩石力学所研究的,所涉及的地层深度大多在8000m范围内,研究对象主要是沉积岩层,岩石处于较高的围压、温度和孔院压力作用下其性质已完全不同于浅部地层,它可能经过脆-塑性转变成塑性,也可能由于高孔院压力的作用呈现脆性破坏。 (1)石油工程岩石力学所涉及的围压可达200MPa。非均匀的原地应力场形成了地层之间的围压,若垂向应力源于地层自重,那么应力梯度平均为0.023MPa/m,多数地区最大水平应力往往大于垂向应力,且两个水平地应力梯度的比值通常达到1.4~1.5以上。在山前构造带地区,不但地应力梯度高,最大和最小水平地应力的比值也很大。因此在研究地应力分布规律(包括数值大小及主方向)时,主要依靠水力压裂、岩石剩磁分析、地震和构造资料反演、测井资料解释等间接方法。 (2)石油工程岩石力学所涉及的温度可达250℃。一般的地温梯度是3℃/100m,高的可超过4℃/100m,具体的地温梯度往往需要实际测定。当温度超过150℃后,温度对岩石性质的影响将变得十分明显。 (3)石油工程岩石力学中所涉及到的孔隙和裂隙中的高压流体的孔隙压力可高达200MPa.一般情况下,常规的静水孔隙压力梯度为 0.00981MPa/m,但是异常高压可超过0.02MPa/m。 4.结束语 岩石力学是一门十分重要的,它涉及到了工程领域的各个行业。因此,正确理解学习岩石力学的理论知识以及探究其影响等具有十分重要的意义。 参考文献 [1]王路,徐亮,王瑞琮.岩石力学在石油工程中的应用[J].石化技术,2017, 24(3):157-157. [2]陈勉.我国深层岩石力学研究及在石油工程中的应用[J].岩石力学与工程学报,2003,23(14):2455-2462. [3]杨永明,鞠杨,刘红彬,etal.孔隙结构特征及其对岩石力学性能的影响[J].岩石力学与工程学报,2009,28(10):2031-2038. [4]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888. [5]陈德光,田军,王治中,etal.钻井岩石力学特性预测及应用系统的开发[J].石油钻采工艺,1995,17(5):012-16. [6]王大勋,刘洪,韩松,etal.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006,29(3):6-10. [7]阎铁.深部井眼岩石力学分析及应用[D].2001. [8]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888.

(1++)火山岩气藏微观孔隙结构特征参数

第28卷增 刊 辽宁工程技术大学学报(自然科学版) 2009年4月 V ol.28 Suppl Journal of Liaoning Technical University (Natural Science ) Apr. 2009 收稿日期:2008-11-20 作者简介:杨正明 (1969-),男,河北 廊坊人 ,博士,高级工程师,主要从事渗流力学方面研究。 本文编校:杨瑞华 文章编号:1008-0562(2009)增刊Ⅰ-0286-04 火山岩气藏微观孔隙结构特征参数 杨正明1,2,郭和坤1,姜汉桥2,刘 莉1,张玉娟1 (1.中国科学院 渗流流体力学研究所,河北 廊坊 065007; 2.中国石油大学 石油工程学院,北京 102249) 摘 要:针对火山岩气藏已成为中国石油重要的天然气勘探和开发的主要领域之一,利用恒速压汞技术研究了大庆徐深火山岩气藏岩芯的微观孔隙结构及其分布规律。研究表明:不同渗透率的低渗气藏岩心,其孔道半径基本相同,而喉道半径不同,对于所测得的不同渗透率的火山岩气藏岩芯来说,大约60%的喉道半径小于0.8μm 。这与低渗透砂岩油藏岩芯的恒速压汞测试结果不同。平均喉道半径与渗透率有很好的相关关系。提出用平均喉道半径作为低渗气藏储层评价指标参数,来表征气体通过储层的难易程度。该研究成果对低渗气藏的分类评价和合理高效开发提供科学的决策依据 关键词:火山岩气藏;孔隙结构;储层评价;参数;气田开发 中图分类号: 文献标识码:A Characteristic parameters of microcosmic pore configuration in volcanic gas reservoir YANG Zhengming 1,2,GUO Hekun 1,JIANG Hanqiao 2,LIU Li 1,ZHANG Yujuan 1 (1.Institute of Porous Flow & Fluid Mechanics,Chinese Academy of Sciences, Langfang 065007,China ; 2.College of Petroleum Engineering,China University of Petroleum,Beijing 102249,China ) Abstract :The volcanic gas reservoir has become one of the main fields of gas prospecting and development in China. The volcanic gas reservoir exceeds 3,000 billion m3.It is discovered in Songliao Basin, Zhunger Basin and Bohai Bay Basin recently, and is the point of recent prospecting and development. This paper studied the microcosmic pore configuration and distribution of Xushen volcanic gas reservoir by using constant rate mercury penetration technology. The research indicates pore radius is basically the same and throat radius is different for cores of different permeability.Sixty percent of throat radius are lower than 0.8m μ in different permeability samples from volcanic gas reservoir. The result is different from low penetration sandstone reservoir core tested by constant rare mercury penetration technique. There sixsts a very good correlation between the average throat radius and the permeability. On this basis, the average throat radius is used as a volcanic gas reservoir evaluation parameter to characterize difficulty of gas through the reservoir. The study results offer the scientific decision making for classification evaluation and rational and efficient development of volcanic gas reservoir. Key words :volcanic gas reservoir ;reservoir evaluation ;parameter ;pore structure ;development 0 引 言 火山岩气藏已成为中国石油重要的天然气勘探和开发的主要领域之一。目前在松辽、准噶尔、渤海湾等地都有所新发现,火山岩气藏资源量已超过3万亿方,是当前勘探和开发关注的热点之一[1-2]。火山岩气藏储层复杂,存在不同的岩性,有流纹岩、角砾熔岩、熔结凝灰岩、晶屑凝灰岩和火山角砾岩等岩性,储集空间复杂多样,发育气孔、裂缝和溶洞。火山岩储层物性变化也比较大,储层非均质性 强,孔隙度一般为3 %~20 %,渗透率一般为0.01×10-3 μm 2~10×10-3 μm 2,开发难度大。今后将较多地面临火山岩气藏。如何经济有效地开发好火山岩气藏,不但关系到中国天然气工业快速发展急需解决的重大课题,更是中国21世纪能源得以持续发展的战略问题。大量的勘探开发实践表明, 储层的微观孔隙结构直接影响着储层的储集渗流能力, 并最终决定着气藏产能的大小。因此,研究火山岩气藏的微观孔隙结构具有重要的现实意义。 孔隙在结构上可划分为孔道和喉道。油层物理中压汞法是专门用于探测孔隙结构的实验技术[3-6]。

储层微观孔隙结构研究

储层微观孔隙结构研究进展 1.储层微观孔隙结构的影响因素和成因分析 储层微观孔隙结构受多因素影响,成因分析是储层孔隙结构研究的最基本的内容,它能帮助研究者从深层次准确把握储层孔隙结构的特征,受到研究者的高度重视。 1.1地质作用对储层微观孔隙结构的影响 储层物性受沉积作用、成岩作用、构造作用的共同控制。沉积作用对碎屑岩结构、分选、磨圆、杂基含量等起到明显的控制作用,不同的沉积环境对碳酸盐岩的结构组分影响很大。从沉积物脱离水环境之后,随着埋藏深度的不断加深,一系列的成岩作用使得储层物性进一步复杂化。一般而言,压实作用、压溶作用、胶结作用对储层物性起破坏性作用;交代作用、重结晶作用、溶蚀作用对储层物性起到建设性作用。而构造作用产生的裂缝等对物性的改造有较为显著地影响,使储层的非均质性更加明显,而这一点在碳酸盐岩储层中尤为突出。 1.2油气田开发对储层微观孔隙结构的影响 储层孔隙结构影响着储层的注采开发,同时,随着注水、压裂等一系列油气田开发增产措施的实施,储层孔隙结构也相应发生了变化。王美娜等研究了注水开发对胜坨油田坨断块沙二段储层性质的影响,发现注水开发一定程度上改善了储层孔隙结构。唐洪明等以辽河高升油田莲花油层为例,研究了蒸汽驱对储层孔隙结构和矿物组成的影响。结果表明,蒸汽驱导致储层孔隙度、孔隙直径增大,喉道半径、渗透率减小,增强了孔喉分布的非均质性。 2.储层微孔隙结构研究方法 2.1成岩作用方法 该方法通过对各种成岩作用在储层孔隙结构演化中的作用进行梳理,从而了解储层孔隙结构对应发生的变化。该方法的优点是对孔隙结构的成因可以有比较深入的认识,缺点是偏向于定性分析,难以有效的定量化表征。刘林玉等对白马南地区长砂岩成岩作用进行了分析,认为压实作用和胶结作用强烈地破坏了砂岩的原生孔隙结构,溶蚀作用和破裂作用则有效地改善了砂岩的孔隙结构。 2.2铸体薄片观察法 该方法是将带色的有机玻璃或环氧树脂注入岩石的储集空间中,待树脂凝固

微观孔隙结构类型划分及特点

第二章 微观孔隙结构类型划分及特点 2.1 微观孔隙结构类型的研究方法 随着油田开采技术的发张,从一开始单纯依靠天然能量驱油逐渐发展到用注水注气疯方法开采石油,于是开始出现了多相渗流,贝克莱—勒弗莱脱关于水驱油非活塞式驱替理论的提出,奠定了多相渗流的基础,拟压力方法的引入使油气两相渗流得到了有效的解决。 油气储集层是油气储集的场所和油气云翳的通道。它有着极其复杂的内部空间结构和不规则的外部集合形状,它是渗流的前提条件,所以必须对其进行了解。按其成因可分为:原生孔隙、次生孔隙、混合空隙。 (1)原生孔隙 指原始沉积物固有的空隙,如(陆源碎屑)粒间孔、(陆源碎屑)粒内孔等。 原生粒间孔经机械压实作用改造后变小,习惯上称之为原生缩小粒间孔,此类孔隙在本区不甚发育(图2-5, 图2-6) 。 图2-5少量原生缩小粒间孔;单偏光10×10 Fig. 2-5 Fine-grained arkose lithic sandstone 图2-6少量原生粒间孔;单偏光:10×10 Fig. 2-6 Fine-grained arkose lithic sandstone (2)次生孔隙 经次生作用(如淋滤、溶解、交代、重结晶等成岩作用)所形成的空隙称为次生孔隙。构成本区砂岩主要储集空间的次生孔隙由溶解成岩作用形成。主要包括粒内溶孔、铸模孔隙和胶结物内溶孔。

图2-7长石粒内溶孔;单偏光10×10 Fig. 2-7 Arcosic intergranular dissolved pore, plainlight 10×10 图2-8岩屑粒内溶孔;单偏光10×10 Fig. 2-8 Lithic intergranular dissolved pore, plainlight 10×10 粒内溶孔见于易溶的陆源长石颗粒、岩屑和内源介形虫骨壳。其中长石粒内溶孔常依长石颗粒的解理缝、双晶缝、裂隙外延伸展(图2-7)。陆源岩屑遭受部分溶蚀后形成岩屑粒内溶孔,粒内见有难溶组分(图2-8)。本区还可见介形虫化石,体腔内先期充填的碳酸盐胶结物后来发生溶解,形成溶蚀孔隙。特征是介形虫壳体基本完整,体内见有残余的碳酸盐矿物(图2-9)。 图2-9 介形虫体腔内溶孔;单偏光10×10 Fig. 2-9 Within mussel-shrimp dissolved porem plainlight 10×10 图2-10长石铸模孔隙., 单偏光10×20 Fig. 2-10 Arcosic matrix pore, plainlight 10×20 溶解作用强烈可使陆源碎屑、内源颗粒(如生物介壳、鲕粒等)被全部溶解掉,若该颗粒外形轮廓、解理缝、岩石结构等自身特征尚可辨识时,称此种空隙为铸模孔隙。本区的铸模孔隙有长石铸模孔隙和岩屑铸模孔隙,前者发育(图2-10)。

储层岩石微观孔隙结构的实验和理论研究

储层岩石微观孔隙结构的实验和理论研究 张雁 (大庆石油学院地球科学学院黑龙江大庆163318) 【摘要】储层岩石的微观孔隙结构直接影响着储层的储集渗流能力,并最终决定油气藏产能分布的差异。因此,对其详细地研究,探寻各种储层岩石的微观孔隙结构的特点及其分布规律,从而为油气藏的勘探、开发及准确确定注水开发油田不同开发阶段剩余油分布提供科学的依据,具有重要的研究意义。本文介绍了实验上和理论上研究储层岩石微观孔隙结构的方法及进展,并且对其研究的发展趋势和用纳米科技关键仪器-扫描探针显微镜表征储层岩石微观孔隙结构进行了展望。 【关键词】储层岩石;微观孔隙结构;扫描探针显微术 大量的勘探开发实践表明,储层岩石的微观孔隙结构直接影响着储层的储集渗流能力,并最终决定着油气藏产能的差异分布。不同类型的储层具有不同的微观孔隙结构特征,储层岩石孔隙结构参数、含油气性是储层评价的重要指标,如何客观地确定这些参数,是很多石油学家一直努力解决的问题。储层岩石的微观孔隙结构不仅对油气储量,而且对油气井的产能和最终采收率都有影响。详细研究储层的微观孔隙结构特征,有利于对储层进行合理的分类评价,有助于查明储层的分布规律,从而为油气藏的勘探开发提供科学的理论依据。在油气田开发后期,储层的渗流能力的强弱直接受微观孔隙结构特征及其分布规律的影响,因此,确定储层内部微观孔隙结构的特征及分布对了解剩余油形成机理,查明剩余油分布规律具有极为重要的意义。 1.岩石孔隙结构特征的描述方法 孔隙结构是岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通关系的总和。孔隙反映了岩石对流体的储集能力,而喉道的形状、大小、孔喉比则控制了孔隙对流体的储集和渗透能力。由于不同沉积相的水动力条件不同,导致砂体的粒度、分选、组成以及发育程度的差异性,加之后期成岩作用对沉积物原始孔隙改造强烈,因此,微观孔隙结构具有复杂多样性。尤其对于孔渗性差、非均质性强的储层而言,详细研究微观孔隙结构特征一方面有利于经济有效地开发低渗透油气资源,另一方面在开发后期的油气挖潜工作中,有助于查明剩余油分布规律,设计提高采收率方案。因此该项研究对石油工业乃至整个国民经济的发展均具有重要意义。这项工作中,由于储层岩石孔隙极其微小和结构的变化,很大一部分流体在渗流过程中被毛管力和粘滞力所束缚不能参与流动,因此客观评价低渗透油田和驱后油田储层的微观孔隙结构特征,研究微观孔隙结构对油气分布的影响具有极为现实的意义。目前评价工作主要集中在利用勘探开发资料的实验和理论模拟两个方面。 1.1储层微观孔隙结构实验分析常规岩石孔隙结构特征的描述方法主要包括:测井资料现场评价法和室内实验方法。室内实验方法是目前最主要,也是应用最广泛的描述和评价岩石孔隙结构特征的方法,主要包括:毛管压力曲线法(半渗透隔板法、压汞法和离心机法等)、铸体薄片法、扫描电镜法、X-CT扫描法及核磁共振法等。 传统的压汞资料分析表明,中孔细喉结构主要发育在水下分支河道及滩坝砂体中;低孔细喉结构主要发育在前缘席状砂及扇三角洲前缘滑塌浊积砂体中[1]。而通过对压汞曲线进行重新变换,以汞饱和度除以压力为纵坐标,汞饱和度为横坐标,绘制成图,会发现峰点,所对应的孔喉半径称为峰点孔喉半径,该值对油气圈闭具有重要意义[2]。而先进的核磁共振实验结果表明,微裂缝发育程度、粘土充填孔隙程度及原生孔隙发育程度等微观孔隙结构特征是低渗透油田可动流体的主要影响因素[3]。而在某些地区,次生孔隙发育带也是天然气高产富集带[4]。同时利用这项技术,可以实时观察渗透和高渗透沉积岩的渗流情况[5]。而这种微观的流体在油气混合地带的运动是极其不能忽视的,否则会得出错误的储层评价结论[6]。经过长期注水开发的储集层的孔隙结构将发生改变,注水冲刷使微观喉道特征变好,退汞效率增高,因此随着冲刷的不断进行,会使大孔隙越来越大,对小孔隙影响则不明显。喉道分选性对驱油效率影响机理较为复杂。总体上储层驱油效率随储集物性的变好而增加[9]。但是驱油效率并不总是和渗透率呈正相关关系,它还受储层孔喉分布和孔喉结构非均质性的影响[10]。扫描电镜可用于研究孔隙和喉道的立体形态及配置关系[11],可以证实储层低孔、低渗并不是造成注水开发效果差的主要原因,而较强的微观孔隙结构非均质性,是造成注入水波及效率不高、水驱油效率较低的主要原因[12]。 1.2储层微观孔隙结构理论解释-分形特征储层岩石的孔隙空间具有良好的分形特征,孔隙结构的分形维数可以定量描述孔隙结构的复杂程度和非均质性。应用分形几何的原理,对低渗透储层岩石的孔隙结构进行研究,可以建立毛管压力和孔隙大小概率密度分布的分形几何模型。并根据毛管压力曲线资料计算孔隙结构的分形维数和孔径大小概率密度分布。计算结果表明,用该方法研究孔隙结构不仅简单易行,而且精度很高[13]。另外,利用分形理论可以模拟各种岩石毛管压力曲线,从而解释岩石之间物性的不同[14]。用岩样孔喉分布的分形维数能更合理地描述多孔介质微观孔喉分布的非均质性[15]。Krohn提出小尺度的孔隙体积具有分形特征,并受孔隙间矿物和胶结物生长控制,研究微观孔隙分形特征可用来表征成岩过程中岩石表面蚀变和改性的程度[16]。同时结合扫描电镜和小角中子散射(Small-AngleNeutron Scattering,SANS)可以确定岩石微观孔隙在10A。~50μm范围内是分形的[17]。并且这种分形的维度随着岩石的种类不同而发生从2.8~2.3的变化[18]。对于砂岩来讲,分形的维度应介于2与3之间。当其接近于2时,砂岩储集性能极好;而接近于3时,砂岩储集性能极差[19]。大量的研究表明,利用分形理论进行储层岩石微观孔隙结构的表征,与目前不同开发阶段实际效果基本吻合,因此这种方法可以作为评价储层油气藏孔隙结构及储集性的一个主要手段。 2.储层岩石微观孔隙结构研究发展趋势 虽然储层岩石微观孔隙结构的研究取得了很大进展,但是还有很多亟待解决的问题,主要集中在以下几个方面: (1)微米或亚微米孔隙结构的表征以往的研究主要集中在几微米以上的孔隙或孔喉的表征,而客观评价储层产能规律,需要进行这方面的研究,尤其是孔隙-岩石界面的形态分布,包括曲率,粗糙度等的评价,因为这是影响储层渗流特征的本质属性。 (2)利用微观孔隙结构分布特性解释储层反常现象例如水驱油效率与渗透率之间不存在密切关系,甚至出现驱油效率与渗透率呈反比关系的现象。到目前为止,这些由实验发现的反常现象还没有得到合理的解释。 (3)储层岩石分形维度的研究岩石孔隙的分维值是岩石孔隙结构的一个重要的独立参数,它与岩石的渗透率有复杂的关系,需要进一步深入研究。 (4)三维孔隙结构成像三维孔隙结构在微米或亚微米分辨尺度上快速成像技术的研究。目前用同步辐射、X-CT和激光共聚焦等三维成像技术只能达到几微米分辨,不能满足微观孔隙结构评价的要求,因此,需要开发新的实验手段和方法。 这些问题的解决,用目前现有的仪器和方法都有一定都困难,因此需要先进的仪器、实验方法和理论去实现。 3.扫描探针显微术表征储层岩石微观孔隙结构的展望 目前,国内外采用的常规描述岩石孔隙结构特征的测井资料现场评价方法及实验方法各有优缺点。比如测井资料现场评价方法虽然具有纵向上的连续性,但由于受到仪器、环境、流体等多种因素的影响,同时测井资料数据繁多,解释起来人为因素较大,描述储层宏观特征尚可,但用于微观孔隙结构研究其数据精度和解释精度都无法保证。一例[21])研究储层岩石微观孔隙结构。寻找一种能够弥补上述方法缺点的表征手段成为必然要求。 扫描探针显微术(ScanningProbeMicroscopy,SPM)是上世纪八十年代中期发展起来的区别于以往显微手段(包括扫描电子显微镜)的 42

微观孔隙结构特征研究-editing1

摘要:微观孔隙结构是控制特低渗、超低渗砂岩储层驱油效率、最终开发效果的关键因素之一。利用铸体薄片、扫描电镜、铸体图像分析、高压压等多种技术手段,对鄂尔多斯盆地吴旗地区延长组长6储层的孔隙结构进行深入分析和研究,结果表明:1) 2)。。。。,; 对其储层分为。。类,及亚类;探讨了其控制因素主要是, 通过物性分析、扫描电镜、铸体薄片、高压压汞等资料分析,对鄂尔多斯盆地陕北地区吴旗地区延长组长6油层组特低渗、超低渗砂岩储层样品的微观孔隙结构进行了详细研究。研究表明,特低渗、超低渗砂岩储层岩石孔隙和喉道类型多样,孔隙结构非均质性强,分选较差是储层渗透性差的主要原因。毛管压力曲线特征表明,曲线平坦段不明显,上升幅度比较小,歪度中等偏细;进汞量递增的幅度及峰值总是滞后于渗透率贡献值递增的幅度和峰值,说明细小孔道对储层储集能力的贡献较大,但决定和改善储层渗透性的是较大孔喉,反映了特低渗与超低渗透砂岩储层具有有效喉道半径分布范围窄,孔隙结构差,储层致密的特征。因此,研究微观孔隙结构的差异是深入剖析孔喉特征参数的差异以及储层物性参数的差异的重要依据。 关键词:鄂尔多斯盆地;特低渗、超低渗砂岩储层;微观孔隙结构;毛管压力 除沉积作用外,成岩作用显著控制了储层质量。 特低渗储层在石油勘探中的地位、微观孔隙结构的定义及控制储层发育机理、研究方法的综述利用。。。资料, 1983在年陕甘宁盆地发现的安塞油田为典型的低渗低产油田,其储层为三叠系延长组,埋藏深度1000~1300 m,是以内陆淡水湖泊三角洲为主的沉积体系。在三叠系延长组内四个油组(长2、长3、长4+5、长6)均发现油层,储量绝大部分集中在长6、长4+5油层组内。安塞油田区域构造背景为一平缓的西倾单斜,倾角仅0.5°左右。 储层孔隙结构是指岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通状态,是影响储集岩渗透能力的主要因素。由于实际多孔介质孔隙结构的复杂性,通常采用不同的方法从不同角度加以测定和描述,如孔隙铸体、测毛细管压力分布,薄片分析、显微图象分析仪、扫描电镜等是储层微观物理研究的核心内容。在我国,对于中、高渗透砂岩储层的微观孔隙结构特征研究已取得了大量的研究成果(添加具体内容,参考文献),但对于特低渗、超低渗砂岩储层的孔隙结构特征研究尚不多见[2~6],(且存在哪些问题) 。 为深入研究此类储层的孔隙结构特征,采用铸体技术、扫描电镜技术、高压压汞技术对取自鄂尔多斯盆地AS油田延长组长6油层组特低渗、超低渗砂岩储层样品进行测试分析,从而解剖此类储层的孔隙结构特征,为特低渗、超低渗储层制定合理的油田探勘开发方案,提高油气采收率具有重要意义。 1、地质背景 (位置/区域构造/地形单元构成/沉积类型/平均埋深/生产现状/存在问题) 研究区位于鄂尔多斯盆地伊陕斜坡,区域构造背景为平缓的西倾单斜,主要含油层系为三叠系

东濮凹陷三叠系裂缝性砂岩储层微观孔隙结构特征

第18卷第2期 2007年东濮凹陷北部文明寨、卫城等地区的三叠 系发现了裂缝性砂岩油气藏,油气主要富集在砂岩裂缝中,基质不含油,裂缝既是储集空间又是渗流通道。砂岩裂缝型储集空间与灰岩相似,但溶洞发育程度较灰岩弱,此类油气藏在国内尚属首次发现。探讨该类油气藏储层微观孔隙结构特征对于深入认识此类油气藏,深化我国陆相储层孔隙结构理论具有重要意义,同时也丰富了储层微观物理研究的内容[1-7]。 1储层概况 东濮凹陷位于渤海湾盆地西南部的豫东北—鲁西 南地区,夹持在内黄隆起与鲁西隆起之间、北窄南宽,呈琵琶状北东向展布。东濮凹陷中生界不太发育,缺乏 上三叠统—白垩系地层。钻井资料显示,三叠系地层为内陆河湖相红色砂泥岩互层,岩性致密,视电阻率高,俗称“高阻红”。岩心物性资料分析显示,三叠系砂岩基质孔隙度一般为1.00%~6.00%,基质基本不具备储集能力。砂岩裂缝发育,局部沿裂缝发育溶蚀孔洞,油气主要富集在裂缝中。依据储集空间类型,研究区三叠系油气藏为裂缝性砂岩储层油气藏。 岩心薄片资料显示,储层砂岩碎屑颗粒粒度为 60~500μm ,岩性为含灰质细粒、中粒岩屑粗粉砂岩。 石英体积分数为58%~66%,长石9%~13%,火成岩、变质岩等岩屑占15%~22%,磨圆度为次棱—次圆状,分选性中—好,胶结物以灰质为主(体积分数20%~ 25%),其次为泥质(体积分数6%~10%)。 摘要通过扫描电镜、岩石薄片、铸体薄片、荧光薄片、常规压汞等技术方法,对东濮凹陷北部三叠系裂缝性砂岩储层的 微观孔隙结构特征进行研究。结果表明,东濮凹陷三叠系砂岩储层裂缝、微裂缝发育,裂缝性砂岩储层孔隙由岩石基质孔隙与缝洞孔隙两部分组成,缝洞孔隙是油气储集的有效孔隙,孔隙类型主要为原生粒间孔隙、粒内孔隙,碎屑颗粒之间以点-线式接触为主。砂岩基质结构致密,孔隙性差。储层基质喉道以微喉为主,压汞实验的排驱压力较高,储层基质渗透率较低,储层基质的储、渗性能差。关键词 三叠系;裂缝性砂岩储层;微观孔隙结构特征;荧光薄片;微裂缝;东濮凹陷 中图分类号:TE122.2+3 文献标志码:A 东濮凹陷三叠系裂缝性砂岩储层微观孔隙结构特征 国殿斌 (中原油田分公司勘探开发科学研究院,河南濮阳457001) 文章编号:1005-8907(2011)02-191-04 Characteristics of micropore structure of Triassic sandstone reservoir in Dongpu Depression Guo Dianbin (Research Institute of Exploration and Development,Zhongyuan Oilfield Company,SINOPEC,Puyang 457001,China) Abstract:By the methods of scanning electron microscopy,rock thin section,cast thin section,microscopic fluorescence and conventional murcury injection and so on,the characteristics of microscopic pore structure of Triassic sandstone reservoir in Dongpu Depression were studied.The research shows that the fracture and microfracture were developed well in Triassic sandstone reservoir of Dongpu Depression,the pore system is composed of the rock matrix pores and the fracture-cave pores,which are the effective pore of hydrocarbon storage.The pore type is mainly the primary intergranular pores and intragranular dissolution pores.The contacted relation is mainly the dop-line type among clastic particles,and the porosity is low.The matrix pore of reservoir is mainly the microthoat.The discharge pressure is high in mercury injection experiment.The permeability of matrix rock is low,with the storage and permeability being poor in matrix rock. Key words:Triassic;fractured sandstone reservoir;characteristics of micropore structure;microscopic fluorescence;microfracture;Dongpu Depression 引用格式:国殿斌.东濮凹陷三叠系裂缝性砂岩储层微观孔隙结构特征[J ].断块油气田,2011,18(2):191-194. Guo Dianbin.Characteristics of micropore structure of Triassic sandstone reservoir in Dongpu Depression [J ].Fault-Block Oil &Gas Field ,2011,18(2):191-194. 断块油气田FAULT-BLOCK OIL &GAS FIELD 2011年3月191

第二节 储层岩石的孔隙度

第二节 储层岩石的孔隙性(3学时) 一、教学目的 掌握孔隙的分类、定义、 测量方法和影响因素。 二、教学重点、难点 教学重点 1、孔隙的分类和定义 教学难点 1、孔隙的分类和定义 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍四个方面的问题: 一、孔隙度的定义和分类 二、孔隙度的测量 三、影响孔隙度的因素 (一)、孔隙度的定义和分类 1、孔隙度的定义 岩石的孔隙度是指岩石的孔隙体积与岩石外观体积的比值,常用百分数表示,记为φ 式中: Vr——岩石的骨架体积,米3,cm3 Vp——岩石的孔隙体积,米3,cm3 V f——岩石的视体积,米3,cm3 φ——岩石的孔隙度,% 2、孔隙度的分类 我们已知讲过,孔隙空间可以分为有效孔隙和无效孔隙,所以相应地,孔隙度也可以分为: A、绝对孔隙度,φa 绝对孔隙度是指岩石所有孔隙体积(有效+无效)与岩石视体积之比。 Vap——总孔隙体积,=V有效+V无效 V f——岩石的视体积 φa——岩石的绝对孔隙度

B、有效孔隙度 由于储油岩石孔隙的复杂性,所以在岩石孔隙中,并非所有的孔隙都是有用的,比如说函端孔隙和孔道半径很小(r<0.0001mm)的孔隙,这样的孔隙实际上对流体的流动毫无价值,所以人们将流体能在其中流动且相互连通的孔道称为有效孔隙,有效孔隙与岩石视体积的比值称为有效孔隙度。 Vep——岩石有效孔隙体积 V f——岩石的外观体积 φe——岩石的有效孔隙度 大家值得注意的是:由于流体只能在大于0.0001mm半径的孔道中流动,因此,孔道小于0.0001mm的那些孔隙也被看作是死孔隙,同样被这些微小孔道包围的大孔道当然也属于死孔隙之列。 另外,从上面的分析中我们不难看出,还应当存在一种孔隙度。 C、流动孔隙度φm Vmp——流动孔隙度 V f——岩石的外观体积 φm——流动体积 很显然,流动体积是指有效孔隙中,允许流何流动的那一部分孔道体积。它不仅排除了死孔隙,也包括束缚水占据的部分以及岩石表面吸附流体所占据的孔道部分。可见,在相互连通的孔隙中并不是全部孔道都能让流体流动。直得注意的是被吸附流体的厚度有时相当可观,可把原来流动的孔道堵住,或者使渗重能力下降,这一点在三次采油中尤为重要。 综合上述的三种孔隙度不难看出: φa>φe>φm 对于砂岩:φa≈φe>φm 泥质砂岩:φa>>φe>φm 泥岩:φa>>>φe>φm 岩石孔隙度在油田中应用极广,通常在地质储量计算中用有效孔隙度φe,在计算可采储量时要用流动孔隙度,而绝对孔隙度只有岩石学上的意义,应用很少。 利用岩石的孔隙度(有效孔隙度)还可以用来进行油层评价,一般砂岩φe=10~25% φ 评价 5~10% 差

第三节 储层岩石的渗透性

第三节储层岩石的渗透性 一、名词解释。 1.绝对渗透率(absolute permeability): 2.有效渗透率(effective permeability): 3.气体滑脱效应(gas slip effect): 4.克氏渗透率Kg(Klinkenberg permeability): 5.渗透性(permeability): 6.渗透率非均质系数: 二.判断题。 1.平行于层理面的渗透率小于垂直于层理面的渗透率。() 2.岩石比面愈大,则岩石的绝对渗透率愈小。() 3.平均孔道半径愈小,则滑动效应愈显著。() 4.平均压力愈大,则滑动效应愈显著。() 5.绝对渗透率在数值上低于克氏渗透率。() 6.同一岩石,其气测渗透率必定大于其液测渗透率。() 7.裂缝对储集层岩的改造作用主要体现在其提高储集岩的储集能力这个方面。 () 8.岩石的相对渗透率是没有单位的。() 9.储层埋藏深度越大,渗透率越大。() 10.孔隙度越大,则渗透率越大。() 三.选择题。 1.气体滑动效应随平均孔道半径增加而,随平均流动压力增加而。 A.增强,增强 B.增强,减弱

C.减弱,增强 D.减弱,减弱 ( ) 2.岩石绝对渗透率与岩石的孔隙结构 ,与通过岩石的流体性质 。 A.有关,有关 B.有关,无关 C.无关,有关 D.无关,无关 ( ) 3.若K ,l K ,g K 为同一岩石的绝对渗透率,液测渗透率和气测渗透率,则三者关 系为 A. K >l K >g K B. l K >g K >K C. g K >K >l K D. K >g K >l K ( ) 4.岩石空隙结构的分选性愈 ,迂回度愈 ,则岩石的绝对渗透率愈低。 A.好,大 B.差,大 C.好,小 D.差,小 ( ) 5.砂岩储集岩的渗滤能力主要受__________的形状和大小控制。 A.孔隙 B. 裂隙 C.喉道 D.孔隙空间 ( ) 6.于同一种流体而言,岩石允许其通过的绝对渗透率K 与有效渗透率Ke 之间的 关系是 。 A.K=Ke B.K >Ke C.K <Ke D.不能确定 ( ) 7.岩石比面愈 ,平均孔道半径愈 ,则岩石绝对渗透率愈大。 A.大,大 B.大,小 C.小,大, D.小,小 ( )

相关主题
文本预览
相关文档 最新文档