当前位置:文档之家› 条件概率独立事件习题

条件概率独立事件习题

条件概率独立事件习题
条件概率独立事件习题

.

条件概率与独立事件习题课

1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点

数之和大于8”则P(B|A)的值为()

A.B.C.D.

2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事

件B为“取到的2个数均为偶数”,则P(B|A)=()

A.B.C.D.

3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是

次品,则第二次抽出的是正品的概率()

A.B.C.D.

4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为()A.B.C.D.

5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是.

二.解答题

6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.

(1)根据频率分布直方图,求重量超过505克的产品数量.

(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.

(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:

年龄(岁)[15,

25)

[25,

35)

[35,

45)

[45,

55)

[55,

65)

[65,

75]

频数510151055

赞成人数469634

(Ⅰ)完成被调查人员的频率分布直方图;

(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列

.

8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.

(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;

(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x 2,x 3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布.

9.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.

(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;

(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列.10.甲、乙两人独立破译一个密码,他们能独立译出密码的概率分别为和.

(I)求甲、乙两人均不能译出密码的概率;

(II)假设有4个与甲同样能力的人一起独立破译该密码,求这4人中至少有3人同时译出密码的概率.

.

条件概率与独立事件答案

1.解:设x为掷白骰子得的点数,y为掷黑骰子得的点数,

则所有可能的事件与(x,y)建立一一对应的关系,由题意作图,如图.

其中事件A为“黑色骰子的点数为3或6”包括12件,P(A)==

事件AB包括5件,P (AB)=,由条件概率公式P(B|A)==,

2.解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.

3. 解:根据题意,在第一次抽到次品后,有4件次品,5件正品;

则第二次抽到正品的概率为P=

4.

解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,

则“甲射击一次,未击中目标”为事件,“乙射击一次,未击中目标”为事件,

则P(A)=,P()=1﹣=,P(B)=P,P()=1﹣P,依题意得:×(1﹣p)+×p=,解可得,p=,故选C.

5.解:设出甲,乙,丙,射击一次击中分别为事件A,B,C,∵甲以10发8中,乙以10发6中,丙以10发7中

∴甲,乙,丙,射击一次击中的概率分别为:,,

∵“三人各射击一次,则三人中只有一人命中”的事件为:,,

∴三人各射击一次,则三人中只有一人命中的概率为:

=

6.解:(1)重量超过505克的产品数量是40×(0.05×5+0.01×5)=12件;

(2)Y的所有可能取值为0,1,2;

,,,

Y 的分布列为

Y012

P

(3)从流水线上任取5件产品,重量超过505克的概率为=,

重量不超过505克的概为1﹣=;

恰有2件产品合格的重量超过505克的概率为?.

7.解:(Ⅰ)根据频率=得各组的频率分别是:0.1;0.2;0.3;0.2;0.1;0.1.由组距为10,可得小矩形的高分别为0.01;0.02;0.03;0.02;0.01;0.01.

由此得频率分布直方图如图:

.

(Ⅱ)由题意知ξ的所有可能取值为:0,1,2,3.

P(ξ=0)=?=;

P(ξ=1)=?+?=;

P (ξ=2)=?+?=;

P(ξ=3)=?=.

∴ξ的分布列是:

ξ

0123

P

ξ的数学期望Eξ=0×+1×+2×+3×==.

8.解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况

∴取出的2个球颜色相同的概率P=.

(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=

于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,

X的概率分布列为

X234

P 故X数学期望E(X)=

9. 解:(Ⅰ)用事件A i表示第i局比赛甲获胜,

则A i两两相互独立.…(1分)

===.…(4分)(Ⅱ)X的取值分别为2,3,4,5,…(5分)

P(x=2)=,

P(x=3)=,

P(x=4)=,

P(x=5)=,…(9分)

所以X的分布列为

X2345

P

…(11分)

EX==.…(13分)

10.解:(I)由题意知本题是一个相互独立事件同时发生的概率,设“甲、乙两人均不能译出密码”为事件A ,

则P(A)=(1﹣)(1﹣)=

即甲、乙两人均不能译出密码的概率是

(II)有4个与甲同样能力的人一起独立破译该密码,

相当于发生四次独立重复试验,成功的概率是

∴这4人中至少有3人同时译出密码的概率为

.

=

即这4人中至少有3人同时译出密码的概率为

随机变量条件概率与事件相互独立

2. 2.1条件概率 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“ Y ” ,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y ,Y Y Y 和 Y Y Y .用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含一个基本事件Y Y Y .由古典概型计算公式可 知,最后一名同学抽到中奖奖券的概率为1()3 P B = . 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y 和Y Y Y .而“最后一名同学抽到中奖 奖券”包含的基本事件仍是Y Y Y .由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为 1 2 ,不妨记为P (B|A ) , 其中A 表示事件“第一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) . 思考:对于上面的事件A 和事件B ,P ( B|A )与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y , Y Y Y ,Y Y Y } .既然已知事件A 必然发生,那么只需在A={Y Y Y , Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发 生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因 此 (|)P B A = 12=() () n AB n A . 其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式, ()() (),()()() n AB n A P AB P A n n = =ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以, (|)P B A =()()()() ()()()() n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) . 条件概率 1.定义 设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.

知识讲解 条件概率 事件地相互独立性(理)(基础)

条件概率事件的相互独立性 【学习目标】 1.了解条件概率的概念和概率的乘法公式. 2.能运用条件概率解决一些简单的实际问题. 3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件. 4.能运用相互独立事件的概率解决一些简单的实际问题. 【要点梳理】 要点一、条件概率的概念 1.定义 设A、B为两个事件,且()0 P A>,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。 用符号(|) P B A表示。 (|) P B A读作:A发生的条件下B发生的概率。 要点诠释 在条件概率的定义中,事件A在“事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率. 2.P(A|B)、P(AB)、P(B)的区别 P(A|B)是在事件B发生的条件下,事件A发生的概率。 P(AB)是事件A与事件B同时发生的概率,无附加条件。 P(B)是事件B发生的概率,无附加条件. 它们的联系是: () (|) () P AB P A B P B =. 要点诠释 一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。概率P(A)是指在整个基本事件空间Ω的条件下事件A发生的可能性大小,而条件概率P(A|B)是指在事件B发生的条件下,事件A发生的可能性大小。 例如,盒中球的个数如下表。从中任取一球,记A=“取得篮球”,B=“取得玻璃球”。基本事件空间Ω包 含的样本点总数为16,事件A包含的样本点总数为11,故 11 () P A=。 如果已知取得玻璃球的条件下取得篮球的概率就是事件B发生的条件下事件A发生的条件概率,那么

1.2.1条件概率与独立事件

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

北师大数学选修课时分层作业2 条件概率与独立事件 含解析

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

简单事件的概率

2.1简单事件的概率 教学目标: 1、在具体情境中进一步了解概率的意义. 2、进一步运用列举法(包括列表、画树状图)计算简单事件的概率教学重点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学难点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学过程 一、回顾和思考: 在数学中,我们把事件发生的可能性的大小称为事件发生的概率. 问:运用公式P(A)=m n 求简单事件发生的概率,在确定各种可能结果发生的可能性 相同的基础上,关键是求什么? 关键是求事件所有可能的结果总数n和其中事件A发生的可能的结果m(m≤n) 二、热身训练: 北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子. (1)小玲从盒子中任取一张,取到印有“欢欢”图案的卡片的概率是多少? (2)小玲从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树状图列出小玲取到的卡片的所有情况,并求出小玲两次都取到印“欢欢”图案的卡片的概率. 三、新课教学: 1、例3.学校组织春游,安排给九年级3辆车,小明与小慧都可以从这3辆车中任选一辆搭乘.问小明与小慧同车的概率有多大? 问:你能用树状图表示本题中事件发生的不同结果吗?用列表法也试试吧 解:记这三辆车分别为甲、乙、丙,小明与小慧乘车的所有可能的结果列表如下: (各种结果发生的可能性相同) ∴P=3 9 = 1 3 . 答:小明与小慧同车的概率是1 3 . 2、书本34页课内练习2 3、例4.如图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率. 问:1、转盘自由转动1次,指针落在白色区域、红色区域的可能性相同吗? 2、如何才能使转盘自由转动1次,指针落在各个扇形区域内的可能性都相同?

相互独立事件的概率

第79课 相互独立事件的概率 ●考试目标 主词填空 1.如果事件A (或B )是否发生的对事件B (或A )发生的概率没有影响,那么这样的事件叫做相互独 立事件.相互独立事件A 和B 同时发生,记作A ·B,其概率由相互独立事件概率的乘法公式: P (A ·B)=P(A)·P(B). 2.“互斥”事件A 与B ,要记住其判别的依据是A ∩B=;而“相互独立”事件A 与B ,是指它们中的任何一个发生与否对另一个事件发生的概率没有“影响”. 3.如果在1次试验中,某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次 的概率. P n (k )=k n k k n P P C --)1(. ● 题型示例 点津归纳 【例1】 甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率. 【解前点津】 “两人都击中目标”是事件A ·B ;“恰有1人击中目标”是A ·A B 或·B ;“至少有1人击中目标”是A ·B 或A ·A B 或·B . 【规范解答】 我们来记“甲射击一次击中目标”为事件A ,“乙射击一次击中目标”为事件B . (1)显然,“两人各射击一次,都击中目标”就是事件A ·B ,又由于事件A 与B 相互独立. ∴ P (A ·B )=P (A )·P (B )=0.8×0.8=0.64. (2)“两个各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A ·B ),另一种是甲未击中乙击中(即A ·B ),根据题意这两种情况在各射击一次时不可能同时发生,即事件A ·A B 与·B 是互斥的,所以所求概率为: P =)()()()()()(B P A P B P A P B A P B A P ?+?=?+? =0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3) “两人各射击一次,至少有一人击中目标”的概率为: P =P (A ·B)+[P (A ·A P B ()+·B)]=0.64+0.32=0.96. 【解后归纳】 本题考查应用相互独立事件同时发生的概率的有关知识的正确应用. 【例2】如图,电路由电池A 、B 、C 并联组成.电池A 、B 、C 损坏的概率分别是0.3、0.2、0.2,求电路断电的概率. 【解前点津】 可规定A =“电池A 损坏”,B =“电池B 损坏”,C =“电池C 损坏”.这样,就有事

第1章 2.1 条件概率与独立事件

§2 独立性检验 2.1 条件概率与独立事件 学习目标 1.理解条件概率与两个事件相互独立的概念.2.掌握条件概率的计算公式.3.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题. 知识点一 条件概率 100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格. 令A ={产品的长度合格},B ={产品的质量合格},AB ={产品的长度、质量都合格}. 思考1 试求P (A ),P (B ),P (AB ). 答案 P (A )=93100,P (B )=90100,P (AB )=85 100 . 思考2 任取一件产品,已知其质量合格(即B 发生),求它的长度(即A 发生)也合格(记为A |B )的概率. 答案 事件A |B 发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P (A |B )=85 90 . 思考3 P (B ),P (AB ),P (A |B )间有怎样的关系. 答案 P (A |B )=P (AB ) P (B ). 梳理 条件概率 (1)概念 事件B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式 P (A |B )=P (A ∩B ) P (B )(其中,A ∩B 也可以记成AB ). (3)当P (A )>0时,A 发生时B 发生的条件概率为P (B |A )=P (AB ) P (A ) . 知识点二 独立事件 甲箱里装有3个白球、2个黑球,乙箱里装有2个白球,2个黑球.从这两个箱子里分别摸出1个球,记事件A =“从甲箱里摸出白球”,B =“从乙箱里摸出白球”.

概率 2 条件概率与相互独立事件

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

初中《简单事件的概率》知识点

概率的简单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为 16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为0.1%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

九年级上 简单事件的概率

VIP 学科优化教(学)案 教学部主管: 时间: 年 月 1.二次函数2 3y x bx =++的对称轴是2x =,则b =_______。 2.已知抛物线y=-2(x+3)2+5,如果y 随x 的增大而减小,那么x 的取值范围是_______. 3.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。 4.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 。 5. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。 6.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 . ㈠承上启下 知识回顾

【课本相关知识点】 1、在一定条件下一定发生的事件叫作必然事件;在一定条件下一定不会发生的事件叫作不可能事件;在一定条件下可能发生,也可能不发生的事件叫作不确定事件或随机事件。 2、为了确定简单事件发生的各种可能的结果,通常用列表、画树状图法。当实验包含两步时,用列表法与画树状图法求发生的结果数均比较方便;但当实验存在三步或三步以上时,用画树状图的方法求事件发生的结果数较为方便。 题型一、识别事件类型 例1、下列事件是必然事件的是( ) A. 水加热到100℃就要沸腾 B. 如果两个角相等,那么它们是对顶角 C.两个无理数相加,一定是无理数 D. 如果 ,那么a=0,b=0 练习.(2013?武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球 题型二、用列表、画树状图法确定简单事件发生的各种可能的结果 例2、(2011?成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B 1、B 2、B 3表示)中抽取一个,再在三个上机题(题签分别用代码J 1、J 2、J 3表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.用树状图或列表法表示出所有可能的结果 练习.(2013?江西)甲、乙、丙三人聚会,每人带了一个从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件。将“甲、乙、丙3人抽到的都不是自己带来的礼物”记为事件A ,请列出事件A 的所有可能的结果。 题型三、比较事件发生的可能性的大小 例3、在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4。随机地摸出一张纸牌然后放回,再随机摸取出一张纸牌。甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这是个公平的游戏吗?请说明理由。 练习1.(2011江苏淮安)有牌面上的数都是2,3,4的两组牌,从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面上的数之和为多少的可能性最大。 ㈡紧扣考点 专题讲解

简单事件的概率练习题

、选择题 1.下列事件是必然事件的是( A. 随机抛掷一枚均匀的硬币,落地后正面一定朝上 B. 打开电视体育频道,正在播放 NBA 求赛 拿出一支笔芯,则拿出黑色笔芯的概率是( A.- 3 3.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的 B. 从一个装有2个白球和1个红球的袋子中任取一球, C. 抛一枚硬币,出现正面的概率 D. 任意写一个整数,它能被2整除的概率 6. 一个均匀的立方体六个面上分别标有数 1,2,3, 这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等 1 于朝下一面上的数的-的概率是() 2 B.- 3 C.射击运动员射击一次,命中十环 D. 若a 是实数,则|a 0 2.盒子里有3支红色笔芯,2支黑色笔芯, 每支笔芯除颜色外均相同?从中任意 面的点数中,一个点数能被另一个点数整除的概率是 A. — B. 3 C. 口 18 4 18 4. 在一张边长为4cm 的正方形纸上做扎针随机试验, 形阴影区域,贝U 针头扎在阴影区域内的概率为 () 1 1 A. B. - C. D. - 16 4 16 4 5. 甲、乙两名同学在一次用频率去估计概率的试验中 23 36 纸上有一个半径为1cm 的圆 D. 统计了某一结果出现的频率,绘出的统计图如图所示, 则符合这一结果的试验可能是( A.掷一枚正六面体的骰子,出现1点的概率 取到红球的概率 D.- 3 C.- 2 4,5,6?右图是 4

7. 甲、乙、丙、丁四名运动员参加 4X 100米接力赛,甲必须为第一接力棒或第 四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( ) A . 3 种 B . 4 种 C . 6 种 D . 12 种 8. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( 15 9. 在6件产品中,有2件次品,任取两件都是次品的概率是() A 、1 B 丄 C 、丄 D 、丄 5 6 行 15 10. 在拼图游戏中,从图中的四张纸片中,任取两张纸片,能拼成“小房子” (如 图所示)的概率等于( ) A. 1 B . L C . 1 D . 2 2 3 3 二、填空题 11. 一个瓷罐中装有1枚白色围棋棋子,1枚黑色棋子,现从罐中有返回地摸棋 子两次,摸到两个白子的概率为 ____________ ,先摸到白子,再摸到黑子的概率 为 . 12. 如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若 指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止) ,两个指 针所指区域的数字和为偶数的概率是 —— 13. 小明与小亮在一起做游戏时需要确定作游戏的先后顺序, 他们约定用“锤子、 剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是 — 14. 晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概 率为 _______ . 15. 在一副去掉大、小王的扑克牌中任取一张,则 P (抽到黑桃K )等于 _______ P (抽到9)等于 . 16. 单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你 随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 ______________ A. B. C. D. 15

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85 B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.34 B.23 C.35 D.12 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( ) A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.1 2 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是1 2 ,构造数列{a n },使得a n = ????? 1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面), 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.1 4 D.1 2 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于

简单事件的概率--课后作业

第二章简单事件的概率 A卷:基础知识部分 一、细心填一填 1.抛掷一枚各面分别标有1,2,3,4,5,6的普通骰子,写出这个实验中的一个可能事件:。 2.随意地抛掷一只纸可乐杯,杯口朝上的概率约是0.22,杯底朝下的概率约是0.38,则横卧的概率是; 3.在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是__________ 4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为_______________ 5.从装有5个红球和3个白球的袋中任意取4个,那么取道的“至少有1个是红球”与“没有红球”的概率分别为和; 二、精心选一选 6.以下说法正确的是( ) A.在同一年出生的400人中至少有两人的生日相同 B.一个游戏的中奖率是1%,买100张奖券,一定会中奖 C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件 D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是 7.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事件() A.可能发生 B.不可能发生 C.很有可能发生 D.必然发生 8.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只。则从中任意取一只,是二等品的概率等于() A. 1 12 B. 1 6 C. 1 4 D. 7 12 9.(2005年杭州市)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有”20”,”08”和”北京”的字块,如果婴儿能够排成”2008北京”或者”北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( ) A.1 6 B. 1 4 C. 1 3 D. 1 2 10.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,

2.2 简单事件的概率(一)

2.2 简单事件的概率(一) 1.必然事件的概率是( ) A. -1 B. 0 C. 0.5 D. 1 2.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第三个小组被抽到的概率是( ) A. 17 B. 13 C. 12 D. 110 3.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码数字及顺序完全相同时,才能将锁打开.如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( ) A. 110 B. 19 C. 14 D. 12 4.在边长为1的正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置 点C (能与A ,B 两点重合),恰好能构成△ABC 且使得△ABC 的面积为1的概率为( ) A.316 B.38 C.14 D.516 5.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成, 一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为____ . 6.在如图所示的电路图中,闭合其中任意一个开关, 灯泡发光的概率是 . 7.现有3个45°的角,2个90°的角,从中任取3个角,能构成等腰直角三角形的概率是 . 8.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背 面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,求使关于x 的分式方程1-ax x -2+2=12-x 有正整数解的概率是 . 9.一个不透明的袋中装有5个黄球,13个黑球和22个红球,这些球除颜色外其他都相同. (1)求从袋中摸出一个球是黄球的概率. (2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄 球的概率不小于13,问:至少取出多少个黑球?

简单事件的概率测试题.

简单事件的概率测试题 A 卷(基础知识部分, 50分 一、细心填一填(每题 2分,共 10分 1.抛掷一枚各面分别标有 1, 2, 3, 4, 5, 6的普通骰子,写出这个实验中的一个可能事件:。 2. 随意地抛掷一只纸可乐杯, 杯口朝上的概率约是 0.22, 杯底朝下的概率约是0.38, 则横卧的概率是 ; 3.在中考体育达标跳绳项目测试中, 1分钟跳 160次为达标,小敏记录了他预测时 1分钟跳的次数分别为 145,155,140,162,164,则他在该次预测中达标的概率是 __________ 4.十字路口的交通信号灯每分钟红灯亮 30秒,绿灯亮 25秒,黄灯亮 5秒,当你抬头看信号灯时,是黄灯的概率为 _______________ 5. 从装有 5个红球和 3个白球的袋中任意取 4个, 那么取道的“至少有 1个是红球” 与“没有红球”的概率分别为和 ; 二、精心选一选(每题 3分,共 15分 6.以下说法正确的是 ( A. 在同一年出生的 400人中至少有两人的生日相同 B. 一个游戏的中奖率是 1%,买 100张奖券,一定会中奖 C. 一副扑克牌中,随意抽取一张是红桃 K ,这是必然事件 D. 一个袋中装有 3个红球、 5个白球,任意摸出一个球是红球的概率是 7. 从一副扑克牌中抽出 5张红桃、 4张梅花、 3张黑桃放在一起洗匀后, 从中一次随机抽出 10张,恰好红桃、梅花、黑桃 3种牌都抽到,这件事件 (

A .可能发生 B.不可能发生 C.很有可能发生 D.必然发生 8.设有 12只型号相同的杯子,其中一等品 7只,二等品 3只,三等品 2只。则从中任意取一只,是二等品的概率等于 ( A . 1 12 B. 1 6 C. 1 4 D. 7 12 9. (2005年杭州市有一对酷爱运动的年轻夫妇给他们 12个月大的婴儿拼排 3块分别写有” 20” , ” 08” 和” 北京” 的字块 , 如果婴儿能够排成” 2008北京” 或者” 北京2008” , 则他们就给婴儿奖励 . 假设婴儿能将字块横着正排 , 那么这个婴儿能得到奖励的概率是 ( A . 1 6 B.

2019年北师大版数学选修1-2练习(第1章)条件概率与独立事件(含答案)

2019年北师大版精品数学资料 条件概率与独立事件 同步练习 【选择题】 1、一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,第一次 取后不放回.则若已知第一只是好的,第二只也是好的概率为( ) A .53 B .52 C .95 D .3 1 2、袋中有2个白球,3个黑球,从中依次取出2个,则取出两个都是白球的概率 ( ) A .53 B .101 C .31 D .5 2 3、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为 ( ) A .P 3 B .(1-P)3 C .1-P 3 D .1-(1-P)3 4、设某种产品分两道独立工序生产,第一道工序的次品率为10%,第二道工序的 次品率为3%,生产这种产品只要有一道工序出次品就将生产次品,则该产品的次品率是( ). A .0.873 B .0.13 C .0.127 D .0.03 5、甲、乙、丙三人独立地去译一个密码,分别译出的概率为51,31,4 1,则此密码能译出的概率是 ( ) A . 60 1 B .5 2 C .5 3 D . 60 59 6、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为 81 80 ,则此射手的命中率为 ( ) A .3 1 B .4 1 C .3 2 D .5 2 7、n 件产品中含有m 件次品,现逐个进行检查,直至次品全部被查出为止.若第 n-1次查出m-1件次品的概率为r ,则第n 次查出最后一件次品的概率为( ) A .1 B .r-1 C .r D .r +1 8、对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4, 0.5和0.7,则三次射击中恰有一次命中目标的概率是 ( ) A .0.36 B .0.64 C .0.74 D .0.63 【填空题】 9、某人把6把钥匙,其中仅有一把钥匙可以打开房门,则前3次试插成功的概率 为 __. 10、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:

简单事件的概率

简单事件的概率 一.【课前检测】 1.下列事件是必然事件的是( ) A .通常加热到100℃,水沸腾 B .抛一枚硬币,正面朝上 C .明天会下雨 D .经过城市中某一有交通信号灯的路口,恰好遇到红灯 2.下列事件中,哪些是必然发生的,哪些是可能发生的,哪些是不可能发生的? (1)一个袋中只有10个红球,从中任取一球,然后放回袋中,混合均匀,再取一球,如此反复进行十次,十次全部取到白球; (2)从有理数中任取一数平方之后比0大; (3)有4名同学,其中有七年级的,有八年级的,也有九年级的,则他们中间有两名同学在同一年级。 (4)小红今年是20岁,明年18岁。 (5)下一次数学成绩超过80分。 3.有50张编有序号的卡片(从1号到50号);从中任取一张,求: (1)取到卡片号是7的倍数的情况有多少种? (2)取到卡片号是7的倍数的概率是多少? 二.【知识梳理】 1.事件的概率:表示一个事件发生的可能性大小的数,叫做该事件的概率,也可以是一个比值: 所有事件发生的次数 该事件发生的次数 . 2.概率的含义:随机事件A 的概率是n A P m )( ,表示试验很多次时,平均每n 次试验,事件A 发生m 次。 3.求一个事件的概率途径一般有3种:(1)是主观经验估计(又称主观概率);

(2)是试验估计(又称试验概率);(3)是根据树状图法或列表法分析、预测概率(又称理论概率)。 三.【重难点突破】 例1.随意地抛一粒豆子,恰好落在下图中的方格中(每个方格除颜色外完全一样),那么这粒豆子停在黑色方格中的概率是。 例2.布袋中放着22个红球和1个黑球,它们除颜色外没有其他区别,现在闭上眼睛从中摸出一个黑球的概率是。 例3.甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球。现分别从每个盒子中随机地抽取1个乒乓球,则取出乒乓球的编号之和大于6的概率。 例4.在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个。已知从中任意摸出1个球得到白球的概 率为2 1。 (1) 求口袋中有多少个红球; (2) 求从口袋中一次摸出2个球,得一红一白的概率,要求画出树状图。 四.【课堂练习】 1.下列说法不正确的是( ) A .某事件发生的概率为1,则它不一定必然会发生 B .某事件发生的概率为O ,则它必然不会发生 C .抛一个普通纸杯,杯口不可能向上 D .从一批产品中任取一个为次品是可能的 2.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( )

2.2.1条件概率与事件的相互独立性

2. 2.1条件概率与事件的相互独立性 教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。 2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率. 2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自 动提款机上取钱时,忘记了密码的最后一位数字.求 (1) 任意按最后一位数字,不超过2次就对的概率; (2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则1 12()A A A A =表示不超过2次就按对 密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095 P A P A P A A ?=+=+=?. (2)用B 表示最后一位按偶数的事件,则 112(|)(|)(|)P A B P A B P A A B =+ 14125545 ?=+=?. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩, 问这时另一个小孩是男孩的概率是多少? 解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。 这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3. 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为 P ( AB )=P (A )P (B )=0.6×0.6=0.36 (2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。 因此所求概率为 48.06.0)6.01()6.01(6.0)()()()()()(=?-+-?=+=+B P A P B P A P B A P B A P 。

浙教版九年级数学第二章简单事件的概率全章教案

课题:2.1事件的可能性 教学目标: 1、通过生活中的实例,进一步了解概率的意义; 2、理解等可能事件的概念,并准确判断某些随机事件是否等可能; 3、体会简单事件的概率公式的正确性; 4、会利用概率公式求事件的概率。 教学重点: 等可能事件和利用概率公式求事件的概率。 教学难点:判断一些事件可能性是否相等。 教学过程:第一课时 一、引言 出示投影: (1)1998年,在美国密歇根州的一个农场里出生了一头白色奶牛。据统计平均出生1千万头牛才会有一头是白色的。你认为出生一头白色奶牛的概率是多少? (2)设置一只密码箱的密码,若要使不知道秘密的人拨对密码的概率小于999 1 ,则密码的位数至少需要多少位? 这些问题都需要我们进一步学习概率的知识来解决。本章我们将进一步学习简单事件的概率的计算、概率的估计和概率的实际应用。 二、简单事件的概率 1、引例:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出一棋子,是黑棋子的可能性是多少? 小结:在数学中,我们把事件发生的可能性的大小,称为事件发生的概率 如果事件发生的各种可能结果的可能性相同,结果总数为n ,事件A 发生的可能的结果总数为m ,那么事件A 发生的概率是n m A P )(。 2、练习: 如图 三色转盘,每个扇形的圆心角度数相等,让转盘自由转动一次, “指针落在黄色区域”的概率是多少? 3、知识应用: 例1、如图,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转动,求

(1)转盘转动后所有可能的结果; (2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率; 3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 解:将两个转盘分别自由转动一次,所有可能的结果可表示为如图,且各种结果的可能性相同。所以所有可能的结果总数为n =3×3=9 (1)能配成紫色的总数为2种,所以P = 9 2 。 (2)能配成绿色或紫色的总数是4种,所以P = 9 4。 练习:课本第32页课内练习第1题和作业题第1题。 例2、 一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。 (1)写出两次摸球的所有可能的结果; (2)摸出一个红球,一个白球的概率; (3)摸出2个红球的概率; 解:为了方便起见,我们可将3个红球从1至3编号。根据题意,第一次和第二摸球的过程中,摸到4个球中任意一个球的可能性都是相同的。两次摸球的所有的结果可列表表示。 (1)事件发生的所有可能结果总数为n = 4×4=16。 (2)事件A 发生的可能的结果种数为m =6, ∴n m A P = )(= 83 166= (2)事件B 发生的可能的结果的种数 m =9 ∴16 9)(== n m B P 练习:课本第32页作业题第2、3、4题 三、课堂小结: 1、概率的定义和概率公式。 2、用列举法分析事件发生的所有可能请况的结果数一般有列表和画树状图两种方法。 3、在用列表法分析事件发生的所有情况时往往第一次在列,第二次在行。表格中列在前,行在后,其次若有三个红球,要分红1、红2、红3。虽然都是红球但摸到不同的红球时不能表达清楚的。 四、布置作业:见课课通

相关主题
文本预览
相关文档 最新文档