当前位置:文档之家› 23.3.2相似三角形判定(两边一角.3.2相似三角形判定(两边一角

23.3.2相似三角形判定(两边一角.3.2相似三角形判定(两边一角

相似三角形的判定和应用

相似三角形的判定和应用 知识点: 1. 对应角________,对应边_________的两个三角形叫做相似三角形. 2. 相似三角形的对应角________,对应边_________. 3. 相似三角形中,对应边的比叫做___________(或相似系数). 4.证明两个三角形相似的方法: (1)先证_____组对应角相等. (2)先证两边对应成比例,并且____________. (3)先证三边对应___________. 5.如图1,如果ΔABC与ΔA/B/C/的相似比是AB∶A/B/=k,那么ΔA/B/C/与ΔABC的相似比是_ . 6.在图2和图3中: 要证明ΔADE∽ΔABC,只需先证明_________(填一个条件)。 7.在图3中,若DE∥BC,DB∶DA=9∶4,则ΔABC与ΔADE的相似比是______. 8.如图4, ABCD中,G是BC边延长线上一点,AG交DB、DC于E、F, 则图中的相似三角形共有_____对;若AE∶EF=4∶3则ΔAFD与ΔGFC的相似比是______. 9.如图5,当∠ADC=∠____时,ΔABC∽ΔACD;当A2=_________时,ΔABC∽ΔACD. 10. ΔABC的三边长为3、4、5,ΔA/B/C/的最短边为5,若ΔABC∽ΔA /B / C /,则ΔA/B/C/的面积为____. 一、选择题 1.如图,DE∥BC,EF∥AB,则图中相似三角形一共有() A.1对 B.2对 C.3对 D.4对 第1题第2题第3题第4题第5题 2.如图,P是Rt ABC △斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作() A. 1条 B. 2条 C. 3条 D. 4条 3.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件不能使ΔABE和ΔACD相似的是() A. ∠B=∠C . ∠ADC=∠AEB C. BE=CD,AB=AC D. AD∶AC=AE∶AB 4.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有() A ΔADE∽ΔAEF B ΔECF∽ΔAEF C ΔADE∽ΔECF D ΔAEF∽ΔABF 5.如图,E是□ABCD的边BC的延长线上的一点,连结AE交CD于F,图中有相似三角形() 1

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

教案:4.4 两个相似三角形的判定(2)

4.4两个相似三角形的判定(2) 教学目标: 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点: 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点: 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法: 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大

C 对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC 中,AB =AC ,∠A =120°,在△A ′B ′C ′中,A ′B ′=A ′C ′,∠A ′=30°,可以说AB ∶A ′B ′=AC ∶A ′C ′,∠B =∠A ′,但两个三角形不相似. 教学过程: 一、复习 1、我们已经学习了几种判定三角形相似的方法?(1)平行于三角形一边直线定理 ∵DE ∥BC ,∴△ADE ∽△ABC (2 ∠A ′,∠B=∠B ′,∴△ABC ∽△A ′B ′C ′(3 ∵∠ACB=Rt ∠,CD ⊥AB ,∴△ABC ∽△ACD ∽△CDB 二、新课 1、合作学习 A B C A ′ B ′ C ′ 4-3-14

《相似三角形的判定预备定理-》

相似三角形的判定——预备定理 【教学目标】 知识技能:掌握用相似三角形的定义和预备定理判断两个三角形相似 过程方法:在探索相似三角形判定定理过程中,体现解决问题的方法 情感态度:在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质. 【教学重点】预备定理的证明与应用 【教学难点】预备定理的证明 【教学过程】 一.复习引入 活动1 。 回顾相似三角形的定义,定义既是判定也是性质;平行线分线段成比例 出示问题:如图,DE 学生猜想:相似。能得到△ADE ∽△ABC 吗 教师活动:教师出示并提出问题,组织学生思考. (1)△ADE 与△ABC 满足“对应角相等”吗为什么 (2)△ADE 与△ABC 满足对应边成比例吗由“DE ∥BC ”的条件可得到哪些线段的比相等 (3)根据以前学习的知识如何把DE 移到BC 上去(作辅助线DF ∥AC ) 学生活动:学生小组讨论:要证△ADE ∽△ABC 只需证∠A=∠A ,∠B=∠2,∠C=∠3←——由平行得 =AD AE DE AB AC BC ? =?? 由DE ∥BC 得 相似定义 只需证出:DE AD BC AB =或DE AE BC AC = 由于DE 、BC 不在同一直线上,故可以通过做辅助线平移DE ,将DE 、BC 放在同一直线上 ; 证明: 过D 点作DF ∥AC 交BC 于F ∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是□ ∴DE=CF ∵DF ∥AC ∴CF AD BC BD = ∴DE AD BC BD = ∵DE ∥BC ∴ = AD AE BD AC ∵DE ∥BC ∴∠A=∠A ,∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC BC DE AC AE AB AD = =∴ B

角角相似三角形的判定练习

相似三角形的判定练习 【知能点分类训练】 知能点1 角角识别法 1.如图1,(1)若OA OB =_____,则△OAC∽△OBD,∠A=________. (2)若∠B=________,则△OAC∽△OBD,________与________是对应边. (3)请你再写一个条件,_________,使△OAC∽△OBD. 2.如图2,若∠BEF=∠CDF,则△_______∽△________,△______∽△_______. (1) (2) (3) 3.如图3,已知A(3,0),B(0,6),且∠ACO=?∠BAO,?则点C?的坐标为________,?AC=_______. 4.已知,如图4,△ABC中,DE∥BC,DF∥AC,则图中共有________对相似三角形.5.下列各组图形一定相似的是(). A.有一个角相等的等腰三角形 B.有一个角相等的直角三角形 C.有一个角是100°的等腰三角形 D.有一个角是对顶角的两个三角形 6.如图5,AB=BC=CD=DE,∠B=90°,则∠1+∠2+∠3等于(). A.45° B.60° C.75° D.90° (4) (5) (6) 7.如图6,若∠ACD=∠B,则△_______∽△______,对应边的比例式为_____________,∠ADC=________. 8.如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.

9.如图,D ,E 是AB 边上的三等分点,F ,G 是AC 边上的三等分点,?写出图中的相似三角形,并求出对应的相似比. 10.如图,在直角坐标系中,已知点A (2,0),B (0,4),在坐标轴上找到点C (1,0)?和点D ,使△AOB 与△DOC 相似,求出D 点的坐标,并说明理由. 【综合应用提高】 11.已知:如图是一束光线射入室内的平面图,?上檐边缘射入的光线照在距窗户 2.5m 处,已知窗户AB 高为2m ,B 点距地面高为1.2m ,求下檐光线的落地点N?与窗户的距离NC . 12.如图,等腰直角三角形ABC 中,顶点为C ,∠MCN=45°,试说明△BCM ∽△ANC . 13.在ABCD 中,M ,N 为对角线BD 的三等分点,连接AM 交BC 于E ,连接EN 并延长交AD 于F .(1)试说明△AMD ∽△EMB ;(2)求FN NE 的值.

相似三角形的判定方法

相似三角形的判定方法 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一(预备定理) 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明) 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似 方法三 如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似 方法四 如果两个三角形的三组对应边的比相等,那么这两个三角形相似 方法五(定义) 对应角相等,对应边成比例的两个三角形叫做相似三角形 一定相似的三角形 1.两个全等的三角形一定(肯定)相似。 2.两个等腰直角三角形一定(肯定)相似 (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) 3.两个等边三角形一定(肯定)相似。 直角三角形相似判定定理 1.斜边与一条直角边对应成比例的两直角三角形相似。 2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 编辑本段三角形相似的判定定理推论 推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的判定定理2

A B C A 1 B 1 C 1 A B C D O 1、 相似三角形判定定理2 如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,1A A ∠=∠,1111 AB AC A B AC = ,那么ABC ?∽111A B C ?. 【例1】 如图,四边形ABCD 的对角线AC 与BD 相交于点O , 2OA =,3OB =,6OC =,4OD =. 求证:OAD ?与OBC ?是相似三角形. 相似三角形判定定理2 知识精讲

A B C D A B C D E 【例2】 如图,点D 是ABC ?的边AB 上的一点,且2AC AD AB =g . 求证:ACD ?∽ABC ?. 【例3】 如图,在ABC ?与AED ?中, AB AC AE AD = ,BAD CAE ∠=∠. 求证:ABC ?∽AED ?. 【例4】 下列说法一定正确的是( ) A .有两边对应成比例且一角相等的两个三角形相似 B .对应角相等的两个三角形不一定相似 C .有两边对应成比例且夹角相等的两个三角形相似 D .一条直线截三角形两边所得的三角形与原三角形相似 【例5】 在ABC ?和DEF ?中,由下列条件不能推出ABC ?∽DEF ?的是( ) A .A B A C DE DF = ,B E ∠=∠ B .AB AC =,DE DF =,B E ∠=∠ C .AB AC DE DF = ,A D ∠=∠ D .AB AC =,DE DF =,C F ∠=∠

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则,,,…AB BC DE EF AB AC DE DF BC AC EF DF === ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 ○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ; 知识点二、相似三角形的判定

判定定理1:两角对应相等,两三角形相似. 符号语言: 拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。 (2)顶角或底角对应相等的两个等腰三角形相似。 例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出 AD AE BD CE = 吗?请说明理由。(用两种方法说明) 例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D. 求证:(1)2AB BD BC =?;(2)2AD BD CD =?;(3)CB CD AC ?=2 例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则 BD BE AD AF =例题精讲 A E D B C A B C D

吗?说说你的理由. 例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C (1) 求证:△ABF ∽△EAD ; (2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。 2分之3倍根号3 随练: 一、选择题 1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对 2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )C A D C B E F G F E D C B A

初中数学 27.2.1 相似三角形的判定(1)教案

课题 27.2.1相似三角形的判定(一)【总第3课时】 教学任务分析 活道镇初级中学 陆炳泉 教学目的: (1) 会用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (2) 知道当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . (3) 理解掌握平行线分线段成比例定理 (4) 在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析 问题. (5) 在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质. 重点、难点 教学重点: 理解掌握平行线分线段成比例定理及应用. 教学难点: 掌握平行线分线段成比例定理应用. 一. 创设情境 谈话复习引入课题 (1)相似多边形的主要特征是什么? (2)在相似多边形中,最简单的就是相似三角形. 在△ABC 与△A′B′C′中, 如果△A=△A ′, △B=△B ′, △C=△C ′, 且k A C CA C B BC B A AB =' '=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC△△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC△△A ′B ′C ′, 则有△A=△A ′, △B=△B ′, △C=△C ′, 且A C CA C B BC B A AB ' '=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系? 教师活动:明确 (1)在相似多边形中,最简单的就是相似三角形。 (2)用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (3)当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . 活动1 (教材P 40页 探究1) 如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?

相似三角形的判定--角角 (2)

相似三角形的判定--角角 一、内容及内容解析: 1.内容:两角分别相等的两个三角形相似。 2.内容解析: 三角形相似的判定是在学习了三角形内角和性质,三角形全等、多边形相似及三角形相似的后续学习,它是相似多边形中最为简单的相似图形。 在探究“两角分别相等的两个三角形相似”的过程中,学生看书自学,先度量发现结论成立,再通过作与?A'B'C'相似的三角形,把证明三角形相似转化为三角形全等的问题。此判定的学习具有承上启下的作用,培养学生对知识转化的能力和化繁为简的思想。相似三角形是今后学习锐角三角函数和圆的知识基础,另外在学习物理等相关方面也要用到相似三角形的知识。 基于以上分析,本节课的教学重点是:判定定理“两角分别相等的两个三角形相似”。 二、教学目标: 1.课程标准:经历三角形相似与全等的类比过程,进一步体验类比思想、特殊与一般的辩证思想。掌握判定两个三角形相似的基本方法。 2. 知识与技能:通过经历两个三角形相似条件的探索过程,发现“两角分别相等的两个三角形相似”的判定方法。 3.过程与方法:进一步发展学生的自学、探究、交流能力、合情推理能力和初步的逻辑推理意识,并能够运用三角形相似的条件解决简单问题。 4.情感、态度与价值观:通过自学,激发学生学习兴趣,培养学生自主学习的能力,培养学生主动、愉快的学习情感。 三、教学问题诊断分析 在判定定理证明的过程中,教科书做了一个中介三角形,使之与要证的三角形相似,再利用中介三角形与原三角形全等,这种转化的方法学生往往很难想到。不同于以往证角相等的方法,也会给定理的证明带来一定的难度。 本节课的教学难点是:判定定理“两脚分别相等的两个三角形相似”的证明。 四、学情分析: 1.九年级学生已经具备了一定的图形之间关系的认识。

完整版相似三角形的判定方法

(一)相似三角形 1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1 ?所以全等三角形是相似三角形的特例?其 区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0 △ ABC的相似比「当它们全等时,才有k=k' =1 ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小 的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ?/ DE // BC ,???△ ABC ADE ; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的 应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”; ③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似 (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角 形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADE A (双A型)

相似三角形的判定(二)

3.3 相似三角形的判定(二) 一、教学目标 1.掌握“三组对应边的比相等的两个三角形相似”、“两组对应边的比相等且它们夹角相等的两个三角形相似”的判定定理. 2.经历探索两个三角形相似条件的过程,体验画图操作、类比猜想、分析归纳得出数学结论的过程; 3.能够运用三角形相似的条件解决简单的问题; 4.通过问题的探索过程,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。 二、重点、难点 1.重点:掌握两种判定定理,会运用两种判定方法判定两个三角形相似. 2.难点:(1)三角形相似的条件归纳、证明; (2)会准确的运用两个三角形相似的条件来判定三角形是否相似. 三、教学过程 (一)复习已学过的知识 问题:(1) 判断两个三角形相似,你有哪些方法? 方法1:通过定义(不常用) 方法2:通过平行线(条件特殊,使用起来有局限性) (2) 思考:有没有其它简单的办法判断两个三角形相似? (3) 全等三角形与相似三角形有怎样的关系? 设计意图: 引导学生复习学过的知识,承前启后,激发学生学习新知的欲望。 (二)类比联想、猜想相似三角形的判定方法。 (1)问题:判定一般三角形全等有哪些判定方法? (2)由全等三角形是相似三角形的特例,启发我们类比全等三角形的判定方法猜想相 设计意图: 回顾三角形全等条件,用类比展开思维,按顺序展开探究。三、证明猜想,形成定理 1.猜想一:类比三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条对应边的比相等,那么能否判定这两个三角形相似呢? 2.带领学生画图探究: (1)任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗? (2)教师借助几何画板对两个三角形三组对应角进行度量,对猜想结论得到数据准确的验证,初步形成结论。 (3)学生口述命题:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。3.怎样证明这个命题是正确的呢? (命题是否正确,需要理论严谨的证明,教师带领学生探求证明方法) 如图,在ABC ?和' ' 'C B A ?中, ' ' ' ' ' 'C A AC C B BC B A AB = =, 求证:ABC ?∽' ' 'C B A ? 分析:(1)要证两个三角形相似,目前只有两个途径。一个是三角形相似的定义(显然条件不具备);二个是上节课学习的利用平行线来判定三角形相似的定理。为了使用它,就必须创造具备定理的基本图形的条件。怎样创造呢? (2)学生会想到把小的三角形移动到大的三角形上,然而如何实现平移呢? (3)引导学生整理证明思路,教师板书证明过程。 证明:在线段' 'B A(或它的延长线)上截取AB D A= ',过点D作DE∥' 'C B,交' 'C A 于点E,根据前面的定理可得DE A' ?∽' ' 'C B A ?. ' ' ' ' ' ' ' ' C A E A C B DE B A D A = = ∴. , ' ' ' ' ' ' ' AB D A C A AC C B BC B A AB = = =, 又 . ' ' ' ' ' C A AC C A E A = ∴ . 'AC E A= ∴ 同理 DE=BC. DE A' ? ∴≌ABC ?. ABC ? ∴∽' ''C B A ?. 4.命题改成定理 三角形相似的判定方法 1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.

浙教版-数学-九年级上册-4.4 两个相似三角形的判定(2) 教案

两个相似三角形的判定(2) 教学目标: 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点: 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点: 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法: 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC 中,AB =AC ,∠A =120°,在△A ′B ′C ′中,A ′B ′ =A ′C ′,∠A ′=30°,可以说AB ∶A ′B ′=AC ∶A ′C ′,∠ B =∠A ′,但两个三角形不相似. A B C A ′ B ′ C ′

初三数学-相似三角形的判定知识讲解

初三数学-相似三角形 的判定

【本讲教育信息】 一. 教学内容:相似三角形的判定 二. 重点、难点怎样选择适当的定理判定三角形的相似是学习中的重点和难点。 三. 知识回顾 (一)定义:对应角相等,对应边成比例的两个三角形叫相似三角形。 相似三角形的对应边的比叫做相似比(也叫相似系数)。 (二)判定: ①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 ②两边对应成比例且夹角相等的两个三角形相似。 ③有两个角对应相等的两个三角形相似。 ④三条边对应成比例的两个三角形相似。 ⑤一条直角边和斜边对应成比例的两个直角三角形相似。 ⑥直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似。 【典型例题】 例1. 如图,△ABC中,∠A= 60,BD⊥AC于D,CE⊥AB于E,求证:△ADE∽△ABC。 例2. 如图,过△ABC的顶点B和C,分别作AB、AC的垂线BD、CD,使交于点D,过C作CE⊥AD交AB于E,交AD于F 求证:△ACE∽△ABC 例3. 如图,△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,求证:△AEF∽△ACB 例4. 如图,点E是正方形ABCD的边AB上一点,且AE:AB=1:4,F为边AD上一点,问:当F在AD上的什么位置时,△AEF∽△CDF。

【模拟试题】(答题时间:30分钟) 1. 判断下列各命题的真假(真命题打“T ”,否则打“F ”) (1)若一条直线截三角形的两边所得的三角形与原三角形相似,则这条直线平行于三角形的第三边( ) (2)有一个锐角相等的两个等腰三角形必定相似( ) (3)三组边分别平行的两个三角形必定相似( ) (4)有一个锐角相等的两个直角三角形必定相似( ) (5)一个顶角为?40的等腰三角形和一个底角为?70的等腰三角形相似( ) (6)四个角对应相等的两个梯形必定相似( ) (7)所有的菱形均相似( ) (8)所有的正方形均相似( ) 2. △ABC 中,∠ACB=?90,CD ⊥AB 于D ,DE ⊥AC 于E ,则与△ABC 相似而不全等的三角形的个数是( ) A. 2 B. 3 C. 4 D. 5 3. 已知△ABC ∽△'''C B A ,相似比为4,△'''C B A ∽△''''''C B A ,相似比为3,试问:△ ''''''C B A 与△ABC 是否相似?若它们相似,则相似比为多少? 4. 如图,若∠EBC=∠ABD ,∠ECB=∠DAB 求证:△ABC ∽△DBE 。 5. 过△ABC 三条角平分线的交点I ,作AI 的垂线与AB 、AC 分别交于D 、E , 求证:△BID ∽△IEC 。 6. 如图,平行四边形ABCD 中,AD=10,DC=6,E 为AB 中点,F 有BC 上,则BF 长为多少时,使得△DCF ∽△DAE ?

相似三角形判定两角法

27.2.1相似三角形的判定 第三课时 教学目标 (一)知识与技能 掌握判定两个三角形相似的方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 (二)过程与方法 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法3与全等三角形判定方法(AAS﹑ASA)的区别与联系,体验事物间特殊与一般的关系。 (三)情感态度与价值观 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。〔教学重点与难点〕 教学重点:两个三角形相似的判定方法3及其应用 教学难点:探究两个三角形相似判定方法3的过程 教学过程: 新课引入: 复习两个三角形相似的判定方法1﹑2与全等三角形判定方法(SSS﹑SAS)的区别与联系: 如果两个三角形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1) 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(相似的判定方法2) 提出问题: 观察两副三角尺,其中同样角度(300与600,或450与450)的两个三角尺大小可能不同,但它们看起来是相似的。 如果两个三角形有两组角对应相等,它们一定相似吗? 延伸问题: 作?ABC与?A 1B 1 C 1 ,使得∠A=∠A 1 ,∠B=∠B 1 ,这时它们的第三角满足∠C=∠

C 1吗?分别度量这两个三角形的边长,计算 11AB A B ﹑11BC B C ﹑11 AC A C ,你有什么发现?(学生独立操作并判断) 分析:学生通过度量,不难发现这两个三角形的第三角满足 ∠C=∠C 1,11AB A B =11BC B C =11 AC A C 。 分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。) 探究方法: 探究3 分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生观察在动态变化中存在的不变因素。) 归纳:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这 两个三角形相似。(定理的证明由学生独立完成) 符号语言: 若∠A=∠A 1,∠B=∠B 1 ,则?ABC ∽ ?A 1B 1C 1 应用新知: 例2 如图27·2-7,弦AB 和CD 相交于⊙O 内一点P , 求证:PA ·PB=PC ·PD 。 分析:欲证PA ·PB=PC ·PD ,只需PA PC PD PB =,欲证PA PC PD PB =只需?PAC ∽?PDB ,O C A B D A B C A 1 B 1 C 1

相似三角形的判定(角角)教学设计

教学设计 27.2.1相似三角形判定(角角判定) 内容分析:相似三角形的判定是相似三角形研究的重要内容。前面已学习了“定义”、“平行线”、“三边”“两边及夹角”这几种方法,这些方法都与“边”有关,很自然地提出“无边”能否判定三角形相似。“两角分别相等的两个三角形相似”是证明两个三角形相似最简单、最常用的方法。 学情分析:九年级学生已具备一定的逻辑推理能力,可放手给学生探究。但外宿班同学基础较差,教师要适时加以提示点拨。 教学目标:第一,理解三角形相似的角角判定;第二,会运用角角判定解决简单问题;第三,在教学中渗透类比、转化、几何直观思想;第四,培养学生探究、合作精神;第五,通过知识的应用学会正确推理,以理服人 教学重点:理解三角形相似的角角判定,会运用角角判定解决简单问题。 教学难点:三角形相似的角角判定的推导过程及几何证明题的书面文字表达。 教学方法:运用多媒体进行启发式、引导式教学。 教学过程:(运用多媒体教学) 一、知回识顾 相似三角形的判定方法(教师简单板书在黑板左边) 1.定义法:三角对应相等,三边对应成比例的两个三角形相似。 2. 平行法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 3. 边边边(SSS): 三边对应成比例的两个三角形相似。 4.边角边(SAS): 两边对应成比例且夹角相等的两个三角形相似。 学生回答完相似三角形的判定方法后做以下既简单又易错的练习,目的是达到温故知新。 练习:在△ABC和△A′B′C′中,已知: (1)AB=6 ,BC=8,AC=15, A′B′=12,B′C′=16,A′C′=35 试判定△ABC与A′B′C′是否相似,并说明理由。(不相似)

湘教版九年级数学上册《相似三角形的判定》教案

《相似三角形的判定》教案 教学目标 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例题的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 教学过程 一、复习 1、我们已经学习了几种判定三角形相似的方法? C (1)平行于三角形一边直线定理 ∵DE∥BC,∴△ADE∽△ABC (2)判定定理1: ∵∠A=∠A′,∠B=∠B′,∴ △ABC∽△A′B′C′ (3)直角三角形中的一个重要结论

∵∠ACB =Rt ∠,CD ⊥AB ,∴△ABC ∽△ACD ∽△CDB 二、新课 1、合作学习: 下面我们来探究还可用哪些条件来判定两个三角形相似? 我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS ”、“SSS ”判定方法,三角形相似还有两个判定方法,即判定定理2和判定定理3. 2、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.可以简单说成“两边对应成比例且夹角相等,两三角形相似”. 已知:如图,△A ′B ′C ′和△ABC 中, ∠A ′=∠A ,A ′B ′∶AB =A ′C ′∶AC 求证:△A ′B ′C ′∽△ABC 定理的几何格式: ∵∠A =∠A ′ AB A ′B ′ =AC A ′C ′ ∴△ABC ∽△A ′B ′C ′ 3、例题讲解 例:如图已知点D ,E 分别在AB ,AC 上,AD AB =AE AC 求证:DE ∥BC . 4、判定定理3:如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似. 几何格式 ∵AB A ′B ′ =AC A ′C ′ =BC B ′C ′ ∴△ABC ∽△A ′B ′C ′ 三、探究活动: 在有平行横线的练习薄上画一条线段AB ,使线段A ,B 恰好在两条平行线上,线段AB 就 A B C A ′ B ′ C ′ A B C D E A B C A ′ B ′ C ′

怎样判定两个三角形相似

怎样判定两个三角形相似 如何正确理解与灵活应用有关相似三角形的各种判定方法,具有十分重要的意义,它与“判定两个三角形全等”构成了平面几何问题的两大基本思想体系,也就是说,平面几何中的大量问题,主要依赖于全等形或相似形求解. 1.利用“定义”判定两个三角形相似. “对应角相等,对应边成比例的三角形,叫做相似三角形”. 相似三角形的定义属演绎性定义,又称实质性定义,定义指出这个概念区别于其他概念的主要特征.由于它从“等角”和“比例线段”两个方面在数量关系上作出了明确规定,所以,相似三角形的定义就成为判定两个三角形相似的最基本方法.也是推导其它判定方法的理论依据.(有些演绎性定义不能作为判定方法应用,例如平行线定义“在同一平面内,不相交的两条直线叫做平行线”,由于无法从其他途径得知两条直线在同一平面内是否相交,故平行线的定义不能用来判定两条直线平行.) 根据相似三角形的定义,如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似. 如图1,在△ABC和△A′B′C′中, ∵∠A=∠A′∠B=∠B′ ∠C=∠C′ ∴△ABC∽△A′B′C′. 这种判定方法正确无疑.但是由于它需要的条件太繁,应用时有不便之感,更主要的是它的实用价值不大.因此,人们不断研究、探讨,努力寻求只需少许条件,便能判定两个三角形相似,然后再利用相似三角形的性质,解决大量的实际问题,这是应具备的科学态度和思想方法. 2.利用“预备定理”判定两个三角形相似. 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 如图2,若DE∥BC.则△ADE∽△ABC.

显然,定理的题设部分简单易得,只需要一条平行于三角形一边的平行线,即可获得相似三角形. (1)定理证明的理论依据是“相似三角形的定义”. (2)定理构成的特点决定了它在判定三角形相似问题中的重要地位.是否能在组合图形中迅速而准确地找到予备定理的基本图形,直接影响着解题思路的顺利进展. (3)定理所需平行线大致有以下几种来源. ①利用同位角相等,内错角相等或同旁内角互补. ②利用比例线段. ③利用三角形中位线或梯形中位线. ④利用平行四边形对边平行或梯形的两底平行. ⑤结合题目的具体情况添加的辅助平行线. [例1]已知:如图3,D是AB中点.CF∥AB, G、F、E、D在一条直线上. 分析:由已知CF∥AB,结合图形,应迅速准确地判断出△GCF∽△GAD, △CEF∽△BED,从而可以获得比例式 再由D是AB中点,易知AD=DB,

相似三角形的判定()

年 级 九年级 课题 27.2.1相似三角形的判定(第一课时) 课型 新授 教学媒体 多媒体 教 学 目 标 知识 技能 1. 了解相似三角形及相似比的概念; 2. 掌握平行线分线段成比例定理和推论; 3. 掌握相似三角形两种判定方法:平行线法,三边法. 过程 方法 类比全等三角形的判定方法探究相似三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法. 情感 态度 发展学生的探究能力,渗透类比思想,体会特殊与一般的关系. 教学重点 掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似. 教学难点 能运用相似三角形的判定方法判定两个三角形相似 教学程序及教学内容 师生行为 设计意图 一、复习引入 1.什么是相似多边形? 2.怎样判断两个多边形相似? 3.三角形也属于多边形吗?相似三角形属于相似多边形吗? 4.给相似三角形下定义. 5.怎么样判断两个三角形相似? 二、自主探究 (一)平行线分线段成比例定理及其推论 教材40页探究1 ● 平行线分线段成比例定理 分析: 1.线段AB,BC,DE,EF 的长度随着直线5,43,l l l 的位置的变化而变化吗? 2.猜测BC AB 与EF DE 相等吗? 3.通过画图,测量,计算验证你的猜想. 4.用数学语言描述你的发现. 得到:平行线分线段成比例定理 教师点拨:其它成比例的线段还有哪些?实际上,线段左上、左下、左全,右上、右下、右全只要写在对应位置, 所得比就是相等的. ● 平行线分线段成比例定理的推论 1.定理图形中的直线21,l l 交点在直线43,l l 上时,对应线段还成比例吗? 2.擦去四周的部分,只留下△ABC 和△ADE ,原来的对应线段还成比例吗? 你可以得到什么结论? 得到:平行线分线段成比例定理构的推论 (二)相似三角形的判定方法 ● 平行线法 在上面的两幅图形中,△ABC 和△ADE 相似吗?你能用学过的知识说明吗? 教师提出问题,学生回忆,思考,并回答 教师组织学生按照探究要求进行活动,并回答教师设计的问题,逐步完善探究到的结论. 教师进行必要点拨,让学生认识到所有的成比例线段以及他们的内在联系. 教师利用图形的变化自然将教学内容过渡到推论的探究,引导学生思考问题,逐步认识到定理内容在三角形中体现,从而得到推论,学生尝试叙述,教师引导完善,规范. 复习相关知识,引出课题。建立新旧知识之间的联系,感知事物之间由一般到特殊,由特殊到一般的关系. 激起学生的好奇心,探索欲望. 通过实践,建立感性认识,再通过语言描述建立理性认识(定理). 让学生亲自进行观察,分析,探究,得到结论,培养学生的观察能力,再次体会由一般到特殊的思想方法. 23

相关主题
文本预览
相关文档 最新文档