当前位置:文档之家› 聚丙烯酰胺凝胶电泳的操作方法

聚丙烯酰胺凝胶电泳的操作方法

聚丙烯酰胺凝胶电泳的操作方法
聚丙烯酰胺凝胶电泳的操作方法

聚丙烯酰胺凝胶电泳的操作方法

(一)管型盘状电泳

1.仪器和设备

图8 管型盘状电泳槽结构

A为正面B为剖面

(1)分离胶PH8.9 (2)浓缩胶PH6.7

(3)电极缓冲液PH8.3

电泳槽:盘状电泳槽国内有很多单位生产,也可因地制宜,自己制造,槽大多为圆筒形(图9),也有长方形的,上、下槽分别接铂金丝电极,要注意电极到各胶管的距离相等,以保持各凝胶管的电场一致。

电泳仪:国内生产的型号很多,如北京六一仪器厂的DYY-Ⅲ型,电压在0~600v内任意调节,电流输出0~100mA,这类电泳仪比较恰当。

玻璃管:选择粗细均一的圆玻璃管,内径5~7mm左右,管长70~100mm。管口用金刚砂磨平,电泳管的清洁很重要,需浸入10%重铬酸盐-硫酸溶液中清洗,再用蒸馏水彻底淋洗干净,在管中滴入丙酮而后干燥备用。

聚胶架:普通试管架式样,有机玻璃制成,架的孔洞内装一乳胶管,要求乳胶管孔内径与玻璃管外径相同或略小。

微量注射器或微量进样器:加样时,由于需样品量极小,作定量分析时要求样品量准确,因此最好用25.50或100μl的微量进样器加样,也可用50或100μl加液器代用。

普通注射器:主要用于灌胶和剥胶,20~30ml,附加10号不锈钢长针头(约10cm长)。

其他:日光台灯,PH计,恒温水浴,烧杯,容量瓶,量筒,试管,漏斗,滤纸,电炉,电子天平等。

2.试剂甲叉双丙烯酰胺(Bis);丙烯酰胺(Acr);四甲基乙二胺(TEMED);过硫酸铵;核黄素(V B2);三羟甲基氨基甲烷(Tris);蔗糖;甘氨酸;盐酸等。

丙烯酰胺和甲叉丙烯酰胺产品不纯时需要纯化后才能使用。

(1)丙烯酰胺纯化法:70g丙烯酰胺溶于500ml氯仿中(50℃),热滤,滤液凉后置-20℃冰箱,即有结晶析出,砂芯漏斗过滤,收集结晶。结晶置于真空干燥器中减压干燥,贮棕色瓶中备用。

(2)甲叉双丙烯酰胺纯化法:12g甲叉双丙烯酰胺溶于100ml 40~50℃丙酮,加热过滤,滤液置-20℃冰箱,结晶析出后过滤,并置于真空干燥器中干燥,保存于棕色瓶中备用。

3.试剂配制

(1)凝胶及缓冲液配制系统

有关资料很多,可以根据需要选择适宜的系统。列表4供参考。最常用的是系统1(所谓Davis的标准状态)。各种贮存液配制后,盛于棕色瓶中,贮冰箱备用。用时需测PH值,以检查是否失效。TEMED要密封贮藏。过硫酸铵溶液最好现用现配,不宜超过一周。

表4 几种适用电泳的聚丙烯酰胺凝胶系统

(2)指示剂配制

蛋白质样品通常是无色的,为了观察和估计样品在凝胶上迁移情况,常加指示剂作为电泳迁移的可见标志。对碱性缓冲系统,一般用溴酚蓝或酚红,对于酸性缓冲系统,一般用甲基绿或次甲基兰。指示剂可直接加在样品中,也可加在电泳槽的缓冲液中,也可加在玻管中。

溴酚蓝通常配制成0.1%的母液备用。

(3)染色剂配制

蛋白质的染色方法很多,常用的染色剂有氨基黑10B,考马斯亮蓝R250,考马斯亮蓝G250等,有关配制浓度,染色方法以及同工酶的显色方法见操作过程中的染色部分。

4.操作技术

(1)凝胶制备

配制凝胶前,应把玻璃管装好。装玻管的方式很多:在凝胶架的孔洞内,加少许40%蔗糖溶液,然后把洗净干燥的玻璃管套上乳胶管,插入架的孔洞内,使玻璃管、乳胶管与孔底相平;玻璃管的一端用青霉素瓶盖封口,或者用附有玻璃短柱的乳胶管封口;底平坦的玻管也可用橡皮膏布封口,封口的玻管安放在试管架上;也可把玻璃管用橡皮筋捆扎在一起,一端搞平后放在培养皿中,然后用1%琼脂趁热倒在培养皿中,冷却后,玻璃管口即被琼脂凝胶封住。

配制凝胶时,先将所需的贮备液自冰箱中取出,放至室温下预温。

聚丙烯酰胺凝胶通常只制备二种胶。先制备分离胶,再在分离胶上面制备浓缩胶,样品胶一般不制作,这是因为①有些样品会抑制胶聚合;②光照可引起某些蛋白质变性;③多了一道手续,延长制胶时间。

分离胶的制备:按表4比例混合贮存液,(先不与过硫酸铵混合),放在真空干燥器中抽气,排除溶液中空气。抽气后在贮存液中加入过硫酸铵混匀,用注射器沿玻璃管壁慢慢注入胶液,各支玻管注入的量要相同,或按事先作好标记,注胶到相同的高度。务必勿使气泡出现。为了使凝胶表面平整,在凝胶表面再慢慢地加入一层水,约3~5mm高度,消除凝胶的弯月面。加水要小心,切勿冲乱界面。加水的另一作用是隔绝空气中氧与胶液接触。以防影响顶部胶层的聚合。注射器中残留的胶液要立即清洗掉,以防胶液在针头与注射器中聚合,而使其损坏。

水层放好后,静置30分钟,使凝胶进行化学聚合反应。聚合最适温度为25℃。当水刚加入胶面时,水与凝胶形成一界面,后界面慢慢消失,当凝胶聚合时,水与凝胶之间又出现界面。界面的再出现表明凝胶已经聚合,再静置20~30分钟,聚合便完全。

分离胶的预电泳(此步骤应根据实验的需要决定取舍):凝胶聚合程度一般在90%以上。残留的物质,尤其是过硫酸铵,对某些样品(如酶)会造成钝化或引起其它人为效应。因此有时需要在正式电泳前,先用电泳方法除去这些残留物,称为“预电泳”。若直接用光密度计来扫描分离的区带,则预电泳更为重要,因未聚合的丙烯酰胺单体对紫外光有较高吸收,会干扰测定。步骤:去除玻管封口,倒出玻管中凝胶上的水分,并用分离胶缓冲液洗涤一下。把玻管插入电泳装置中。上下电极槽中均加入分离胶缓冲液,预电泳的电流为3mA/管,时间需30分钟~2小时。预电泳不能在制好浓缩胶后进行,也不能用电极缓冲液进行,不然会破坏不连续系统,而使浓缩效应失效。

浓缩胶的制备:分离胶聚合好后,或已经过预电泳的分离胶,用注射器小心吸去水层,用滤纸条吸去残余的水。按表4中比例混合浓缩胶液(也预先抽气,抽气时不要与核黄素混合,使用时再混匀),先用这种凝胶液漂洗一下分离胶顶,除去漂洗液后,再用注射器加浓缩胶溶液1cm左右,各管加的高度应一致,并在上面加水层压平胶面。放在两只20W以上功率的日光灯下,约离灯管10~15cm处,光下聚合60分钟左右,当浓缩胶由浅黄色变为不透明的乳白色,即聚合完成,取出水层,吸干后用电极缓冲液洗涤,准备加样。浓缩胶应临用前制备。

(2)样品的准备

聚丙烯酰胺盘状电泳可用于分离各种蛋白质、核酸等样品。例如血清、唾液、细胞膜蛋白,动植物及微生物的各种蛋白提取液,昆虫的体液,各种酶制品,色素蛋白复合体以及核糖核酸等。初学者可用现成的蛋白质样品如血清练习操作。

盘状电泳所需要的样品是很少的。一个标准凝胶管按体积,需要5~100μl的样品(约0.1~2mm高);按含量需要5~100μg。实际上就是用0.1%浓度的样品5~100μl。由于样品组分的不同,用量可有一定的幅度。对于只含有少数组分的样品,通常用10~20μg,对于含有多种组分的样品,可用到200μg。即每一凝胶的样品容纳量不仅指所加的样品总量,更重要的是指样品混合物组分的量。所加样品液量的精确性将影响重复性,误差要不大于±5%。

近来,样品胶一般已改用样品液中加入5%~20%的蔗糖或10%甘油代替,因为样品胶的作用主要是抗对流,蔗糖液和甘油能起同样的效果。

如果样品离子强度太高,会引起分界面模糊不清,严重时完全不能进行电泳。因离子强度太高时降低了蛋白质的电动电位,同时电导过高,在样品部分几乎没有电势梯度,以至样品的泳动速度近于零,不能泳动。硫酸铵盐析的样品或柱层析高盐浓度的洗脱部分,必须透析除盐,务必使其电导低于分离胶的电导,以便形成足够的电势梯度,使区带在分离之前进行浓缩变窄。

如果样品过稀,加样体积太大时,相应地加厚浓缩胶层。玻璃管也要适当加长。通常稀样液与浓缩胶的比不大于1∶1.2。

一个生物样品(粗抽提物),常需要事先经过处理(高速离心,微孔滤膜过滤,柱分离等)去除沉淀,消除混浊。或只取可溶性部分进行电泳。不然常有许多物质留在凝胶与缓冲液的界面上,阻塞凝胶,干扰分离。当样品装载量与样品溶解度不相应时,也会在浓缩胶上或浓缩胶与分离胶界面上产生沉淀,并造成拖尾现象(随着电泳过程,沉淀逐渐溶解,逐渐进入)。

加样前先把密封下口的物件除去,如果是拔橡皮帽,应先让空气进去,再拔管子,防止凝胶拉坏。下槽中放满缓冲液,把玻管固定在盘状电泳槽上槽的洞中。安装时要特别注意保证凝胶管垂直和橡胶塞孔密封不漏。管的下端悬一滴电极缓冲液。先在下槽放上电极缓冲液,再把上槽放在下槽上,避免管下有气泡。然后加样。

加样方法因人习惯不同而略有差异。有的把样品与增加比重的蔗糖及指示剂先混在一起加样;有的指示剂单独加在玻璃管中或在上槽电极缓冲液中滴上几滴指示剂。加样时,有的先加好样液,再在样品上加几滴缓冲液,然后在样液上加电极槽缓冲液;有的先在上槽中加满电极缓冲液,然后用加样器插在缓冲液中往胶管浓缩胶上方加样。总的原则,先提高样品的比重,后加样,加样和加电极缓冲液互不干扰。

(3)电泳

在电泳槽中注满电极缓冲液。缓冲液应事先在冰箱中预冷,上槽电极缓冲液必须浸没玻管和电极。连接直流稳压电源,缓冲液系统为碱性时上槽为负极,下槽为正极。缓冲系统为酸性时则相反。Davis标准状态的凝胶电泳,负极在上,正极在下,电泳槽一般放在冰箱中,保持温度在0~4℃。打开电源开关,调节电流,开始时用1~2mA/管,电泳3~5分钟后,再逐渐升高到4mA/管。不要一开始就电流很高。电流最好不要超过5mA/管。太高的电流强度会造成产热量大,使分离失败。如果高温对样品不利,可降低电流,延长时间,或进行有效冷却,在整个电泳过程中,一般要求电流保持稳定。电泳时间与所用缓冲液和样品有关,一般根据指示剂的迁移来决定,如果指示剂已迁移到凝胶柱的下口附近,或已迁移管长的3/4距离时,就可停止电泳,关闭电源,取出玻璃管。

上槽电极缓冲液可连续使用几次,但必须每次测一下PH,如PH值发生改变就不能再使用。每次电泳后,下槽中混入了催化剂及氯离子,如将下槽缓冲液用于上槽,则影响电泳。重要的电泳,电极缓冲液最好用新鲜的。

(4)剥胶

为了防止电泳后凝胶中蛋白(酶)盘状区带扩散,电泳完毕必须立刻取出凝胶柱进行固定与染色,一般用20~30ml的注射器配上10cm长的针头,左手拿玻管,右手握灌满水的注射器,将针头插入凝胶与管壁之间,左手慢慢旋转玻管,右手一边压水,一边使针头呈螺旋式推进。靠水流压力和润滑力将玻璃管内壁与凝胶分开,一般情况下,针头抽出,胶就自动滑出。如果不出,就从另一端再注水或用洗耳球在一端稍加压力。如果胶浓度较高,取出困难,可用10%甘油水溶液代替水注入。一般剥胶的方向是从浓缩胶端开始。剥胶时应注意不要损伤胶柱表面。

(5)固定与染色

为防止凝胶柱内已分离成分的扩散,需要进行固定。剥出的凝胶柱只要浸泡在7%乙酸或12.5%三氯乙酸的水溶液中几分钟就可达到蛋白带固定的效果。也可浸泡在用7%乙酸或12.5%三氯乙酸配制的染色液中,同时进行固定和染色。如果用聚丙烯酰胺凝胶电泳分离和鉴定同工酶,为了让酶带上进行某种显色反应,往往是先显色后固定。

三氯醋酸固定蛋白质的机制可能是这样:其分子不仅与蛋白质带正电荷侧链结合,而且通过氢键与蛋白质的肽链结合,其结果使蛋白质分子失去水分子,同时在肽链表面包上一层疏水的CCl3基团,使蛋白质水溶性破坏,从水相沉淀在凝胶相上。乙酸固定蛋白质的机制可能同三氯乙酸一样。

电泳后蛋白质区带的检测,对于不同的目的,应采用不同的检测方法,最常用的方法是用染料和生物大分子结合形成有色的复合物,选用染料通常应考虑以下要求:A)必须与大分子结合以形成一个不溶性的,有色的,紧密的复合物,但不结合到凝胶中和支持膜上,以便从凝胶中除去,否则背景会影响蛋白带的辨别和定量扫描;B)染料必须容易溶解在对大分子没有影响的溶剂中,以利于背景的脱色;C)选用高吸光系数的染料有利于提高定量测定的灵敏度;D)选用能与大分子有专一性结合的染料,并在结合后能产生不同的颜色,可以提高检测的选择性。

用于蛋白质区带染色的试剂常用的有氨基黑10B、考马斯亮蓝,1-苯胺基-8-萘磺酸等,其性能及染色原理如下:

①氨基黑10B (amino black 10B) C22H13O12N6S3Na3 MW=715 λmax=620~630nm 氨基黑是酸性染料,其磺酸基与蛋白质反应构成复合盐。是最常用的蛋白质染料。但用氨基黑染SDS-蛋白质时效果不好。另外氨基黑染不同蛋白质时的着色度不等,色调不一(有蓝、黑、棕等),作同一凝胶柱的扫描时误差较大,需要对各种蛋白质作出本身的蛋白质-染料量(吸收值)的标准曲线。

②考马斯亮兰R250(Coomassie brilliant blne R250)即三苯基甲烷(triphenylmethane) C46H44O7H3S2 Na MW=824 λmax=560~590nm 染色的灵敏度比氨基黑高5倍。尤其适用于SDS电泳微量蛋白质染色,但蛋白质浓度超出一定范围时,对高浓度蛋白的染色不合乎Beer定律,用作定量分析时要注意这点。

③考马斯亮兰G250(Coomassie brilliant blne G250),即二甲花青亮蓝(Xylene Cyanine brillian t Blue),MW=854,λmax=590~610nm,染色灵敏度不如R250,但比氨基黑高3倍。优点在于它在三氯乙酸中不溶而成胶体,能选择地染色蛋白而几乎无本底色。所以常用于需要重复性好和稳定的染色,适于作定量分析。

氨基黑与考马斯亮兰两种染料的共同点是:都带有负电荷的磺酸基,能与蛋白分子上带正电荷的侧链相结合。但是,氨基黑分子含有较多的亲水基团,和蛋白质亲水微区以及亲水的凝胶基质有很大的亲和力。而考马斯亮兰却相反,含有较多的疏水基团,和蛋白质的疏水区有较大的亲和力,而和凝胶基质的亲和力不如氨基黑。因此,用考马斯亮兰染色的漂洗要容易得多。另外,考马斯亮兰的灵敏度要比氨基黑高。

4.1-苯胺基-8-萘磺酸(1-animo-naphthal sulfonic acid简称ANS),MW=241,本身无荧光,但与蛋白质结合后则产生荧光。电泳后,凝胶在此染料溶液浸1~3分钟,用长波紫外灯照射时产生黄色荧光,可显示蛋白质100mg,如果不明显,可将凝胶取出暴露于空气或盐酸气中,或浸没在3mol/L盐酸中几秒至2分钟,使表面蛋白质稍变性,然后再用

表5 蛋白质的常染色法

ANS染色,这样可显示蛋白质20μg。这种染色优点是可保留凝胶内中的酶和抗体的活性。可将该区带切下来进行酶活力测定,也可直接把凝胶捣碎研细,用作抗原来注射动物,聚丙烯酰胺不影响抗体的产生。

常用染色方法见表5。

(6)脱色

凝胶柱染色后,先用水洗掉表面染料,然后放在脱色液中浸洗,常用的脱色液有7%乙酸,甲醇-水-乙酸溶液等。经常更换新溶液,直到染料洗出,背景几乎无色为止。用氨基黑染色的,脱色时间较长,而考马斯亮蓝染料易于脱色。为了短时间得出结果,可采用电泳脱色。即在一玻璃或有机玻璃槽中盛7%的乙酸溶液,已染色的胶放置在槽中间,两边加铂金电极,并通直流电,电压30~40V,电流0.5A左右,1~2小时即可脱色完毕。

(7)结果的记录

记录电泳结果常用的方法有

①绘制示意图,将各个样品的酶带如实地描绘下来,根据酶带宽窄,颜色深浅,拟分七级表示之(图1

0)。

图10 酶带的分级标准

②测量相对迁移率(Rf):分离区带的泳动速度可用相对迁移率来表示。测定迁移率时,在电泳结束后要先在指示剂移动的位置(前沿)作一标记(通常是插一根短铜丝),染色后,量出指示剂移动的距离和酶带移动的距离。

Rf=酶带迁移距离/前沿指示剂迁移距离

测量迁移率时,应以酶带的中部位置为准,值得注意的是,交联剂的浓度,交联剂和丙烯酰胺的比例,催化剂浓度及聚胶时的温度和时间均对凝胶柱结构有影响,因而会影响迁移率。另外,电泳时电场强度等也会影响带电颗粒迁移速度。为了使试验重复性好,这些因子都应尽可能保持恒定。

③照相:采用透射照相方法,用照相机把酶带真实地拍摄下来,盘状电泳的凝胶柱一般放在试管中(注满脱色液或保存液)拍摄。对于绿色、蓝色和暗蓝色的染色区带,照相时可加黄滤色镜,能增加清晰度。

④光密度计扫描定量:把酶带放在光密度扫描仪上,描绘酶谱——光密度曲线。配合计算机,可作定量分析。

(二)垂直平板电泳

垂直平板聚丙烯酰胺凝胶电泳和管型盘状凝胶电泳相比,具有以下优点:①一系列样品可以在相同的制板、电泳、显色条件下进行比较,减少试验误差;②在一块平板上点样数目可根据需要任意变动,可多可少;③凝胶可制成干板,作为科研资料长期保存;④电泳后取胶、显色、摄影等都较方便,并能得到较好的效果。

由于具有上述优点,故近年来垂直平板凝胶电泳技术发展较快,现将方法介绍如下:

垂直平板凝胶电泳所用的电泳仪,配制分离胶、浓缩胶的试剂,以及固定染色、脱色用的药品可与盘状凝胶电泳通用,所不同的主要在电泳槽结构上,以及随之带来的操作方法上。

1.器材夹心式垂直板电泳槽,凝胶模(135×100×1.5mm)(北京六一仪器厂),直流稳压电源(电压30 0~600V,电流50~100mA),吸量管(1,5,10mL),烧杯(25,50,100mL),细长头的滴管,1mL注射器及6号长针头,微量注射器(10μL或50μL),水泵或油泵,真空干燥器,培养皿(直径120mm),玻璃板(13×1 3cm),玻璃纸2张(18×18cm),日光灯一台。

2.操作方法

图11 夹心垂直平板电泳槽示意图

图12 凝胶模示意图

3.操作技术

(1)安装夹心式垂直板电泳槽夹心式垂直板电泳槽(图11)两侧为有机玻璃制成的电极槽,两电极槽中间有一凝胶模(图12),该模由ㄩ形硅胶框,长、短玻璃板,模板梳组成,电泳槽由上贮槽(白金电极面对短玻璃板),下贮槽(白金电极面对长玻璃板)和回纹冷凝管组成,两电极槽与凝胶模间靠贮液槽螺丝固定,其组装顺序为:

①装贮槽和固定螺丝销钉;

②将洗净的长、短玻璃板分别插到ㄩ形硅橡胶框的凹形槽中,注意不要用手接触灌胶面的玻璃;

③将已插好玻板的凝胶模夹到贮槽中,短玻璃板应面对上贮槽,长玻璃板应面对下贮槽,双手以对角线的方式旋紧螺丝帽;

④竖直电泳槽,用滴管吸取少量的1%琼脂糖溶液,灌入凝胶模板底部(长玻璃板外侧,下沿凹形小槽内),液面高度约0.5~1.0cm,待琼脂糖凝固后,即堵住凝胶模下面的窄缝(通电时又可作为盐桥)。

(2)制备凝胶板

①分离胶制备:配制分离胶溶液(见表4),将凝胶溶液沿玻棒小心注入到长、短玻璃板间的狭缝内(胶高度距样品模板梳齿下缘约1cm),用注射器在凝胶表面沿短玻板边缘轻轻加一层水以隔绝空气,并使胶面平整。为防止渗漏,在上下贮槽中加入略低于胶面的蒸馏水。约30~60分钟凝胶完全聚合后,可看到水与凝固的胶面有折射率不同的界限,用滤纸吸去多余的水。

②浓缩胶制备:配制浓缩胶溶液(见表4),用滴管将凝胶溶液注入到长、短玻璃板间的狭缝内(分离胶上方),轻轻加入样品模板梳,用日光灯照射进行光聚合,约30分钟后,凝胶由淡黄透明变成乳白色,聚合完全后,轻轻取出样品模板梳,加入电极缓冲液,使液面没过短玻璃板约0.5cm。

(3)加样用微量注射器取样品溶液5~10μl,小心地加入到凝胶凹形样品槽底部,因样品比重大于电极缓冲液,因此样品液自动沉降在胶面上平铺成一层。

(4) 电泳加样毕,在上槽加入0.1%溴酚蓝数滴,不要移动电泳槽(防引起样品漂流),接通电源,先低压电泳一般时间,待指示剂在胶板上成一条直线时,即可将电泳槽移入冰箱,按所需电流电压进行电泳。温度控制在0~4℃。由于电流和电压同电极缓冲液的离子强度有关,因此根据电极缓冲液分高离子强度和低离子强度两种。高离子强度电极缓冲液配方:141.1g甘氨酸加30g Tris加水1000ml,用时稀释20倍调PH值至8.3;低离子强度电极缓冲液配方:2g甘氨酸加5.2g Tris加水至1000ml,用时衡释10倍,调PH 值至8.7。

当电极缓冲液离子强度确定后,又有稳定电流和稳定电压两种电泳方式。用高离子强度电泳液,稳定电流2.0~2.5mA/cm,电泳16小时左右;用低离子强度电泳液,稳定电流0.2~0.3mA/cm,电泳16小时左右,此为稳定电流的方法。稳定电压电泳方式通常是这样:用高离子强度时,稳定电压10V/cm,电泳14~15小时;用低离子强度时,稳定电压20V/cm,约4~5小时。若指示剂移动到离下层电泳液水平面1cm处,即可关闭电源,停止电泳。

(5)卸板电泳完毕,从冰箱中取出电泳槽,吸出电极缓冲液,将胶板从电泳槽上卸下,平放在实验台上,用压舌板在两块玻璃板的一角轻轻一撬,揭去上面长型玻璃板。用刀片在胶板一端切除一角作为标记,

而后用磨平针尖的兽医用针头吸取无离子水把凝胶从短型玻璃板上剥离,慢慢地把胶板冲入白瓷盘或大培养皿内,即可染色与固定。

(6)固定、染色和脱色与垂直管型盘状电泳所用的方法相同。

(7)结果和记录除按管型盘状电泳法记录实验结果外,还可以制成干板保存。在水中用两张比胶板稍大的玻璃纸,将胶板夹在中间,平放在玻璃板上,排除气泡,四周用玻璃条压住并用夹子固定在玻璃板上,30℃烘干或自然风干。包前如将胶板放在10%的甘油中浸泡片刻,则效果会更好。

核酸聚丙烯酰胺凝胶电泳

PAGE胶的配制(DNA电泳用)50ml体系: 丙烯酰胺有效分离 (bp) 丙烯酰 胺30% (ml) 10×TBE (ml) ddH2O (ml) TEMED (μl) 过硫酸铵 10%(μl) 3.5% 100-1000 5.83 5 39.17 25.0 250 5.0% 100-500 8.33 5 36.67 25.0 250 8.0% 60-400 13.33 5 31.67 25.0 250 12.0% 40-200 20.0 5 25.00 25.0 250 15.0% 25-150 25.0 5 20.00 25.0 250 20.0% 5-100 33.33 5 11.67 25.0 250 5ml体系: 丙烯酰胺丙烯酰胺 30%(ml) 10×TBE (ml) ddH2O (μl) TEMED (μl) 过硫酸铵 10%(μl) 3.5% 0.583 0.5 3.917 2.5 25 5.0% 0.833 0.5 3.667 2.5 25 8.0% 1.333 0.5 3.167 2.5 25 12.0% 2.00 0.5 2.5 2.5 25 15.0% 2.50 0.5 2.0 2.5 25 20.0% 3.333 0.5 1.167 2.5 25 1、丙烯酰胺30%为29:1(质量比,丙烯酰胺:双甲叉丙烯酰胺) 2、TEMED 可以加到1ul/ml。 不同浓度丙烯酰胺和DNA的有效分离范围表

丙烯酰胺(%) 有效分离范围(bp) 溴酚兰* 二甲苯青* 3.5 100~2000 100 460 5.0 80~500 65 260 8.0 60~400 45 160 12.0 40~200 30 70 15.0 25~150 15 60 20.0 10~100 12 45 *表中给出的数字为与指示剂迁移率相等的双链DNA分子所含碱基对数目(bp). 凝胶的制备过程: 1、按要求装配好垂直电泳板,两块玻璃板的两侧及底部用1%的琼脂糖封边,防止封闭不严而使聚丙烯酰胺液漏出。 2、将装好的玻璃电泳板倾斜成45~60℃角。 3、按表3配制所需%浓度凝胶的毫升数。 4、加入TEMED后,立即混匀,缓缓倒入两玻璃板间的胶床中,直到液体接近溢出时为止。 5、立即插入适当的梳子,密切注意防止梳齿下产生气泡,用一有力的夹将梳子夹在一边的玻璃板上,然后将玻璃板斜靠在物体上,使成10°角,可减少液体泄漏的机会。 6、室温聚合一小时后,将玻璃板插入电泳槽中,上紧,倒入0.1XTBE缓冲液。 7、小心取出梳子,加样。 预电泳: 1.对于预电泳,有一种解释是为了除去没有聚合完全的丙烯酰胺分子和交联剂,其实最直接的理解就是预电泳会让胶跑的好看一点。 2.电压根据胶的长度来,是5~10V/cm,100V以下。 3.在预冷装置下电泳,防止局部温度高。

胶内酶切及MALDI-TOF-TOF质谱鉴定操作步骤

蛋白质肽谱制备 1.凝胶,用解剖刀将胶带切成1-2mm2大小的胶片放入小管中。 ★凝胶染色分为:A:硝酸银染色 B:考马斯亮蓝染色 C:胶体蓝染色 ★胶粒分为:A:一维SDS-Page胶粒 B:二维双向电泳胶粒 2.凝胶加入脱色液100ul浸泡,振荡20min,弃取溶液,重复1-2次直至蓝色褪尽,乙腈100ul,弃废液。 ★如果为二维双向电泳胶粒,直接进行第3步骤。 ★如果为一维SDS-Page胶粒,需要加两个步骤: ①加入50uLDTT还原液,30min,56度,弃废液,加100ul乙腈脱水5-10min ②加入50ul碘乙酰胺烷基化,于暗处30min(开冻干机) 3.凝胶加100ul脱色液,洗5-10min,乙腈100ul,弃废液,冰冻干燥20min. 4. 凝胶加入15-20ul酶液(0.01ug/ul),置于4度放置30min,待酶液完全被吸收,补充酶解缓冲液(25mMNH4HCO3)15-20ul,使胶完全浸没,37度保温15小时以上或过夜。 ★如果一管中的胶粒很多,15-20ul酶液不足让所有胶粒都吸涨,可视情况多加酶液。补同体积酶解缓冲液后,胶粒刚好被液体浸住。(后边提取液I、提取液II也可相应多加,且提取时间也可相应增长。)5.加提取液I(5%TFA)100ul,40度加热水浴1小时,每30min,超声一次,3min左右。 6.将提取液吸到另一干净的管中,冰冻干燥;向胶块中加入提取II(50%乙腈,2.5%TFA)100ul,30度保温1小时,每30min,超声一次,3min左右。 7. 将提取液合并,氮气吹干乙腈后,冰冻干燥。(冻干的肽段放-20度冰箱保存) 8.向冻干肽段加入2~10ul(根据未脱色以前胶粒的颜色深浅,判断样品的量多少)的0.1%TFA溶液混匀。(如果不能及时上质谱检测,建议不要复溶冻干肽段。) 9. 取0.5ul~0.8ul样品点靶。待干,再点0.5ul基质,上质谱。 溶液配制 1.100mMNH4HCO3:称取1.975gNH4HCO3溶于250ml的去离子水中 2.脱色液配方乙腈:50mMNH4HCO3=1:1 3. 10mmol/LDTT还原液:称取1.54mg溶于1ml100mMNH4HCO3中 4.55mmol/L烷基化溶液:称取10.2mg碘乙酰胺溶于1mL100mMNH4HCO3中 5.酶解贮液:Trypsin(Promega,V5111)制备为0.5ug/ul水溶液,分装1-3ug -20度保存(粉末+40ul水——>2~6ul分装。) 6.酶解工作液:Trypsin终浓度为0.01ug于25mMNH4HCO3溶液(2ul稀释50倍=100ul) 7.肽提取液I:5%TFA(v/v)水溶液 8.肽提取液II: 乙腈:5%TFA=1:1

聚丙烯酰胺凝胶电泳 (1)

聚丙烯酰胺凝胶电泳 (Polyacrylamide gel electrophoresis,PAGE) 聚丙烯酰胺凝胶是由丙烯酰胺(acrylamide,Acr)单体相互聚合成多条长链,再与N,N-甲叉双丙烯酰胺(methylene-bisacrylamide,Bis)在引发剂和加速剂的作用下交联而成的凝聚胶多孔聚合物。凝胶孔径的大小可通过控制单体和交联剂的浓度来调节,从而满足不同分子量物质的分离要求。不同浓度的聚丙烯酰胺非变性凝胶的有效分离范围如表所示: 表1 DNA在聚丙烯酰胺凝胶中的有效分离范围 丙稀酰胺[%(w/v)]a有效分离范围(bp)二甲苯青FF b溴酚蓝b 3.51000-2000 460 100 5.080-500 260 65 8.060-400 160 45 12.040-200 70 20 15.025-150 60 15 20.0 6-100 45 12 a.N,N′-亚甲双丙稀酰胺占丙稀酰胺浓度的1/30 b.给出的数字是迁移率与染料相同的双链DNA片段的粗略大小(核苷酸对)。 聚丙烯酰胺凝胶的制备和电泳都比琼脂糖凝胶更为费事。聚丙烯酰胺凝胶几乎总是铺于两块玻璃板之间,两块玻璃板由间隔片隔开冰封以绝缘胶布。在这种配置形式下,大多数丙烯酰胺溶液不会与空气接触,所以氧对聚合的抑制仅限于凝胶顶部的一个窄层里。聚丙烯酰胺凝胶一律是进行垂直电泳,根据分离的需要,其长度可以在10-100cm之间。聚丙烯酰胺凝胶与琼脂糖凝胶相比有3个主要优点:(1)分辨力强,长度仅仅相差0.2%(即500bp中的1bp)的DNA分子即可分开;(2)所能装载的DNA分子量远远琼脂糖凝胶:多达10μg的DNA可以加样于聚丙烯酰胺凝胶的一个标准样品槽(1cm×1mm)而不致显著影响分辨力;(3)从聚丙烯酰胺凝胶中回收的DNA 纯度很高,可适用于要求最高的实验(如鼠胚胎微注射)。 常用的是两种聚丙烯酰胺凝胶: (1)用于分离和纯化双链DNA片段非变性聚丙烯酰胺凝胶 (2)用于分离、纯化单链DNA的变性聚丙烯酰胺凝胶

聚丙烯酰胺凝胶电泳

一、目的要求 1.学习电泳原理和技术 2.学习和掌握SDS-聚丙烯酰胺凝胶垂直板电泳分离蛋白质技术 二、实验原理 SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE):蛋白质在聚丙烯酰胺凝胶电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。如果在丙烯酰胺凝胶系统中加入阴离子去污剂十二烷基磺酸钠(sodium dodecyl sulfate,简称SDS),则蛋白质分子的电泳迁移率主要取决于它的分子量,而与所带电荷和形状无关。因此可以利用SDS-PAGE测定蛋白质分子量。 三、试剂与器材 试剂:10%SDS、30%凝胶贮液(29%ACr-1%Bis)、分离胶缓冲液、浓缩胶缓冲液、10%过硫酸铵、TEMED、pH8.3Tris-Gly电极缓冲液、上样缓冲液、蛋白质maker、0.25%考马斯亮兰R250染色液、甲醇:醋酸脱色液、异丙醇、tris-HCl(PH6.8)缓冲液、二硫苏糖醇、去离子水 器材:垂直板电泳槽、稳压稳流电泳仪、脱色摇床、50ml小烧杯、移液枪、枪头、玻璃棒、滤纸、表面皿、手套、 四、实验步骤 1 SDS聚丙烯酰胺的灌制 ⑴按说明安装玻璃板,橡胶条放在两玻璃板之间,确定不漏液,玻璃板放入电泳槽时,有凹槽的一侧向里,时刻保持玻璃片间的压力。 ⑵根据表1制备分离胶溶液,加入TEMED后迅速旋转混合物,用1ml移液枪将其注入两块玻璃板之间的间隙中(灌制红色板的上边缘)。用枪在聚丙烯酰胺溶液上小心的覆盖一层异丙醇。将凝胶垂直放于室温下。(丙烯酰胺有神经毒性,故操作时应注意不要吸入其粉末,实验时应戴手套,剩余的聚丙烯酰胺溶液不要乱扔,待聚合后再处理) ⑶待聚合后(40min),倒掉覆盖层,用去离子水清洗凝胶顶部,尽可能倒掉凝胶上的液体,用滤纸吸干水分。 ⑷按表1配置浓缩胶,加完TEMED后迅速旋转混合,注满玻璃板间隙,插入梳子(写有1.5mm 的一侧向里,先插入一侧,在从一侧向另一侧压着插入,以排除气泡)将胶垂直放置于室温下。约30min聚合完成,拔出梳子(平行拔出),用去离子水冲洗胶孔,再用滤纸吸干水。取出玻璃板,取下橡胶条。 表1分离胶与浓缩胶配制

附双向电泳完整的操作步骤第一向等电聚焦1从冰箱中取-20

附:双向电泳完整的操作步骤 (一)第一向等电聚焦 1. 从冰箱中取-20℃冷冻保存的水化上样缓冲液(I)(不含DTT,不含Bio-Lyte)一小管(1ml/管),置室温溶解。 2. 在小管中加入0.01g DTT,Bio-Lyte 4-6、5-7各2.5ml,充分混匀。 3. 从小管中取出400ml水化上样缓冲液,加入100ml样品,充分混匀。 4. 从冰箱中取-20℃冷冻保存的IPG预制胶条(17cm pH 4-7),室温中放置10分钟。 5. 沿着聚焦盘或水化盘中槽的边缘至左而右线性加入样品。在槽两端各1cm左右不要加样,中间的样品液一定要连贯。注意:不要产生气泡。否则影响到胶条中蛋白质的分布。 6. 当所有的蛋白质样品都已经加入到聚焦盘或水化盘中后,用镊子轻轻的去除预制IPG胶条上的保护层。 7. 分清胶条的正负极,轻轻地将IPG胶条胶面朝下置于聚焦盘或水化盘中样品溶液上,使得胶条的正极(标有+)对应于聚焦盘的正极。确保胶条与电极紧密接触。不要使样品溶液弄到胶条背面的塑料支撑膜上,因为这些溶液不会被胶条吸收。同样还要注意不使胶条下面的溶液产生气泡。如果已经产生气泡,用镊子轻轻地提起胶条的一端,上下移动胶条,直到气泡被赶到胶条以外。 8. 在每根胶条上覆盖2-3ml矿物油,防止胶条水化过程中液体的蒸发。需缓慢的加入矿物油,沿着胶条,使矿物油一滴一滴慢慢加在塑料支撑膜上。 9. 对好正、负极,盖上盖子。设置等电聚焦程序。 10.聚焦结束的胶条。立即进行平衡、第二向SDS-PAGE电泳,否则将胶条置于样品水化盘中,-20℃冰箱保存。 (二)第二向SDS-PAGE电泳 1. 配制10%的丙烯酰胺凝胶两块。配80ml凝胶溶液,每块凝胶40ml,将溶液分别注入玻璃板夹层中,上部留1cm的空间,用MilliQ水(没有milliq的话ddh2o也行,注,水云深浪按)、乙醇或水饱和正丁醇封面,保持胶面平整。聚合30分钟。一般凝胶与上方液体分层后,表明凝胶已基本聚合。 2. 待凝胶凝固后,倒去分离胶表面的MilliQ水、乙醇或水饱和正丁醇,用MilliQ水冲洗。 3. 从-20℃冰箱中取出的胶条,先于室温放置10分钟,使其溶解。 4. 配制胶条平衡缓冲液I。 5.在桌上先放置干的厚滤纸,聚焦好的胶条胶面朝上放在干的厚滤纸上。将另一份厚滤纸用MilliQ水浸湿,挤去多余水分,然后直接置于胶条上,轻轻吸干胶条上的矿物油及多余样品。这可以减少凝胶染色时出现的纵条纹。 6. 将胶条转移至溶涨盘中,每个槽一根胶条,在有胶条的槽中加入5ml胶条平衡缓冲液I。将样品水化盘放在水平摇床上缓慢摇晃15分钟。 7. 配制胶条平衡缓冲液II。 8. 第一次平衡结束后,彻底倒掉或吸掉样品水化盘中的胶条平衡缓冲液I。并用滤纸吸取多余的平衡液(将胶条竖在滤纸上,以免损失蛋白或损坏凝胶表面)。再加入胶条平衡缓冲液II,继续在水平摇床上缓慢摇晃15分钟。 9. 用滤纸吸去SDS-PAGE聚丙烯酰胺凝胶上方玻璃板间多余的液体。将处理好的第二向凝胶放在桌面上,长玻璃板在下,短玻璃板朝上,凝胶的顶部对着自己。 10.将琼脂糖封胶液进行加热溶解。 11.将10×电泳缓冲液,用量筒稀释10倍,成1×电泳缓冲液。赶去缓冲液表面的气泡。 12.第二次平衡结束后,彻底倒掉或吸掉样品水化盘中的胶条平衡缓冲液II。并用滤纸吸取多余的平衡液(将胶条竖在滤纸上,以免损失蛋白或损坏凝胶表面)。 13.将IPG胶条从样品水化盘中移出,用镊子夹住胶条的一端使胶面完全浸末在1×电泳缓冲液中。然后将胶条胶面朝上放在凝胶的长玻璃板上。其余胶条同样操作。 14.将放有胶条的SDS-PAGE凝胶转移到灌胶架上,短玻璃板一面对着自己。在凝胶的上方加入低熔点琼脂糖封胶液。 15.用镊子、压舌板或是平头的针头,轻轻地将胶条向下推,使之与聚丙烯酰胺凝胶胶面完全接触。注意不要在胶条下方产生任何气泡。在用镊子、压舌板或平头针头推胶条时,要注意是推动凝胶背面的支撑膜,不要碰到胶面。 16.放置5分钟,使低熔点琼脂糖封胶液彻底凝固。 17.在低熔点琼脂糖封胶液完全凝固后。将凝胶转移至电泳槽中。 18.在电泳槽加入电泳缓冲液后,接通电源,起始时用的低电流(5mA/gel/17cm)或低电压,待样品在完全走出IPG胶条,浓缩成一条线后,再加大电流(或电压)(20-30mA/gel/17cm),待溴酚蓝指示剂达到底部边缘时即可停止电泳。 19.电泳结束后,轻轻撬开两层玻璃,取出凝胶,并切角以作记号(戴手套,防止污染胶面)。

双向电泳操作步骤

双向电泳操作步骤 水化上样( 被动上样) 1. 从冰箱中取出IPG 胶条,室温放置10min。 2. 沿水化盘槽的边缘从左向右线性加入样品,槽两端各1cm 左右不加样,中间的样品液一定要连贯。注意:不要产生气泡,否则会影响胶条中蛋白质的分布。 3. 用镊子轻轻撕去IPG 胶条上的保护层。注意:碱性端较脆弱,应小心操作。 4. 将IPG胶条胶面朝下轻轻置于水化盘中样品溶液上。注意:不要将样品溶液弄到胶条背面,因为这些溶液不会被胶条吸收;还使胶条下面的溶液产生气泡。如产生了气泡,用镊子轻轻地提起胶条的一端,上下移动胶条,直到气泡被赶走。 5. 放置30~45min 大部分样品被胶条吸收,沿着胶条缓慢加入矿物油,每根胶条约3ml(17cmIPG),防止胶条水化过程中液体蒸发。 6. 置等电聚焦仪于- 20℃水化11~15h。 第一向等电聚焦 1. 将纸电极置于聚焦盘的正负极上,加ddH2O 5~8μl 润湿。 2. 取出水化好的胶条,提起一端将矿物油沥干,胶面朝下,将其置于刚好润湿的滤纸片上杂交以去除表面上的不溶物。 3. 将IPG 胶条胶面朝下置于聚焦盘中,胶条的正极(标有+)对应于聚焦盘的正极,确保胶条与电极紧密接触。 4. 在每根胶条上覆盖2- 3ml 矿物油。 5. 对好正、负极,盖上盖子。设置等电聚焦程序。 6. 聚焦结束的胶条,立即进行平衡、第二向SDS-PAGE电泳。或将胶条置于样品水化盘中,- 20℃冰箱保存,电泳前取出胶条,室温放置10 分钟,使其溶解。 第二向SDS-PAGE电泳 1. 配制12%的丙烯酰胺凝胶。 2. 待凝胶凝固后,倒去分离胶表面的MilliQ水、乙醇或水饱和正丁醇,用MilliQ 水冲洗。 3. 配制胶条平衡缓冲液I 4. 在桌上先放置干的厚滤纸,聚焦好的胶条胶面朝上放在干的厚滤纸上。将另一份厚滤纸用MilliQ水浸湿,挤去多余水分,然后直接置于胶条上,轻轻吸干胶条上的矿物油及多余样品,这样可以减少凝胶染色时出现的纵条纹。 5. 将胶条转移至样品水化盘中,加入6ml(17cmIPG)平衡缓冲液I ,在水平摇床上缓慢摇晃15 分钟。 6. 配制胶条平衡缓冲液II 。 7. 第一次平衡结束后,取出胶条将之竖在滤纸上沥去多余的液体,放入平衡缓冲液II 中,继续在水平摇床上缓慢摇晃15 分钟。 8. 用滤纸吸去SDS-PAGE胶上方玻璃板间多余的液体,将二向凝胶放在桌面上,凝胶的顶部面对自己。 9. 将琼脂糖封胶液加热溶解。 10. 在100ml 量筒中加入TGS 电泳缓冲液。 11. 第二次平衡结束后,取出胶条,用滤纸吸去多余的平衡液(将胶条竖在滤纸上,以免损失蛋白或损坏凝胶表面)。 12. 用镊子夹住胶条的一端使胶面完全浸末在1×电泳缓冲液中漂洗数次。 13. 将胶条背面朝向玻璃板,轻轻放在长玻板上,加入低熔点琼脂糖封胶液。 14. 用适当厚度的胶片,轻轻地将胶条向下推,使之与聚丙烯酰胺凝胶胶面完全接触。注意:不要在胶条下方产生气泡,应推动凝胶背面的支撑膜,不要碰到面胶。

聚丙烯酰胺凝胶电泳原理及方法

聚丙烯酰胺凝胶电泳原理及方法 发布时间:11-06-01 来源:点击量:10032 字段选择:大中小聚丙烯酰胺凝胶电泳原理及方法 聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支持介质的电泳方法。在这种支持介质上可根据被分离物质分子大小和分子电荷多少来分离。 聚丙烯酰胺凝胶有以下优点: ①聚丙烯酰胺凝胶是由丙烯酰胺和N,N'甲叉双丙烯酰胺聚合而成的大分子。凝胶有格子是带有酰胺侧链的碳-碳聚合物,没有或很少带有离子的侧基,因而电渗作用比较小,不易和样品相互作用。 ②由于聚丙烯酰胺凝胶是一种人工合成的物质,在聚合前可调节单体的浓度比,形成不同程度交链结构,其空隙度可在一个较广的范围内变化,可以根据要分离物质分子的大小,选择合适的凝胶成分,使之既有适宜的空隙度,又有比较好的机械性质。一般说来,含丙烯酰胺7-7.5%的凝胶,机械性能适用于分离分子量范围不1万至100 万物质,1万以下的蛋白质则采用含丙烯酰胺15-30%的凝胶,而分子量特别大的可采用含丙烯酰胺4%的凝胶,大孔胶易碎,小孔胶则难从管中取出,因此当丙烯酰胺的浓度增加时可以减少双含丙烯酰胺,以改进凝胶的机械性能。 ③在一定浓度范围聚丙烯酰胺对热稳定。凝胶无色透明,易观察,可用检测仪直接测定。 ④丙烯酰胺是比较纯的化合物,可以精制,减少污染。合成聚丙

的总克数称凝胶浓度,常用T%表达;凝胶溶液中交联剂占单体和交联体总量的百分数称为交联度,常用C%表示,可用下式计算: 公式 a:丙烯酰胺克数;b:甲撑双丙烯酰胺克数;m:缓冲液体积(毫升)凝胶浓度过高时,凝胶硬而脆,容易破碎;凝胶浓度太低时,凝胶稀软,不易操作。 交联度过高,胶不透明并缺乏弹性;交联度过低,凝胶呈糊状。聚丙烯酰胺凝胶具有较高的粘度,它不防止对流减低扩散的能力,而且因为它具有三度空间网状结构,某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状,这是凝胶的分子筛作用。由于这种分子筛作用,这里的凝胶并不仅是单纯的支持物,因此,在电泳过程中除了注意电泳的基本原理以外,还必须注意与凝胶本身有关的各种性质(网孔的大小和形状等)。可通过下式计算来选择适当的凝胶网孔。 公式 式中:P为网孔平均直径,C为多聚体浓度,d为该多聚体分子直径(若不是卷曲的分子应为5A),K为常数,K值取决于涨胶的几何构型,假如多聚体的链是以近似于直角交联的,则约为1.5根据此式,我们可以通过多聚体浓度C近似地计算出网孔直径,例如已知多聚体浓度为5%,其网孔平均直径应为: 公式

双向电泳步骤--标准操作完整版

细胞裂解(蛋白质提取) 一、试剂配置: PBS配方 氯化钠(MW 58.44) 130mM 8g 氯化钾(MW 74.5) 2.7mM 0.2g 十二水和磷酸氢二钠(MW 358) 10 mM3.63g 磷酸二氢钾(MW 136) 2 mM0.24g 加水至1L配好后进行高压灭菌。 Washing buffer(500mL)配方 Tris(MW 121.1) 10mM 0.605g 蔗糖(MW 342) 250mM 42.75g 加水溶解,用HCl调pH至7.0后用孔径为0.22μm滤膜过滤(使用1M盐酸略高于2750uL调pH) 裂解储液配方(细胞): 尿素(MW 60.06) 7M 4.2g 硫脲(MW 76.12) 2M 1.52g CHAPS(MW614.89) 4%(W/V)0.4g 加超纯水定容至10mL后经0.22μm一次性滤膜过滤,过滤后分装成20小管,每小管500uL,-20℃冰箱保存。 裂解储液配方(组织): 尿素(MW 60.06)5M3g 硫脲(MW 76.12) 2M1.52g

CHAPS(MW614.89) 2% 0.2g Tris(MW 121.1)40mM 0.048g 加超纯水定容至10mL后经0.22μm一次性滤膜过滤,过滤后分装成20小管,每小管500uL,-20℃冰箱保存。 裂解液: 裂解液储液 100uL IPG buffer(pH可选) 2% 2uL Pi 2uL NucLease mix(100×) 1uL PMSF(100mM:20mg/mL) 1mM 1uL DTT(0.411g/mL) 40mM 1.5uL Pi:每片使用200uL超纯水溶解后按10 uL分装 考马斯亮蓝G-250: 考马斯亮蓝G-250 0.01% 100g 95%乙醇 4.7% 50ml H3PO4 8.5% 85g 将考马斯亮蓝G-250溶于50ml95%乙醇中,与用水溶解的100mlH3PO4混合后稀释至1000ml,之后使用滤纸过滤。 二、实验准备: 1、准备冰盒,细胞裂解过程均在冰盒内进行(4℃); 2、准备4℃离心机,开机降温,保证温度下降至4℃; 3、取出置于-20℃保存的试剂,需冰上融化,最后取出细胞样品。

高弹性聚丙烯酰胺水凝胶的制备及拉伸性能研究

第36卷第1期2017年3月 中南民族大学学报(自然科学版) Journal of South-Central University for Nationalities( Nat. Sci. Edition) Yol.36 No.1 Mar.2017 高弹性聚丙烯酰胺水凝胶的制备及拉伸性能研究 肖新才,张瑞连,熊小翠,胡蓉蓉,马文婷 (中南民族大学药学院,武汉430074) 摘要为了提高水凝胶的弹性性能,采用微凝胶法制备了高弹性的聚丙烯酰胺(PAAM)水凝胶.先采用沉降聚 合法制备了 PAAM微凝胶,再以此充当交联剂代替传统的化学交联剂和引发剂,制备了高机械性能的PAAM水凝 胶.同时探讨了丙烯酰胺浓度、凝胶成型温度、微凝胶与水的体积比对PAAM水凝胶弹性性能的影响.结果表明:随着丙烯酰胺的浓度的增大,凝胶柱的弹性模量变大;随微凝胶成型温度越高,形成的水凝胶的弹性模量越小;当 微凝胶与水的体积比为1:1时,水凝胶的弹性模量较大,增加或减少微凝胶的量均会使得水凝胶的弹性模量 变小. 关键词聚丙烯酰胺;微凝胶;高弹性;微凝胶法;弹性模量 中图分类号TQ460.1;R944.1 文献标识码A文章编号16724321(2017)014)047-05 Preparation and Tensile Property of Highly Elastic Polyacrylamide Hydrogel Xiao Xincai, Zhang Ruilian, Xiong Xiaocui, Hu Rongrong, Ma Wenting (School of pharmaceutial Sciences, South-Central University for Nationalities, Wuhan 430074, China) Abstract To improve the elasticity of the hydrogels, microgel method was applied to prepare highly elastic polyacrylamide (PAAM) hydrogel. PAAM microgels were prepared by sedimentation polymerization, then highly elastic PAAM hydrogel was prepared using the microgels as the crosslinker instead of the traditional chemical crosslinker and initiator. The effects of acrylamide concentration,polymerization temperature,volume ratio of the microgels and water on the elasticity of the hydrogels were investigated. The results indicated that the elasticity modulus of PAAM hydrogel increased with the increase of acrylamide concentration and decreased with the polymerization temperature. The modulus was largest when the volume ratio of the microgels and water was 1 : 1,which would decrease regardless of decreasing or increasing the microgels content. Keywords polyacrylamide;microgel;high elasticity;microgel method;elasticity modulus 聚丙烯酰胺(PAAM)具有典型的三维网络结构、无毒副作用、性能稳定,被广泛应用于生物水凝胶的制备[1],如蛋白质分离[2’3]、药物释放[4’5]、土壤 改良剂[6]等.由于PAAM水凝胶的机械强度较低,使其在强度要求相对较高的领域,如人工肌肉骨髂、记忆开关元件、机械传动装置及生物传感器等的应用受到很大的限制.传统的提高水凝胶机械强度的方法有增加交联密度、降低凝胶溶胀度、引人纤维状增强剂、制备互穿网络(IPN)等[7],但操作较繁琐,或对水凝胶的机械性能的改善能力有限,或改变了 PAAM其本身的性能,使PAAM水凝胶应用受限. 传统的凝胶以I,亚甲基双丙烯酰胺为化学交联剂来制备.近年来,诸多研究者按此模式,通过 构建聚合物的交联来改变水凝胶的机械强度,如构 建拓扑结构[8]、双网络结构[9_11]、复合结构[12],及加 人纳米凝胶作为交联剂制备水凝胶[m5]等.利用活 收稿日期20164)9-14 作者简介肖新才(1971-),男,教授,博士,研究方向:药用高分子材料,E-mail:xcxiao@mail,https://www.doczj.com/doc/dd2334111.html, 基金项目国家自然科学基金资助项目(21276287,20976202);中央高校基金科研业务费专项(CZW15017);中南民族大 学学术团队资助项目(XTZ 15013)

蛋白质组学操作规程蛋白质组学样品制备规程01P1

第一部分蛋白质组学操作规程 一、蛋白质组学样品制备规程(01 ) P1. 双向电泳样品缓冲液选用的基本原则 P3. 细胞样品制备(分步)操作规程 P4. 细胞总蛋白提取操作规程 P5. 螺旋藻组织蛋白质提取方法 P6. 嗜热菌蛋白质提取方法 P7. TCA- 丙酮沉淀法样品制备操作规程 P9. 植物材料可溶性蛋白的双乙法制备流程 P10. 动物细胞的样品制备 P10. 动物组织的样品制备——胃 P11. 肺癌组织样品制备 P12. 食管癌样品制备 P13. 羊绒/毛蛋白提取 P13. 大鼠海马组织蛋白提取 P14. 使用Cibacron Blue 3GA Agarose 去除小鼠血浆/血清中的白蛋白P15. E.Coli 样品制备方法 P15. 微生物细胞样品制备操作规程 P16. 去除血浆/血清中的白蛋白和Ig-G P17. 植物根蛋白提取方法 P17. 2D-LC鼠肝样品shotgun消化实验路线 P18. 小鼠肝组织蛋白质提取方法 P18. 小鼠肝脏亚细胞器蛋白质提取方法(线粒体胞浆微粒体) P25. 人肝蛋白质组织提取方法 P27. 人肝脏亚细胞器蛋白质提取方法(线粒体胞浆微粒体) P27. 丙酮丁醇菌蛋白质提取方法(选用嗜热菌蛋白质提取方法) P27. 嗜碱菌蛋白质提取方法(尚在摸索阶段) P27. 脑脊液蛋白质提取方法 二、蛋白质定量标准操作规程(02 ) P1. 改良的Bradford 法测定蛋白质含量 P3. Lowry 法(DC 试剂)测定蛋白质含量 P5. Lowry 法测定蛋白质含量(自配试剂) P7. 安玛西亚定量试剂盒使用方法 P8. 利用微板(96 孔板)定量测定蛋白质浓度 P9. BIO-RAD PROTEIN ASSAY 使用方法P10. BCA Protein Assay Kit 使用操作规程 三、蛋白质电泳及凝胶染色操作规程(03) P1. SDS聚丙烯酰胺凝胶电泳 P3. 固相pH 梯度-SDS 双向凝胶电泳实验操作程序

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳 该技术首先在1967年由Shapiro建立,1969年由Weber和Osborn进一步完善。 一、原理 聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr) 和交联剂N,N’—亚甲基双丙烯酰胺(简称Bis)在催化剂作用下,聚合交联而成的具有网状立体结构的凝胶,并以此为支持物进行电泳。聚丙烯酰胺凝胶电泳可根据不同蛋白质分子所带电荷的差异及分子大小的不同所产生的不同迁移率将蛋白质分离成若干条区带,如果分离纯化的样品中只含有同一种蛋白质,蛋白质样品电泳后,就应只分离出一条区带。SDS是一种阴离子表面活性剂能打断蛋白质的氢键和疏水键,并按一定的比例和蛋白质分子结合成复合物,使蛋白质带负电荷的量远远超过其本身原有的电荷,掩盖了各种蛋白分子间天然的电荷差异。因此,各种蛋白质-SDS 复合物在电泳时的迁移率,不再受原有电荷和分子形状的影响,而只是棒长的函数。这种电泳方法称为SDS-聚丙烯酰胺凝胶电泳(简称SDS—PAGE)。由于SDS-PAGE 可设法将电泳时蛋白质电荷差异这一因素除去或减小到可以略而不计的程度,因此常用来鉴定蛋白质分离样品的纯化程度,如果被鉴定的蛋白质样品很纯,只含有一种具三级结构的蛋白质或含有相同分子量亚基的具四级结构的蛋白质,那么SDS—PAGE 后,就只出现一条蛋白质区带。SDS—PAGE 可分为圆盘状和垂直板状、连续系统和不连续系统。本实验采用垂直板状不连续系统。所谓“不连续”是指电泳体系由两种或两种以上的缓冲液、pH 和凝胶孔径等所组成。 1.样品的浓缩效应 在不连续电泳系统中,含有上、下槽缓冲液(Tris—Gly,pH8.3)、浓缩胶缓冲液(Tris—HCl,pH6.8)、分离胶缓冲液(Tris—HCl,pH8.8),两种凝胶的浓度(即孔径)也不相同。在这种条件下,缓冲系统中的HCl 几乎全部解离成Cl-,两槽中的Gly (pI=6.0,pK a=9.7)只有很少部分解离成Gly 的负离子,而酸性蛋白质也可解离出负离子。这些离子在电泳时都向正极移动。C1—速度最快(先导离子),其次为蛋白质,Gly 负离子最慢(尾随离子)。由于C1—很快超过蛋白离子,因此在其后面形成一个电导较低、电位梯度较陡的区域,该区电位梯度最高,这是在电泳过程中形成的电位梯度的不连续性,导致蛋白质和Gly 离子加快移动,结

化学与物理交联协同增韧聚丙烯酰胺水凝胶的制备和性质表征

化学与物理交联协同增韧聚丙烯酰胺水凝胶的制备和性质表征水凝胶作为一种亲水的凝胶具有相当高的含水量,其含水量与生物组织相似(70%)甚至可达到更高。水凝胶具有良好的生物相容性,且表现出良好的柔韧性,刺激响应能力,以上性能为水凝胶在生物领域,组织工程方向的应用奠定了基础。然而,由于水凝胶含水量较高,其机械性能相对较差,严重的限制了水凝胶的应用。传统的化学交联水凝胶通过永久,不可逆的共价键相互连接的聚合物链组成,这 通常使水凝胶较脆,透明性差,网络结构断裂后不能自愈。 但是,化学交联网络结构易于调整,可以改变最终材料的机械性能。因此,传统的化学交联网络结构不可以被忽略,要巧妙加以改善就可以得到强韧水凝胶。在本文中,我们将物理交联与化学交联两种交联方式都引入到水凝胶网络体系中,制备强韧的,具有抗疲劳性能和快速自回复性能的水凝胶。在第一部分实验中, 我们将疏水缔合这种交联方式引入到水凝胶网络中作为物理交联中心,同时以 N,N′-亚甲基双丙烯酰胺作为化学交联剂,通过自由基聚合方式与亲水主链聚丙烯酰胺相链接,作为化学交联中心。 在杂化水凝胶网络体系中,化学交联为水凝胶网络提供了一个刚性骨架,来 支撑着整个水凝胶网络基质,疏水缔合作为物理交联中心能够通过胶束变形和甲基丙烯酸月桂酯(LMA)链的可逆解缠来有效的耗散能量,使得这种杂化水凝胶在 压缩应变为95%时,压缩强度可以达到8 MPa。此外,在连续压缩循环测试中,杂化水凝胶展现出了时间依赖性,快速自恢复性,抗疲劳性质。在第二部分实验中,我们期望得到强韧,具有拉伸性能的水凝胶,因此,我们改进了物理交联中心,并调 节了化学交联点的密度,从而得到了具有高拉伸强度,高断裂伸长率的具有快速 自恢复性和抗疲劳性质的由甲基丙烯酸月桂酯-聚丙烯酸丁酯微球(LMA-PBA)混 合胶束诱导的强韧杂化水凝胶(LMA-PBA+MBA gel)。在这个杂化水凝胶网络体系中,化学交联仍然作为一个刚性骨架支撑着整个水凝胶网络基质,LMA-PBA混合 胶束作为物理交联点,可通过胶束形变,LMA链的可逆解缠,PBA软粒子变形以及LMA-PBA间的可逆交联来耗散大量的能量,从而将有效的能量耗散机制引入到水 凝胶网络体系中,使得这种杂化水凝胶具有相当好的拉伸性能,最大拉伸应力可 达到1.4 MPa,断裂伸长率可达到2500%,同时具有快速自恢复性,抗疲劳性。 这两种通过物理交联与化学交联协同作用的,具有快速自恢复性,抗疲劳性

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳 (PAGE) 实验报告

一、实验目的 1.学习SDS-PAGE分离蛋白质的原理; 2.掌握垂直板电泳的操作方法。 二、实验原理 1、电泳: (1)定义:是指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。 (2)影响电泳效果的因素: ①带电颗粒的大小和形状:颗粒越大,电泳速度越慢,反之越快; ②颗粒的电荷数:电荷越少,电泳速度越慢,反之越快; ③溶液的粘度:粘度越大,电泳速度越慢,反之越快; ④溶液的pH值:影响被分离物质的解离度,离等电点越近,电泳速度越慢,反之越快; ⑤电场强度:电场强度越小,电泳速度越慢,反之越快; ⑥离子强度:离子强度越大,电泳速度越慢,反之越快; ⑦电渗现象:电场中,液体相对于固体支持物的相对移动; ⑧支持物筛孔大小:孔径小,电泳速度慢,反之则快。 2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE) (1)定义 聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。 SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠) (2)SDS的作用 SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。 由于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。 因此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小 (3) SDS-PAGE分类: ?SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类: 连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。 不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳 (4)聚丙烯胺凝胶的生成: 聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。在具有自由基时,Acr和Bis就会聚合。 引发产生自由基的方法有两种:

双相电泳简易操作指南

目录 第一章样品制备 2 1.1 一般性原则 2 1.2 样品制备程序 3 1. 2.1 培养细胞样品处理方法 3 1.2.2 组织样品处理方法 3 1.2.3文献报道较多的裂解液配方 4 第二章第一向等电聚焦(IEF) 7 2.1 IPG胶条的水化和电泳 7 2.1.1 仪器 7 2.1.2 试剂 7 2.1.3 实验步骤 7 2.2 IPG胶条的平衡 9 2.2.1 仪器 10 2.2.2 试剂 10 2.2.3 实验步骤 10 第三章第二向SDS电泳 12 3.1 垂直SDS-PAGE 12 3.1.1 溶液 12 3.1.2 灌胶步骤 12 3.1.3 电泳步骤 14 第四章 2-DE胶蛋白质点的检测 15 4.1 考马斯亮兰染色 15 4.1.1 经典的考马斯亮兰染色程序 15 4.1.2 Neuhoff胶体考染法 15 4.1.3 热考马斯亮兰染色及二次染色法 16 4.2 硝酸银染色 16 Appendix I Troubleshooting 18 Appendix II Solutions 23

2DE分析流程: 样品制备(Sample preparation) 固相pH梯度胶条的水化(IPG strip rehydration) 第一向等电聚焦(IEF) 第一向胶条的平衡( IPG strip equilibration) 第二向SDS电泳(SDS-PAGE) 检测染色(Detection/Staining) 第一章样品制备(Sample Preparation) 1.1一般性原则: 样品制备是双向电泳中最为关键的一步,这一步处理的好坏将直接影响2-DE结果。目前并没有一个通用的制备方法,尽管处理方法是多种多样,但都遵循几个基本的原则:1)尽可能的提高样品蛋白的溶解度,抽提最大量的总蛋白,减少蛋白质的损失;2)减少对蛋白质的人为修饰;3)破坏蛋白质与其他生物大分子的相互作用,并使蛋白质处于完全变性状态。 根据这一原则,样品制备需要四种主要的试剂:离液剂(chaotropes),主要包括尿素(Urea)和硫脲(thiourea);表面活性剂(sufactants),也称去垢剂,早期常使用NP-40、TritonX-100等非离子去垢剂,近几年较多的改用如CHAPS与Zwittergent系列等双性离子去垢剂;还原剂(reducing agents),最常用的是二硫苏糖醇(DTT),也有用二硫赤藓糖醇(DTE)以及磷酸三丁酯(TBP)等。当然,也可以选择性的加入Tris-base,蛋白酶抑制剂(如EDTA、PMSF or Protease inhibitor cocktails)以及核酸酶。 样品的来源不同,其裂解的缓冲液也各不相同。通过不同试剂的合理组合,以达到对样品蛋白的最大抽提。在对样品蛋白质提取的过程中,必须考虑到去除影响蛋白质可溶性和2DE重复性的物质,比如核酸、脂、多糖等大分子以及盐类小分子。大分子的存在会阻塞凝胶孔径,盐浓度过高会降低等电聚焦的电压,甚至会损坏IPG胶条;这样都会造成2-DE的失败。样品制备的失败很难通过后续工作的完善或改进获得补偿。 核酸的去除可采用超声或核酸酶处理,超声处理应控制好条件,并防

IQTL简易 操作指南

IQTL 7.0简易操作指南 1D Gel Analysis ************************************************************ # 点击【1D gel analysis】,点击【OPEN】打开图像; # 在【一维凝胶分析】中,一共可分为5个步骤,它们分别是创建泳道【Lane Creation】、消减背景【Background Subtraction】、蛋白条带检测【Band Detection】、分子量计算【Molecular Size Calibration】以及含量校正【Quantity Calibration】或者含量归一化【Normalisation】; # 在图像分析之前,首先需要对图像进行一些调整,去除无需分析的凝胶部分如上样孔和边缘,对图像进行旋转、调节图像对比度等。点击【常用工具栏】上的【Edit Image】图标,进入图像编辑界面。【Invert display】从而使图像变为【反色】效果(即黑变白、白变黑效果), 从而增加图像的反差。 自动分析 #只要点击左侧的【Automatic】按钮,程序便自动完成三步的分析:【创建泳道】、【消减背景】以及【蛋白条带检测】; #自动分析完成后,程序的左侧便自动的切换至【快速分析工具栏】;可以对每个步骤进行更详细的调整和修改; 手动分析 #【Stepwise】进入手动分析步骤,首先是【创建泳道】。选择【Automatic】模式并点击【Create】按钮,程序会自动创建出合适数量的泳道,点击【Accept】接受该结果,点击【Clear】可以清楚创建泳

道的结果;如果选择【Manual】模式,可以在【导航箭头】下面的【Parameters】中设置相关的参数,如泳道数量【Number of Lanes】等,在图像上拖动鼠标就可以按照设置创建出所需的泳道; # 如果需要对已经创建的泳道进行调整,可以在【编辑模式】下来框中选择【Edit Multiple Lanes】或者【Edit Single Lanes】进行调整; # 选择【Edit Single Lanes】,点击【Bend/Resize】可以调整泳道宽窄;同时,如果电泳泳道弯曲,我们可以在电泳泳道上点击【鼠标左键】为泳道增加一个或多个弯曲节点,拖动该节点可以弯曲【泳道检测线】使之符合实际泳道的形状;如果设定的节点不合适,也可以通过【右键】单击该节点进行删除; # 点击【Move】并拖动泳道移动该泳道;选择【Add Grimaces】可以调整泳道的弯曲效果;调整完毕后,点击【Accept】对接受所做的修改; ************************************************************* # 完成创建泳道后,点击【导航栏】上的【Next】按钮进入到【消减背景】步骤; # 在【Image Window】中,选中的泳道显示为绿色,同时在右侧的【Lane】泳道窗口中可以看到以实线表示的该泳道的峰形图,峰型图下的紫色实线为背景基线,在此背景基线之下的部分都被程序认为是背景; # 在【导航栏】下面的【Parameters】中有多种背景消减的算法,其中在99% 以上的情况下,我们都使用【Rolling Ball】滚球算法作为背景消减的方法; # 选中【Rolling Ball】,可以通过上面的滑动块调节滚球的半径【Radius】使背景基线(紫色实线)能够尽可能的与背景重合,不同的图像设置的【Radius】的值有所不同。点击【Subtract】按钮就完成了对图像背景的消减操作;

相关主题
文本预览
相关文档 最新文档