当前位置:文档之家› 傅里叶分析之掐死教程(完整版)更新于2014

傅里叶分析之掐死教程(完整版)更新于2014

傅里叶分析之掐死教程(完整版)更新于2014
傅里叶分析之掐死教程(完整版)更新于2014

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

傅里叶分析之掐死教程(完整版)

傅里叶分析之掐死教程(完整版) 投递人itwriter发布于2014-06-07 10:50 评论(24)有34667人阅读原文链接[收藏]?? 作者:韩昊 知乎:Heinrich 微博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 ——更新于,想直接看更新的同学可以直接跳到第四章———— 我保证这篇文章和你以前看过的所有文章都不同,这是12 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此

对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ————以上是定场诗———— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… .本文无论是cos 还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:

详解傅里叶变换与小波变换

详解傅里叶变换与小波变化 希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代

数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n= av_n,a是eigenvalue)。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

傅里叶分析之掐死教程

傅里叶分析之掐死教程(完整版) 2014 年06 月23 日? 字号小中大 作者:韩昊 知乎:Heinrich 微博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 ——更新于,想直接看更新的同学可以直接跳到第四章————我保证这篇文章和你以前看过的所有文章都不同,这是12 年还在果壳的时候写的,但是当时没有来得及写完就出国了??于是拖了两年,嗯,我是拖延症患者??这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ————以上是定场诗———— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多??. 本文无论是cos 还是sin ,都统一用“正弦波”(Sine Wave )一词来代表简谐波。 、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了我没有疯,这个静止的世界就叫做频域。

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

十一、2013年数学本科Fourier与小波之双正交多分辨分析

国防科学技术大学 教案 课程名称:小波分析及应用 任课单位:理学院数学与系统科学系计算数学教研室 授课对象:2011级数学专业本科生主讲教员:成礼智教授 授课时间:2013年秋季学期 双正交小波的概念与性质 国防科技大学理学院 2013年秋季学期

教案首页 课程 名称 Fourier分析与小波总计:40学时 课程类别选修学分 2 讲课:40 学时 自主学习: 6 学时 任课 教师 成礼智职称教授 授课 对象 2011级数学专业本科生 教材和基本参考资料1.成礼智,王红霞,罗永,小波的理论与应用,科学出版社,2004 2.G.Strang,T Q Nguyen, Wavelets and Filter Banks, Welleseley MA:Welleseley-Cambridge Presss,1996, 3. S.Mallat, Introduction to Wavelets, SIAM 2002 教学目的任务 本课程是数学专业选修专业课。本课程以泛函分析与矩阵分析为基础,主要介绍Fourier变换与小波分析的基础理论,小波分析的典型应用.本课程的教学目的是在较短的学时内,提供数学专业本科生所需要的基本的小波分析基础知识知应用能力,使学生在掌握基本理论的基础上能够应用于解决实际问题 内容课时分配章内容学时数 1 傅里叶分析与预备知识8 2 Haar小波分析 6 3 多分辨分析与小波构造12 4 提升格式小波与整数变换 6 5 小波的典型应用8 教研室 意见教研室主任签名 年月日 - 2 -

教案续页 教 学 基 本 内 容 备注 内容:双正交多分辨分析的概念与性质 重点:为何需要双正交小波、双正交多分辨分析的概念与性质 难点:正交对称小波的不存在特性、双正交多分辨分析概念的理解 复习:双尺度方程)2()(k x h x Z k k -=∑∈??中系数 {}k h 的特点: (1) {}k h 起到低通滤波器的作用; (2) 设低通滤波器函数为1 ()2ik k k H h e ω?-=∑,则1|)(||)(|22=++π??H H 上述两个性质中,第一个性质在信号分解中起到关键作用,第二个性质在正交小波的构造中是一个重要工具。 但是,在信号处理中,对称性与周期性是两个重要概念,例如,我们曾看到,图像(二维)或信号作对称延拓可以保持高保真(小的失真度),因此,构造具有对称性的滤波器组具有重要意义。因此,本节课的目的是讨论具有对称性质的小波滤波器构造方法。 问题:(1) 是否存在对称正交小波? 答案:不存在 (2) 如何找到具有对称性质的小波? 本堂课的主要内容。 一、为何需要双正交小波? 1、线性相位与滤波器的对称(反对称)性 前面所讨论的多分辨分析理论都是在正交的意义下进行的,但是实际工程问题中仅有正交性还远远不够。例如,在图像处理中,双尺度方程的系数{}k h 与小波方程系数{}k g 经常被作为低通与高通滤波器系数。为了保证图像在变换过程中不发生畸变,其频率响应函数)(?H 最好具有线性相位,即存在R ∈λ使得()|()|i H e H λ???=。现在来看函数)(?H 的系数性质,事实上,此时不难得到2()()i H e H λ???=,该式等价地表示为k k h h --=λ2,当k h R ∈时,系数可以看作为以λ-为对称轴,此时滤波器系数{}k h 具有对称 性质,例如,当2 1 =λ时,k k h h --=1,对称轴为21-=x ,而当0=λ时, k k h h -=,对称轴为0x =轴。另外,有时也需要下列的广义线性相位性质: ()()|()|i b H e H λ???+=。若取R h n b k ∈+=,2 π π,则又有k k h h ---=λ2,系数 可以看作为以λ-为反对称轴。 综上所述,线性相位滤波器设计与对称系数是等价的。

傅里叶变换

1.课题综述 第一章中我们主要学习了信号、测试、测控、信号分析处理的概念、测试技术的应用情况、测试技术的发展动态及主要信号测试仪器生产厂商。信号是指那些代表一定意义的现象,比如声音、动作、旗语、标志、光线等,它们可以用来传递人们想表达的事情。从广泛意义上来说,信号是指事物运动变化的表现形式,它代表事物运动变化的特征。信号采集测量系统由传感器、中间变换装置和显示记录装置三部分组成,如今传感器技术越来越趋向于新型化和智能化。在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。 第二章我们主要学习了信号分类方法、信号时域波形分析方法、信号时差域相关分析方法、信号频域频谱分析方法及其它信号分析方法。首先学习了信号的分类,其主要是依据信号波形特征来划分的,从信号描述上分可分为确定性信号与非确定性信号;从信号的幅值和能量上分可分为能量信号与功率信号;从分析域上分可分为时域与频域;从连续性上分可分为连续时间信号与离散时间信号;从可实现性上分可分为物理可实现信号与物理不可实现信号。 信号的时域波形分析,信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。可以求得信号的均值、均方值、方差以及概率密度函数等参数。信号的时差域相关分析,用相关函数来描述与时间有关的变量τ、x(t)和y(t),三者之间的函数关系,相关函数表征了x、y之间的关联程度。信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),频域分析能明确揭示信号的频率组成和各频率分量大小。 第三章我们主要学习了传感器的分类、常用传感器测量原理及传感器测量电路。传感器是借助检测元件将一种形式的信息转换成另一种信息的装置。传感器由敏感器件与辅助器件组成。敏感器件的作用是感受被测物理量,并对信号进行转换输出。辅助器件则是对敏感器件输出的电信号进行放大、阻抗匹配,以便于后续仪表接入。主要有电阻式、电容式、电感式、磁电式、压电式传感器,磁敏、热敏和气敏元件传感器,以及超声波、光电及半导体敏感元件传感器,光纤传感器等。 第四章我们主要学习了自动化工程机械分类、工程机械控制器及发展趋势、

傅里叶级数通俗解析

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 φ1t,φ2t,…,φn t构成一个函数集,若这些函数在区间t1,t2上满足 φi tφj t t2 t1dt= 0 ,i≠j K i ,i=j(1) 如果是复数集,那么正交条件是 φi tφj?t t2 t1dt= 0 ,i≠j K i ,i=j(2) φj?t为函数φj t的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设φn t=cos nωt,φm t=cos mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt cos mωt dt t0+T t0 当n≠m时 =1 2 cos n+mωt+cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω +sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 再证两个都是正弦的情况 设φn t=sin nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=sin nωt sin mωt dt t0+T t0 当n≠m时

=1 2 cos n+mωt?cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω ?sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 最后证明两个是不同名的三角函数的情况 设φn t=cos nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt sin mωt dt t0+T t0 =1 2 sin n+mωt?sin n?mωt t0+T t0 dt =1 2 ?cos n+mωt (n+m)ω +cos n?mωt (n?m)ωt t0+T =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设φn t=?jnωt,φm t=?jmωt,则φj?t=??jmωt把φn t,φj?t代入(2)得 φi tφj?t t0+T t0dt=?jnωt t0+T t0 ??jmωt dt =?j(n?m)ωt t0+T t0 dt 当n≠m时,根据欧拉公式 =cos n?mωt+j sin?(n?m)ωt t0+T t0 dt =sin n?mωt n?mω?j cos?(n?m)ωt n?mωt t0+T =0 (n,m=1,2,3,…,n≠m)

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

小波变换与小波框架

小波变换与小波框架 小波分析的理论与方法是从Fourier分析的思想方法演变而来的,就象Fourier分析分为积分Fourier变换和Fourier级数一样,小波分析也分为(积分)小波变换和小波级数两部分,(积分)小波变换的主体是连续小波变换,正尺度小波变换和s-进小波变换;而小波级数的主体部分是关于小波框架的理论.小波分析理论深刻,应用广泛,并且仍在迅速发展之中.本文是作者作为初学者,就小波分析这一理论中比较基本和初步的东西所作的一点归纳和整理,其实,有许多结论已经或明或暗的出现于许多文献中了,只是作者觉得它们叙述得不够适合初学者,尤其是不适合没有工程应用背景的人,这是因为小波分析象Fourier 分析一样,起初都是由应用数学家,物理学家和工程师们发展起来的.本文所得结论比较初步,所用方法基本上属于泛函分析中的一些基本内容,只是稍微需要一点关于拓扑群的知识和Fourier分析的基础知识.本文仅考虑Hilbert 空间L~2(R)及其闭子空间中的小波变换和小波框架等问题.本文主要考虑的问题是:L~2(R)上的连续小波变换,正尺度小波变换和s-进小波变换,以及L~2(R)中的小波框架,因为平移框架在小波框架中具有重要作用,所以也考虑了L~2(R)的闭子空间中的平移框架.事实上,通常的小波分析所研究的问题,在一维情形,概括地说,是研究实直线R上的仿射群R~*×R及其子群和子集在L~2(R)上的酉表示U所诱导的L~2(R)(有时是其闭子空间)中的函数的积分变换的性质及应用.下面作稍具体的一点解释:首先,变换上的仿射变换,所有这样的变换全体做成—个群,记为和凡xB—1(。m,幻>儿mE 二,bE用是XxR的子群,(丹xRh 一 U习-,巴-nf小>1;左>0,mE 凤n二厂I是R宇XR的一忏集丞它不是群.分别作定义在集合 R’ x B,

实验应用快速傅里叶变换对信号进行频谱分析

实验二、应用快速傅里叶变换对信号进行频谱分析 一、 实验目的 1、 加深对DFT 算法原理和基本性质的理解,熟悉FFT 算法原理。 2、 掌握应用FFT 对信号进行频谱分析的方法。 3、 通过本实验进一步掌握频域采样定理。 4、 了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中 正确应用FFT 。 二、 实验原理 1、 一个连续时间信号()a x t 的频谱可以用它的傅里叶变换表示为: ()()j t a a X j x t e dt +∞ -Ω-∞ Ω=? 如果对信号进行理想采样,得: ()()a x n x nT =, 其中,T 为采样周期。对()x n 进行Z 变换,得: ()()n n X Z x n z +∞ -=-∞ = ∑ 当jwt z e -=时,我们便得到序列傅氏变换SFT : ()()jw jwn n X e x n e +∞ -=-∞ = ∑ 其中w 称为数字角频率:/s w T F =Ω=Ω。

2、12()[()]jw a m w m X e X j T T T π+∞=-∞=-∑,序列的频谱是 原模拟信号频谱的周期延拓,这样,可以通过分析序列的频谱,得到相应连续信号的频谱。 3、离散傅里叶变换(DFT )能更好的反映序列的频域特性。 当序列()x n 的长度为N 时,它的离散傅氏变换为: 1 0()[()]()N kn N n X k DFT X n x n W -===∑ 它的反变换为: 10 1()[()]()N kn N n x n IDFT X k X k W N --===∑ 比较Z 变换式和DFT 式,令k N z W -=,则 10 ()|()[()]k N N kn N z W n X z x n W DFT X n --====∑ 因此有 ()()|k N z W X k X z -== 即k N W -是z 平面单位圆上幅角为2/w k N π=的点,也即是将单位圆 N 等分后的第k 点。所以()X k 是()x n 的Z 变换在单位圆上的 等距采样,或者说是序列傅氏变换的等距采样。 三、 如何提高估计精度 增大做FFT 运算的点数 四、 幅频特性曲线及结果分析

傅里叶级数的三角形式和傅里叶级数的指数形式

周期信号的傅里叶级数分析 连续时间LTI 系统的时域分析: 以冲激函数为基本信号 系统零状态响应为输入信号与系统冲激响应之卷积 傅立叶分析 以正弦函数或复指数函数作为基本信号 系统零状态响应可表示为一组不同频率的正弦函数或复指数函数信号响应的加权和或积分; 周期信号: 定义在区间 (,)-∞∞ ,每隔一定时间 T ,按相同 规律重复变化的信号,如图所示 。它可表示为 f (t )=f ( t +m T ) 其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。 t ()t f 1 1 -T 2 /T 0 周期信号的特点: (1) 它是一个无穷无尽变化的信号,从理论上也是无始无终的,时 间范围为(,)-∞∞ (2) 如果将周期信号第一个周期内的函数写成 ,则周期信 号 ()f t 可以写成

0()() n f t f t nT ∞ =-∞ = -∑ (3)周期信号在任意一个周期内的积分保持不变,即有 ()()()a T b T T a b f t dt f t dt f t dt ++= =? ? ? 1. 三角形式的傅立叶级数 周期信号 f t () ,周期为1T ,角频率 11122T f π πω= = 该信号可以展开为下式三角形式的傅立叶级数。 []∑∞ =++ =++++++++=1 1 1 011121211110)sin()cos(...)sin()cos(... )2sin()2cos()sin()cos()(n n n n n t n b t n a a t n b t n a t b t a t b t a a t f ωωωωωωωω 式中各正、余弦函数的系数 n n b a , 称为傅立叶系数,函数通过它可以完全表示。 傅立叶系数公式如下

傅里叶变换分析信号的缺点

傅里叶变换分析信号的缺点 基于傅里叶(Fourier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论研究和应用研究都把傅里叶变换当作最基本的经典工具来使用.但是傅里叶变换存在着严重的缺点:用傅里叶变换的方法提取信号频谱时,需要利用信号的全部时域信息,这是一种整体变换,缺少时域定位功能,因此必须对其加以改进. 傅里叶变换的特点及其局限性 设函数f(t)在(-,+)内有定义,且使广义积分 都收敛,则称(1)式定义的广义积分为函数f(t)的傅里叶变换,记为F{f(t)},(2)式定义的广义积分为逆傅里叶变换,记为{F()}。傅里叶变换可以完成从时域到频域的转换(正变换),也可以完成从频域到时域的转换(逆变换),但不能同时具有时域和频域信息。其核函数是,由于三角函数具有填满整个空间的特性,其在物理空间中是双向无限延伸的正弦波,在积分变换中体现为积分范围从+到-。因此,傅里叶变换是先天的非局限性,它对信号f(t)中体现任何局部信息处理都是相同的。而事实上,工程技术中的许多信号,如:语音信号、地震信号、心电图和各种电脉冲,他们的信号值只出现在一个短暂的时间间隔t内,以后快速减为零,t以外是未知的,可能为零,也可能是背景噪音,如果

用(1)式从信号中提取谱信号F(),就要取无限的时间量,使用过去的及将来的信号只为计算单个频谱,不能反映出随时间变化的频率,实际上我们需要的是确定的某个时间间隔内的频谱。这就使人们想到改进傅里叶变换使其能用来处理某个确定时间范围内的信号。Gabor提出的窗口傅里叶变换就是一个有效的方法。 另外,傅里叶变换之所得到广泛应用与透镜能实现傅里叶变换是分不开的。由公式 其中物平面为(,),焦平面为(),d0为物距,d1为象平面。要使=F{(,)},即准确实现傅里叶光学变换,只有在==f 时才能实现,否则将出现位相弯曲。并且,只有正透镜才能实现傅里叶变换,这些限制给工程技术中无疑增加了困难。这使得人们不得不寻求新得的方法,分数傅立叶变换不要求严频谱面,可根据需要在既包含空域信息也包括空频域信息的平面上进行处理,这使光学信息处理更具灵活性。 1傅里叶变换缺乏时间和频率的定位功能 傅里叶变换及其逆变换表示如下

小波分析MATLAB实例

到小波分析 1 背景 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。 小波变换是近年发展起来的一种基于时频域的信号分析工具,它具有良好的时频局部性、选基灵活性和去相关性等优点,可用于光谱信号的噪声滤波和基线校正等。此后,多位物理、数学家的合作共同奠定了小波变换的理论和应用基础。由于小波变换能够更精确地分析信号的局部特征,在很多领域得到了越来越多地应用。小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等。以及在医学方面的应用,如核磁共振成像时间、提高CT 、B超等分辨率。 2 小波变换的产生及去噪的必要性 我们在一维信号分析中,可知傅里叶变换将信号分解成一系列不同频率的正弦或余弦波的叠加,与之类似,小波变换也可将信号分解成一系列小波函数的叠加,这一系列小波函数都由某个母小波函数经过平移和尺度变换得来。以不规则的小波信号来逼近局部信号显然比用光滑的正弦信号逼近程度要好,而用不同尺度小波对同一信号进行逼近又有利于对信号进行逐步细致的分析,这正是小波分析的基本思想。小波变换采用变化的时频窗,窗口面积固定,但形状可变。分析低频信号时,采用拉伸的小波和长的时间窗以获取足够信息,分析高频信号时,采用压缩小波和短时间窗以获取足够精度。常见的小波函数有Meyer波、Morlet 波、8阶高斯波等。

四种傅里叶变换

傅里叶变换 对信号和系统的分析研究可以在时间域进行,也可以在频域进行。连续时间信号是时间变量t 的函数,连续时间系统在时间域可以用线性常系数微分方程来描述,也可以用冲激响应来描述。离散时间信号(序列)是序数n 的函数,这里n 可以看成时间参量,离散时间系统在时间域可以用线性常系数差分方程来描述,也可以用单位脉冲响应来描述。 在时间域对信号和系统进行分析研究,比较直观,物理概念清楚,但仅在时间域分析研究并不完善,有些问题研究比较困难。比如,有两个序列,从时间波形上看,一个变化快,一个变化慢,但都混有噪声,希望用滤波器将噪声滤除。从信号波形观察,时域波形变化快,意味着含有更高的频率成分,因此这两个信号的频谱结构不同,那么对滤波器的性能要求也不同。为了设计合适的滤波器,就需要将时域信号转换到频率域,得到其频谱结构,分析其特性,进而得到所要设计的滤波器的技术指标,然后才能进行滤波器的设计。 在连续时间信号与系统中,其频域方法就是拉普拉斯变换与傅里叶变换。在离散时间信号与系统中,频域分析采用z 变换与傅里叶变换作为数学工具。现在针对几种傅里叶变换的基本概念、重要特点、相互关系作详细的介绍。 傅里叶变换的几种可能形式 对傅里叶变换的几种可能形式进行总结,再进一步引出周期序列的离散傅里叶级数及傅里叶变换表示。 一. 非周期连续时间信号的傅里叶变换 在“信号与系统”课程中,这一变换对为 ?∞ ∞-Ω-=Ωdt e t x j X t j a a )()( ΩΩ=?∞ ∞-Ωd e j X t x t j a a )(21 )(π 这一变换对的时频域示意图(只说明关系,不表示实际的变换对)如图所示。可以看出时域上是非周期连续信号,频域上是连续非周期的频谱。 二. 周期连续时间信号的傅里叶级数及傅里叶变换表示 非周期连续信号及其频谱 0Ω0

中文版AutoCAD2014简明实用教程第一章AutoCAD2014轻松入门

第1章 AutoCAD 2014轻松入门 内容概述: 本章我们将介绍辅助绘图软件AutoCAD 2014。通过对本章内容的学习,读者能够对AutoCAD 2014的界面有一个初步地了解,能够执行基本的文件操作,还能掌握图形的控制操作,从而为今后深入学习奠定良好的基础。 知识要点: AutoCAD 2014工作界面; 图形文件的基本操作; 图形的基本控制; 1.1 AutoCAD 2014工作界面 AutoCAD 是由美国Autodesk (欧特克)公司于二十世纪八十年代开发的通用型计算机辅助绘图软件。与传统的手工绘图相比,使用AutoCAD 绘图速度更快、精度更高,因此深受广大工程技术人员的欢迎。AutoCAD 已经广泛应用于航空航天、造船、建筑、机械、电子、化工、轻纺等多个领域,且取得了丰硕的成果和巨大的经济效益。 1.1.1 启动AutoCAD 2014 随着AutoCAD 软件的不断升级,现已发展到AutoCAD 2014。与之前的版本相比,AutoCAD 2014不但界面布局更加简洁、操作更加简便,而且融入了世界领先的二维和三维设计技术,方便用户在三维环境中更快地实现文档编辑。强大的编程工具盒以及数以千计的插件,可使用户能够根据特定的需求定制出一套属于自己的AutoCAD 。 与其他应用软件一样,AutoCAD 2014也要经过一个启动操作,以进入其工作界面。启动AutoCAD 2014有以下3种方法: 使用桌面快捷方式启动。在完成安装AutoCAD 2014之后,安装程序会在桌面上自动创建一 个快捷图标 ,双击该图标即可启动AutoCAD 2014。 使用菜单命令启动。单击“开始”|“所有程序”|Autodesk|AutoCAD 2014-Simplified Chinese| AutoCAD 2014命令,即可启动AutoCAD 2014。 双击计算机中保存的AutoCAD 文件,系统将启动AutoCAD 2014,同时打开该文件。 1.1.2 进入AutoCAD 2014 启动AutoCAD 2014后,就会进入“二维草图与注释”工作界面,该界面主要由菜单浏览器、标题栏、菜单栏、功能区、快速访问工具栏、绘图窗口、命令窗口、状态栏等元素组成,如图1-1所示。 设置绘图单位; 设置绘图比例; 设置参数选项。

相关主题
文本预览
相关文档 最新文档