当前位置:文档之家› γ射线的吸收与物质吸收系数的测定

γ射线的吸收与物质吸收系数的测定

γ射线的吸收与物质吸收系数的测定
γ射线的吸收与物质吸收系数的测定

材料物理08-1 XX 同组者:XXX

指导老师:XXX 实验日期:2010年04月11号

实验9-3 γ射线的吸收与物质吸收系数的测定

测量物质对γ射线的吸收规律,不仅有助于了解γ射线与物质的相互作用机理,而且,作为一种重要的实验方法,在许多科学领域都发挥着巨大的作用。例如,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。

【实验目的】

1、进一步认识γ射线与物质相互作用的规律。

2、测量不同能量的窄束γ射线在不同物质中的吸收系数。

【实验原理】

γ射线与物质发生作用时,主要有三种效应:光电效应、康普顿效应和电子对效应。对于低能γ射线,与物质的作用以光电效应为主,如果γ射线能量接近1MeV ,康普顿效应将占主导地位,而当γ射线能量超过1.02MeV 时,就有可能产生电子对效应。

准直成平行束的γ射线,通常称为窄束γ射线。单能的窄束γ射线在穿过物质时,由于上述三种效应,其强度会减弱,这种现象称为γ射线的吸收。γ射线强度的衰减服从指数规律,即

x x N e I e I I r μσ--==00 (9-3-1)

其中I 0和I 分别是穿过吸收物质前、后的γ射线强度,x 是γ射线穿过吸收物质的厚度(单位为㎝),σr 是光电、康普顿、电子对三种效应截面之和,N 是吸收物质单位体积中原子数,μ是吸收物质的线性吸收系数(N r σμ=,单位为㎝-1)。显然μ的大小反映了吸收物质吸收γ射线能力的大小。

需要注意的是,由于γ射线与吸收物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收物质的原子序数Z 而变化,所以线性吸收系数μ是吸收物质的原子序数Z 和γ射线能量γE 的函数。

考虑到σr 是光电、康普顿、电子对三种效应截面之和,那么线性吸收系数μ就可以表示为

p c ph μμμμ++= (9-3-2)

式中ph μ、c μ、p μ分别为光电、康普顿、电了对效应的线性吸收系数,且

??

???∝∝∝25

Z Z Z p c ph μμμ (9-3-3)

从中可以看出线性吸收系数μ与吸收物质的原子序数Z 之间的复杂关系。

对于线性吸收系数μ与γ射线能量γE 之间的关系也比较复杂,并且随吸收物质的不同

而存在显著差别。图9-3-1给出了铅、锡、铜、铝对γ射线的线性吸收系数μ与γ射线能量γE 之间的关系曲线。

图9-3-1 铅、锡、铜、铝对γ射线的吸收系数和能量的关系

实际工作中常用质量吸收系数m μ表示物质对γ射线的线性吸收系数μ,m μ与μ的关系为

ρμμ=

m (9-3-4) 其中ρ是吸收物质的密度(单位为3cm g )。用m μ表示的γ射线强度的指数衰减规律为

m m x e I I μ-=0 (9-3-5)

式中的ρx x m =为吸收物质的质量厚度,单位为2

/cm g 。因为 ()p c ph A r m A

N N σσσρσρμμ++=== (9-3-6) 其中N A 是阿佛加德罗常数,A 是原子量数。所以质量吸收系数与吸收物质的密度及物理状态无关,在实际应用上也就更为方便。

在相同实验条件下,由于某一时刻的计数率n 总是与该时刻的γ射线强度I 成正比,所以(9-3-5)式也可以表示为

m m x e n n μ-=0 (9-3-7)

对两边同时取对数,得

m m x n n μ-=0ln ln (9-3-8)

显然,n ln 与m x 具有线性关系,如图9-3-2所示。

图9-3-2 n ln —m x 曲线

有时,物质对γ射线的吸收能力也用“半吸收厚度”表示,它是指使入射的γ射线强度减弱到一半时的吸收物质厚度,记作2/1d ,在量值上为

μ2

ln 2/1=d (9-3-9)

显然,2/1d 也是吸收物质的原子序数Z 和γ射线能量γE 的函数。利用半吸收厚度,可以粗略估计γ射线的能量。

【实验装置与器材】

实验装置如图9-3-3所示,包括137Cs 和60Co γ放射源、NaI (Tl )闪烁探测器、多道脉冲幅度分析器(含多道分析软件,其操作方法请阅读仪器使用说明书)、计算机,以及多个

铅吸收片和铝吸收片等。

图9-3-3 γ射线的吸收测量装置

由于实验中采用NaI (Tl )闪烁探测器,配合多道脉冲幅度分析器进行测量,在计算机上显示的是γ射线的全能谱,考虑到本底、计数统计涨落及光标定位不准的影响,所以无法直接准确得到某一能量γ射线在某一时刻的计数率,比较好的解决办法是,在相同实验条件下(放射源与探测器的位置不变,探测器工作电压和放大倍数不变,并保证相同的测量时间),首先获得不同吸收厚度下的γ射线全能谱,然后计算所选光电峰的净面积A (多道分析软件中包含此功能),以此替代前述公式中的n 或I 。净面积的计算方法有三种,分别是TPA 算法、Covell 算法和Wasson 算法,如图9-3-4所示。这些算法中,TPA 算法比较简单,准确度也较高,因此在手工计算时,建议采用这种算法,具体做法请阅读相关资料。

图9-3-4 净面积算法示意图

【实验内容】

1、阅读仪器使用说明,掌握仪器及多道分析软件的使用方法。

2、仪器开机并调整好工作电压(700~750V )和放大倍数后,预热30分钟左右。

3、在多道分析软件中调整预置时间为600s 。

4、用一组铝吸收片测量对137Cs 的γ射线(取0.662MeV 光电峰)的吸收曲线,并用最小二法原理拟合求质量吸收系数。根据铝的密度(3

/7.2cm g =ρ)求线性吸收系数,与理论值(0.194㎝-1)比较,求相对不确定度。计算半吸收厚度。

5、用一组铅吸收片测量对137Cs 的γ射线(取0.662MeV 光电峰)的吸收曲线,并用最小二法原理拟合求质量吸收系数。根据铅的密度(3/34.11cm g =ρ)求线性吸收系数,与理论值(1.213㎝-1)比较,求相对不确定度。计算半吸收厚度。

6、用一组铝吸收片测量对60Co 的γ射线(取1.17MeV 或1.33MeV 光电峰)吸收曲线,并用最小二法原理拟合求线性吸收系数、质量吸收系数和半吸收厚度。 数据处理

1用一组铝片测量对Cs 的γ吸收

其中选取的感兴趣范围是:90ch~~115ch

用0片铝片测量截图

用2片铝片测量截图

用4片铝片测量截图

用6片铝片测量截图

由表1,运用最小二乘法可得ln ROI 和 x m 的关系曲线

由图不难得出,m μ=0.0903cm 2/g,已知铝的密度ρ=2.7g/cm 3,由ρμμ=

m

可得μ=0.244

由 μ2

ln 2/1=d 可求得半吸收厚度d 1/2=2.841cm.

2用一组铅片测量对Cs 的γ吸收

其中选取的感兴趣范围是:90ch~~115ch

用0片铅片测量截图

用2片铅片测量截图

用4片铅片测量截图

用6片铅片测量截图

由表2,运用最小二乘法可得ln ROI 和 x m 的关系曲线

由上图不难得出,m μ=0.1163cm 2/g,已知铅的密度ρ=11.34g/cm 3,由ρμμ=

m

可得μ=1.319 由 μ2

ln 2/1=d 可求得半吸收厚度d 1/2=0.53cm.

3、用一组铝片测量对Co 的γ吸收

其中选取的感兴趣范围是:195ch~~215ch

用0片铝片测量截图

用2片铝片测量截图

用6片铝片测量截图

m 由上图可得出,m μ=0.1058cm 2/g,已知铝的密度ρ=2.7g/cm 3,由ρμμ=

m

可得μ=0.286

由 μ2

ln 2/1=d 可求得半吸收厚度d 1/2=2.42cm.

思考题

1、如何用本实验的方法测量一定材料的厚度?

答:可用待测材料代替试验中的铝片和铅片,测量γ射线穿过材料后的强度,根据公式x

x N e I e I I r μσ--==00,已知γ射线的初始强度I 0和材料的线性吸收系数μ可求得材料的厚

度x 。

2、闪烁体前有一厚度约200 μm 的铝质密封窗,试分析其对测量结果有何影响? 答:没有影响,根据m m x e n n μ-=0,试验中n 与n 0都会有一定程度的衰减,因此对μm 的计算没有影响

3、实验中,是否可以用全谱总计数率代替光电峰的净面积?为什么?

答:不可以,因为要考虑到本地、计数统计涨落及光标定位不准等因素的影响。

4、根据实验结果,谈谈在辐射的屏蔽防护方面应如何选择材料。

答:选材前要测一下材料对射线的半吸收厚度,尽量将辐射的影响降到最低。

5、根据实验结果分析物质对γ射线的吸收系数与哪些因素有关?

答:由实验结果看,铅对一定射线的吸收系数要比铝的吸收系数大,实验表明,密度大的材料对射线的吸收系数大。

参考资料

1、褚圣鳞,原子物理学, 高等教育出版社,1979

2、复旦大学等,原子核物理实验方法(下册),原子能出版社,1982

3、吴泳华等,近代物理实验,安徽教育出版社,1987

4、北京大学等,核物理实验,原子能出版社,1984

实验讲义-半导体材料吸收光谱测试分析2015

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯,玻璃基ZnO薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a.光源:钨灯或卤钨灯——可见光源,350~1000nm;氢灯或氘灯——紫外光源,200~360nm。 b.单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c.吸收池:玻璃——能吸收UV光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d.检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 0.575 光源单色器吸收池检测器显示双光束紫外可见分光光度计则为: 双光束紫外可见分光光度计的光路图如下:

(2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I?- =α d t e I I?- =α 0(1) I0:入射光强;I x:透过厚度x的光强;I t:透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T为: d e I I T?- = =α t (2) 则 d e T d? = =?α α ln ) /1 ln( 透射光I t

X射线实验报告

实验名称:X射线实验 一、实验目的: 1.了解X射线的产生及有关晶体的基本知识。 2.掌握晶体中X射线衍射理论。 3.测量单晶NaCl、LiF的晶面距及晶格常数。 二、实验仪器: 554—81型X射线衍射仪:NaCl单晶,面心立方体结构,表明:平行(100) 三、实验原理: 1.布拉格方程 设一束波长为λ的单色X射线射到晶体上,入射X射线将被晶体中原子的电子散射,每一个原子构成散射波的波源,这些散射波是相干的,在某个方向上的衍射波就是从晶体中全部原子所发出的波在这个方向上的叠加。只有当散射波之间的光程差等于零或波长的整数倍时,才在空间互相加强,否则将相互抵消。 研究X射线在晶体中衍射时,可把晶体看作是由某一晶面族所组成,X射线平行地入射到晶面族上,如图1所示。先就一个晶面A看,根据惠更斯原理,衍射线就是原射线在该晶面上的反射线。由于X射线的透射能力强,在研究它在晶面族中衍射时,不仅要考虑第一个晶面A的反射,而且要考虑来自相继的晶面B,V.....的反射,这些来自相继晶面的反射线之间有一定的光程差,因而发生干涉。对晶面距为

d的两个相邻晶面来说其反射线之间的光程差为2dsinθ(θ为掠射角)。只有当 2dsinθ=nλn=1,2,3 (1) 得到满足时,各个晶面的反射线才互相加强,从而产生衍射线。(1)式称为布拉格方程,它表明,当产生一定波长λ的X射线在晶面距为d的晶面族上,则只有某种X射线其波长满足(1)式才能产生衍射线。至于衍射线的方向,无论上诉哪种情况,都是原射线在晶面上反射的方向。通常说晶面反射X射线,应该按上诉含义来理解,这种反射称为选择反射。 2.晶体中X射线衍射的光路图 本实验所使用的554-81型组合式衍射仪主要由以下几部分组成:X 射线定位测角器、传感器、Geiger-Muller计算机等。 X射线管发出谱线,经锆滤波片下Ka线(λKa=0.711A)。在经准直器变平行的单色X射线。晶体的角位置(θ)测角器测量,通过传感器使计数管和(靶)以2:1的角耦合旋转,X射线晶体,反射光射向Geiger-Muller计由此记录反射光子弹数率N(单位为将数据传输给计算机,就可得到晶体的θ-N关系)

伽马射线的吸收实验报告

(3 ) 实验3:伽马射线的吸收 实验目的 1 ? 了解 射线在物质中的吸收规律。 2。测量 射线在不同物质中的吸收系数。 3?学习正确安排实验条件的方法。 内容 1. 选择良好的实验条件,测量 60 Co (或 137 CS)的 射线在一组吸收片(铅、 铜、或铝) 中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1.窄束射线在物质中的衰减规律 射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当 射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的 射线,通常称为窄束 射线。单能的窄束 射线在穿过物质时, 其强度就会减弱,这种现象称为 射线的吸收。 射线强度的衰减服从指数规律,即 =1 性吸收系数(P= σr N ,单位为Cm )。显然μ的大小反映了物质吸收 Y 射线能力的 大小。 由于在相同的实验条件下, 某一时刻的计数率 n 总是与该时刻的 射线强度I 成正 比,因此I 与X 的关系也可以用 n 与X 的关系来代替。由式我们可以得到 —X n = n °e (2 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直 线的斜率的绝对值就是线性吸收系数 J . r NX I o e ∣°e'x 其中∣o ,∣分别是穿过物质前、后的 射线强度,X 是射线穿过的物质的厚度(单位 为cm ), σr 是三种效应截面之和, N 是吸收物质单位体积中的原子数, J 是物质的线 In n=l n n °- J X

10 计 ?104 専 ,LO3 IO1 厚反。K 图1 γ???S??X 由于射线与物质相互作用的三种效应的截面都是随入射射线的能量E和吸收物质的原子序数Z而变化,因此单能射线的线性吸收系数是物质的原子序数 Z和能量E L f的函数. 式中^Ph、%、”p分别为光电、康普顿、电子对效应的线性吸收系数。其中 物质对射线的吸收系数也可以用质量吸收系数^m来表示。

γ射线的吸收

1.3 γ射线的吸收 一、【实验目的】 1. 了解γ射线在物质中的吸收规律。 2. 掌握测量γ吸收系数的基本方法。 二、【实验原理】 1. 窄束 γ射线在物质中的吸收规律。 γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。 准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的 减弱服从指数衰减规律,即: x x e I I μ-=0 (1) 其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度, μ为 线性吸收系数。用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式 求得线性吸收系数 μ值。 为了减小测量误差,提高测量结果精度。实验上常先测得多组 x I 与 x 的值,再用曲线拟合来求解。则: x I I x μ-=0ln ln (2) 由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 μ都有贡献, 可得: p c ph μμμμ++= (3) 式中 ph μ为光电效应的贡献, c μ为康普顿效应的贡献, p μ为电子对效应的贡献。它们 的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的 γ射线不同的材料、 μ也有不同的值。医疗上正是根据这一原理,来实现对人体 内部组织病变的诊断和治疗,如 x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。图1表示 铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。

图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。 为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式: m m x x e I I μ-=0 (4) 式中x m =x·ρ,称为质量厚度,单位是g/cm 2。 半吸收厚度x 1/2: 物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得: μ2 ln 2 1= x (5) 显然也与材料的性质和 γ射线的能量有关。图2表示铝、铅的半吸收厚度与E γ的关系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。 三、【实验内容与要求】 1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。 2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。 3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。 4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。 5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。

8、半导体材料吸收光谱测试分析

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯、绘图打印机,玻璃基ZnO 薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 UV762双光束紫外可见分光光度计外观图: (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a .光源:钨灯或卤钨灯——可见光源,350~1000nm ;氢灯或氘灯——紫外光源,200~360nm 。 b .单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c .吸收池:玻璃——能吸收UV 光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d .检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 光源 单色器 吸收池 检测器 显示 双光束紫外可见分光光度计则为:

双光束紫外可见分光光度计的光路图如下: (2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I ?-=α0 d t e I I ?-=α0 (1) I 0:入射光强;I x :透过厚度x 的光强;I t :透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T 为: d e I I T ?-==α0 t (2)

X射线物相分析实验报告.pdf

实验X射线物相分析 1.了解X射线衍射仪的结构及工作原理。 2.掌握X射线衍射物相定性分析的原理、实验方法以及物相检索方法。 二、实验原理 当一束单色X射线照射到某一结晶物质上,由于晶体中原子的排列具有周期性,当某一层原子面的晶面间距d与X射线入射角θ之间满足布拉格(Bragg)方程:2d sinθ= λ(λ为入射X射线的波长)时,就会产生衍射现象。X射线物相分析就是指通过比较结晶物质的X射线衍射花样来分析待测试样中含有何种或哪几种结晶物质(物相)。 任何一种结晶物质都有自己特定的结构参数,即点阵类型、晶胞大小、晶胞中原子或离子的数目、位置等等。这些结构参数与X射线的衍射角θ和衍射强度I有着对应关系,结构参数不同则X射线衍射花样也各不相同。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,不存在两种衍射花样完全相同的物质。 通常用表征衍射线位置的晶面间距d(或衍射角2θ)和衍射线相对强度I的数据来代表衍射花样,即以晶面间距d为横坐标,衍射相对强度I为纵坐标绘制X射线衍射图谱。目前已知的结晶物质有成千上万种。事先在一定的规范条件下对所有已知的结晶物质进行X射线衍射,获得一套所有结晶物质的标准X射线衍射图谱(即d-I数据),建立成数据库。当对某种材料进行物相分析时,只需要将其X射线衍射图谱与数据库中的标准X射线衍射图谱进行比对,就可以确定材料的物相,如同根据指纹来鉴别人一样。 各种已知物相X射线衍射花样的收集、校订和编辑出版工作目前由国际性组织“粉末衍射标准联合委员会(JCPDS)”负责,每一种物相的X射线衍射花样制成一张卡片,称为粉末衍射卡,简称PDF卡,或称JCPDS卡。通常的X射线物相分析即是利用PDF卡片进行物相检索和分析。 当多种结晶物质同时产生衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加——它们相互独立,不会相互干涉。逐一比较就可以在重叠的衍射花样中剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。 三、实验仪器

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

射线的吸收与物质吸收系数的测定

实验九Y射线的吸收与物质吸收系数U的测定 实验目的 1 .了解射线与物质相互作用的特性 2.了解窄束射线在物质中的吸收规律 3?测量其在不同物质中的吸收系数 实验原理 一、射线与物质的作用 射线是由于原子核由激发态到较低的激发态退激(而原子序数Z和质量数A均保持不变)的过程中产生的,包括:(1)或衰变的副产品(2)核反应(3) 基态激发三部分,是处于激发态原子核损失能量的最显著方式;由于射线具不 带电、静止质量为0等特点决定了它同物质的作用方式与带电粒子不同,带电粒子(或粒子等)在一连串的多次电离和激发事件中不断地损失其能量,而射线与物质的相互作用却在单次事件中完全吸收或散射。光子(射线)通过物体时会与其中的下述带电体发生相互作用: 1)被束缚在原子中的电子; 2)自由电子(单个电子); 3)库仑场(核或电子的); 4)核子(单个核子或整个核)。 这些类型的相互作用可以导致:光子的完全吸收、弹性散射、非弹性散射三 种效应中的一种(在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种)表现为: 光电效应: 低能光子所有的能量被一个束缚电 子吸收,核电子将其能量的一部分用来克 服原子对它的束缚,成为光电子;其余的 能量则作为动能,发生光电效应。 (光电效 应)

康普顿效应: 光子还可以被原子或单个电子散射, 当 光子的能量(约在 1MeV )大大超过 电子的结合能时,光子与核外电子发生非 弹性碰撞,光子的一部分能量转移给电 子,使它反冲出来,而散射光子的能量和 运动方向都发生了变化,发生康普顿效应。 电子对效应: 若入射光子的能量超过 1.02MeV , 光子在带电粒子的库仑场作用下则 可能产生正、负电子对,产生的电子对 总动能等于 光子能量减去这两个电子 的静止质量能(2mc 2=l.022MeV ) 子发生光电效应、康普顿效应和电子对效应损失能量; 射线一旦与吸收物质 原子发生这三种相互作用,原来能量为 h 的光子就消失,或散射后能量改变、 并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射 束中移去。 二、物质对 射线的吸收规律: 作用特点: 射线与物质原子间的相互作用只要发生一次碰撞就是一次大的 能量转移;它不同于带电粒子穿过物质时,经过许多次小能量转移的碰撞来损失 它的能量。带电粒子在物质中是逐渐损失能量, 最后停止下来,有射程概念; 射 线穿过物质时,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子 穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度” 来表示射线对物质的穿透情况。 吸收规律:本实验研究的主要是窄束 射线在物质中的吸收规律。所谓窄束 射线是指不包括散射成份的射线束,通过吸收片后的 光子,仅由未经相互作用 或称为未经碰撞的光子所组成。 “窄束” 一词是实验上通过准直器得到细小的束而 从上面的讨论可以清楚地看到,当 光子穿过吸收物质时,通过与物质原 (电子对效应)

X射线在物质中的衰减

第四节X射线在物质中的衰减

扩散衰减 引起X 射线在物质内传播过程中的强度减弱,包括传播过程中扩散衰减和吸收衰减两方面 对于均匀介质中的X 射线源在空间各个方向辐射时,若不考虑介质的吸收,与普通点光源一样,在半径不同的球面上,X 射线的减弱遵守反平方规律即: 212221r r I I 式中I 1,I 2分别为r 1和r 2的球面上X 射线的强度。 吸收衰减X 射线通过物质时,与物质发生相互作用过程中由于吸收和散射导致入射方向X 射线强度减少。 适用于真空

一、单能X 射线在物质中的衰减规律 单能窄束X 射线在物质中的衰减规律可表示为 0x I I e μ-=X 射线强度衰减到其初始值一半时所需某种物质的衰减厚度定义为半价层(half-value layer, HVL). 1. 衰减规律 2. 半价层μ 693 .0=HVL 3. 宽束X 射线宽束X 射线就是指含有散射线成分的X 射线束。

线性衰减系数,不是一个常数,而是与吸收体的厚度,面积,形状,探测器和吸收体间的距离以及光子的能量有关。 是积累因子,描述了散射光子 对辐射衰减的影响 x e BI I μ-=01-34

n s s n n N N N N N N N B n +=+==1n N 为物质中所考虑那一点的未经相互作用原射线光子计数率;1-35 物理意义:其大小反映了在考虑那一点散射光子对光子数的贡献。对宽束而言B>1,理想窄束条件下B=1. B 近似计算: s N 为物质中所考虑那一点的散射线光子计数率; 1B x μ=+

二、连续X 射线在物质中的衰减规律 一般情况下,X 射线束是由能量连续分布的光子组成。当穿过一定厚度的物质时,各能量成分衰减的情况并不一样,它不遵守单一的指数衰减规律,因此连续X 射线的衰减规律比单能X 射线复杂的多。理论上连续能谱窄束X 射线的衰减可由下式描述 12n I I I I =+++ 1201020n x x x n I e I e I e μμμ---=+++ 式中,I 1、I 2、……I n 表示各种能量X 射线束的透过强度;I 01、I 02、……I 0n 表示各种能量X 射线束的入射强度; x 为吸收物质层的厚度。 1μ2μn μ、、……表示各种能量X 射线1. 连续X 射线的衰减规律

南京大学-X射线荧光光谱分析实验报告

X 荧光分析 一.实验目的 1.了解能量色散X 荧光分析的原理、仪器构成和基本测量、分析方法。 2.验证莫塞莱定律,并从实验推出屏蔽常数。 3.研究对多道分析器的定标,以及利用X 荧光分析测量位未知样品成分及相对含量的方法。 二.实验原理 以一定能量的光子、电子、原子、α粒子或其它离子轰击样品,将物质原子中的内壳层电子击出,产生电子空位,原子处于激发态。外壳层电子向内壳层跃迁,填补内壳层电子空位,同时释放出跃迁能量,原子回到基态。跃迁能量以特征X 射线形式释放,或能量转移给另一个轨道电子,使该电子发射出来,即俄歇电子发射。测出特征X 射线能谱,即可确定所测样品中元素种类和含量。 特征曲线X 射线根据跃迁后电子所处能级可以分为,,K L M 系等;根据电子跃迁前所在能级又可分为βαγβαL L K K K ,,,,等不同谱线。特征X 谱线的的能量为两壳层电子结合能之差。因此,所有元素的,K L 系特征X 射线能量在几千电子伏到几十千电子伏之间。X 荧光分析中激发X 射线的方式一般有三种: (1)用质子、α粒子等离子激发

(2)用电子激发; (3)用X射线或低能γ射线激发。我们实验室采用X射线激发(XIX技术),用放射性同位素作为激发源的X光管。 XIX技术中,入射光子除与样品中原子发生光电作用产生内壳层空位外,还可以发生相干散射和非相干散射(康普顿散射),这些散射光子进入探测器,形成XIX分析中的散射本底。另外,样品中激发出的光电子又会产生轫致辐射,但这产生的本底比散射光子本底小得多,且能量也较低,一般在3keV以下。所以XIX能谱特征是:特征X射线峰叠加在散射光子峰之间的平坦的连续本底谱上。如图1能谱示意图所示。 图一:能谱示意图 测量特征X射线常用() Si Li探测器,它的能量分辨率高,适用于多元素同时分析,也可选用() Ge Li或高纯Ge探测器,但均价格昂贵。 在X荧光分析中,对于轻元素(一般指45 Z<的元素)通常测其KX射线,对于重元素(45 Z>的元素),因其KX射线能量较高且比LX射线强度弱,

γ射线的吸收实验报告

丫射线的吸收 一、实验目的: 1. 了解丫射线在物质中的吸收规律。 2. 掌握测量丫吸收系数的基本方法。 、实验原理: 1. 窄束丫射线在物质中的吸收规律。 Y 射线在穿过物质时, 会与物质发生多种作用, 主要有光电效应,康普顿效应和电子对 效应,作用 的结果使 Y 射线的强度减弱。 准直成平行束的 丫射线称为窄束 Y 射线,单能窄束 Y 射线在穿过物质时,其强度的 减弱服从指数衰减规律,即: ⑴ 其中|0为入射Y 射线强度,|x 为透射Y 射线强度,X 为Y 射线 穿透的样品厚度, 卩为 T ^I x /1 。与厚度X 的关系曲线,便可根据(1)式 内部组织病变的诊断和治疗,如 x 光透视,x 光CT 技术,对肿瘤的放射性治疗等。图 1表示 铅、锡、铜、铝材料对 丫射线的线性吸收系数 □随能量E 线性吸收系数。用实验的方法测得透射率 求得线性吸收系数 4值。 为了减小测量误差,提高测量结果精度。 合来求解。 实验上常先测得多组 | x 与X 的值,再用曲线拟 则: In I x =I n 10 — A x 由于 可得: Y 射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 (2) 4都有贡献, ? ph 为光电效应的贡献, 巴为康普顿效应的贡献, 丫光子的能量E r 有关,而且还与材料的原子序数、 能量相同的 Y 射线不同的材料、 4也有不同的值。医疗上正是根据这一原理,来实现对人体 式中 的值不但与 LI P 为电子对效应的贡献。它们 原子密度或分子密度有关。对于 Y 变化关系。

hU出、谢.册、粗时*斯维的吗临的氏痰

图中横座标以 Y 光子的能量 h u 与电子静止能量 mc 2 的比值为单位,由图可见,对于铅低 能Y 射线只有光电效应和康普顿效应,对高能 Y 射线,以电子对效应为主。 为了使用上的方便,定义 卩m =卩/p 为质量吸收系数,P 为材料的质量密度。则(1)式可 改写成如下的形式: I X = 10e"m 式中X m =X P ,称为质量厚度,单位是 半吸收厚度X i/2: 物质对Y 射线的吸收能力也常用半吸收厚度来表示, 其定义为使入射 Y 射线强度减弱到一 半所需要吸收物质的厚度。由(1 )式可得: In 2 三、实验内容与要求 g/cm 2 。 显然也与材料的性质和 Y 射线的能量有关。 图 2表示铝、铅的半吸收厚度与 E 下的关系。 若用实验方法测得半吸收厚度, 则可根据( 4) 求得材料的线性吸收系数 卩值。 1. 按图3检查测量装置, 调整探测器位置, 使放射源、准直孔、 探测器具有同一条中心线。 2. 打开微机多道系统的电源,使微机进入多道分析器工作状态( 3. 4. 5. 选择合适的高压值及放大倍数,使在显示器上得到一个正确的 测量不同吸收片厚度 x 的60 Co 的能谱,并从能谱上计算出所要的积分计数 I b 。 测量完毕,取出放射源,在相同条件下,测量本底计数 V,, UMS )。 60 Co Y 能谱。 1 x 。 6?把高压降至最低值,关断电源。 7?用最小二乘法求出 丫吸收系数 卩及半吸收厚度d ? 阳3半吸收1^.15和丫貼线能 就的爻衆 2. 百 ■岂蟄里密券 主 Mt ilLf S 零 jfi 打卬机

x射线单晶衍射实验报告doc

x射线单晶衍射实验报告 篇一:晶体X射线衍射实验报告 篇二:X射线衍射实验报告 X射线衍射实验报告 姓名:XXX 专业:有机化学学号:3时间: 一、实验目的 1. 了解X射线衍射仪的结构; 2. 熟悉X射线衍射仪(原文来自:小草范文网:x 射线单晶衍射实验报告)的工作原理; 3. 掌握X射线衍射仪的基本操作。 二、实验原理 X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X 射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 满足衍射条件,可应用布拉格公式:2dsinθ=λ 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。

三、仪器组成 X射线衍射仪的基本构造原理图, 主要部件包括4部分。 X射线衍射仪电路图 (1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。 (2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。 (3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。 (4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。 四、实验步骤 1)开启循环水系统:将循环水系统上的钥匙拧向竖直方向,打开循环水上的控制器开关ON,此时界面会显示流量,打开按钮RUN即可。调节水压使流量超过 3.8L/min,如果流量小于3.8L/min,高压将不能开启。 2)开启主机电源:打开交流伺服稳压电源,即把开关扳到ON的位置,然后按开关上面的绿色按钮FAST START, 此时主机控制面板上的“stand by”灯亮。

物质对伽马射线的吸收实验报告

近代物理实验报告指导教师:得分: 实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节 实验者:班级材料0705 学号 5 姓名童凌炜 同组者:班级材料0705 学号 7 姓名车宏龙 实验地点:综合楼 507 实验条件:室内温度℃,相对湿度 %,室内气压 实验题目:物质对伽马射线的吸收 实验仪器:(注明规格和型号) 射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。 仪器组成如下图所示: 实验目的: 1.了解掌握射线与物质相互作用的性质和特点 2.学习掌握物质对射线的吸收规律 3.测量射线在不同物质中的吸收系数 4. 实验原理简述: 当原子核发生α和β衰变时,通常衰变到原子 核的激发态,由于处于激发态的原子核是不稳定的, 它要向低激发态跃迁,同时往往放出γ光子,这一现 象称为γ衰变。γ光子会与下列带电体发生相互作 用,原子中的束缚电子,自由电子,库伦场及核子。 这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。如右所示为为γ射线与物质相互作用的示意图

图中的三种状况分别为: 1. 低能时以光电效应为主。 2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。 3. 若入射光子的能量超过,则电子对的生成成为可能 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。射线束有一定宽度,只要没有散射光子,就可称之为“窄束”。 射线强度随物质厚度的衰减服从指数规律,即x e I I μ-=0 I 和0I 分别是穿透物质前后的γ射线强度;x 是γ射线穿过物质的厚度是光电、康普顿、电子对三种 效应截面之和;N 是吸收物质单位体积中的原子数;μ是物质的吸收系数, 反映了物质吸γ收射线能力的大小, 并且可以分解成这样几项: p c ph μμμμ++= γ射线与物质相互作用的三种效应的截面都随入射γ射线的能量γE 和吸收物质的原子序数Z 而改变。 如右所示, 图中给出了铅对γ射线的吸收系数与γ射线能量的线性关系图。 实际中通常用质量厚度)(2 -??=cm g x R m ρ来表示 吸收体的厚度,以消除密度的影响, 则射线强度的表达式修改为:ρ μ/0)(m R m e I R I -= 计数率N 总是与该时刻的射线强度成正比,因此可得:0InN R InN m +- =ρ μ 将对数形式的吸收曲线表达为图像, 得到这样的一条直线, 如右图所示. 并且可以从这条直线的斜率求出

伽马射线吸收系数的测量

γ射线的吸收与物质吸收系数μ的测定 初阳学院综合理科081班马甲帅08800140 指导老师林根金 摘要: 本实验研究的主要是窄束γ射线在金属物质中的吸收规律。测量γ射线在不同厚度的铅、铝中的吸收系数。通过对γ射线的吸收特性,分析与物质的吸收系数与物质的面密度,厚度等因素有关。根据已知一定放射源对一定材料的吸收系数来测量该材料的厚度。 关键词:γ射线吸收系数μ60Co、137Cs放射源 引言:γ射线首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。原子核衰变和核反应均可产生γ射线。γ射线具有比X射线还要强的穿透能力。γ射线是处于激发态原子核损失能量的最显著方式,γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A均保持不变的退激发过程。γ射线是光子,光子会与被束缚在原子中的电子、自由电子、库伦场、核子等带电体发生相互作用。不同能量的γ射线与物质的相互作用效果不同,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。因此研究不同物质对γ射线的吸收规律的现实意义非常巨大,如在核技术的应用与辐射防护设计和材料科学等许多领域都有应用。 正文 1实验原理 1.1 γ射线与带电体的作用原理 γ射线与带电体的相互作用会导致三种效应中的一种。理论上讲,γ射线可能的吸收核散射有12种过程。这些效应所释放的能量在10KeV到10MeV之间的只有三种,也就是基本上每种相互作用都产生一种主要的和吸收散射过程。这三种主要过程是: 1.1.1光电效应: 低能γ光子所有的能量被一个束缚电子吸收,核电子将其能量的一部分用来克服原子对它的束缚,成为光电子;其余的能量则作为动能,发生光电效应。 1.1.2 康普顿效应: γ光子还可以被原子或单个电子散射,当γ光子的能量(约在1MeV)大大超过电子的结合能时,光子与核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化,发生康普顿效应。 1.1.3 电子对效应: 若入射光子的能量超过1.02MeV,γ光子在带电粒子的库仑场作用下则可能产生正、负电子对,产生的电子对总动能等于γ光子能量减去这两个电子的静止质量能(2mc2=1.022MeV) 1.2 三种γ射线与带电体发生相互作用的基础上,物质对γ射线的吸收规律如下: 1.2.1作用特点:γ射线与物质原子间的相互作用只要发生一次碰撞就是一次大的能量

γ射线的吸收与物质吸收系数的测定

材料物理08-1 XX 同组者:XXX 指导老师:XXX 实验日期:2010年04月11号 实验9-3 γ射线的吸收与物质吸收系数的测定 测量物质对γ射线的吸收规律,不仅有助于了解γ射线与物质的相互作用机理,而且,作为一种重要的实验方法,在许多科学领域都发挥着巨大的作用。例如,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。 【实验目的】 1、进一步认识γ射线与物质相互作用的规律。 2、测量不同能量的窄束γ射线在不同物质中的吸收系数。 【实验原理】 γ射线与物质发生作用时,主要有三种效应:光电效应、康普顿效应和电子对效应。对于低能γ射线,与物质的作用以光电效应为主,如果γ射线能量接近1MeV ,康普顿效应将占主导地位,而当γ射线能量超过1.02MeV 时,就有可能产生电子对效应。 准直成平行束的γ射线,通常称为窄束γ射线。单能的窄束γ射线在穿过物质时,由于上述三种效应,其强度会减弱,这种现象称为γ射线的吸收。γ射线强度的衰减服从指数规律,即 x x N e I e I I r μσ--==00 (9-3-1) 其中I 0和I 分别是穿过吸收物质前、后的γ射线强度,x 是γ射线穿过吸收物质的厚度(单位为㎝),σr 是光电、康普顿、电子对三种效应截面之和,N 是吸收物质单位体积中原子数,μ是吸收物质的线性吸收系数(N r σμ=,单位为㎝-1)。显然μ的大小反映了吸收物质吸收γ射线能力的大小。 需要注意的是,由于γ射线与吸收物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收物质的原子序数Z 而变化,所以线性吸收系数μ是吸收物质的原子序数Z 和γ射线能量γE 的函数。 考虑到σr 是光电、康普顿、电子对三种效应截面之和,那么线性吸收系数μ就可以表示为 p c ph μμμμ++= (9-3-2) 式中ph μ、c μ、p μ分别为光电、康普顿、电了对效应的线性吸收系数,且

x光衍射实验报告doc

x光衍射实验报告 篇一:X射线衍射实验方法和数据分析 X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X 射线管产生连续X射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作

3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1) X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X 光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ… (2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线 X射线与物质的作用 X射线与物质相互作用产生各种复杂过程。就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。 图2X射线与物质的作用

伽马射线的吸收实验报告

实验3:伽马射线的吸收 实验目的 1. 了解γ射线在物质中的吸收规律。 2. 测量γ射线在不同物质中的吸收系数。 3. 学习正确安排实验条件的方法。 内容 1. 选择良好的实验条件,测量60Co (或137Cs )的γ射线在一组吸收片(铅、 铜、或铝)中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1. 窄束γ射线在物质中的衰减规律 γ射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当γ射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的γ射线,通常称为窄束γ射线。单能的窄束γ射线在穿过物质时,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度的衰减服从指数规律,即 x Nx e I e I I r μσ--==00 ( 1 ) 其中I I ,0分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位为cm ),r σ是三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(N r σμ=,单位为1 =cm )。显然μ的大小反映了物质吸收γ射线能力的大小。 由于在相同的实验条件下,某一时刻的计数率n 总是与该时刻的γ射线强度I 成正比,因此I 与x 的关系也可以用n 与x 的关系来代替。由式我们可以得到 x e n n μ-=0 ( 2 ) ㏑n=㏑n 0-x μ ( 3 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直

线的斜率的绝对值就是线性吸收系数μ。 由于γ射线与物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收 物质的原子序数Z 而变化,因此单能γ射线的线性吸收系数μ是物质的原子序数Z 和能量γE 的函数。 p c ph μμμμ++= ( 4 ) 式中ph μ、c μ、p μ分别为光电、康普顿、电子对效应的线性吸收系数。其中 5 Z ph ∝μ Z c ∝μ ( 5 ) 2 Z p ∝μ 图2给出了铅、锡、铜、铝对γ射线的线性吸收系数与γ射线能量的关系曲线。 物质对γ射线的吸收系数也可以用质量吸收系数m μ来表示。

(整理)材料的光学性能测试.

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的和要求 1、掌握透过率、全反射和漫反射测定的基本原理; 2、掌握透过率、全反射和漫反射测定的操作技能; 3、测定聚合物膜和无机非金属材料的薄膜的透过率和全反射率,学会测定无机材料粉末的漫反射光谱。 4、针对不同的材料形式(如薄膜,粉末等)能判断该如何选择不同的测试模式。 二、实验原理 光学性能是材料的重要也是最常用的性能之一,薄膜、陶瓷、玻璃、粉末、聚合物、人工晶体甚至胶体的性能评价都离不开光学性能的表征。本实验中所涉及到材料的光学性能主要是指透过率、反射率尤其是漫反射模式测定的反射率等光学性能的测定,涉及的材料包括聚合物、粉末和玻璃等。 在通常所用的分光光度法中,常常将待测定的物质溶解在溶剂中,通过比色来定性或定量物质的含量或浓度等。一些无机粉末或者聚合物本身并不溶于常见的溶剂中,将这些不溶解的物质分散在液体介质中得到的是消光光谱而不是吸收光谱,测定的是消光(Extinction)而不仅仅是吸收(Absorption)。另外,对薄膜材料来说,能进行原位测定是重要的,因为在溶解过程中往往改变了材料的状态,所测定的也不再是实际应用中所要知道的结果。薄膜、粉末等是实际应用中常见的材料形式,这些材料的光学性能的测定对材料提出了更高的要求。 目前中高档的紫外-可见分光光度计均可选配积分球附件来测定物质的漫反射光谱(UV-vis diffuse reflenctance spectrum,UV-vis DRS),UV-vis DRS特别适用粉末样品的测定。聚合物、聚合物与无机物的杂化材料、多种无机化合物半导体均可用UV-vis DRS进行测定。带积分球的分光光度计还可测定玻璃、有机玻璃、塑料制品的透过率和反射率等。下面就有机物、无机物和化合物的紫外-可见光谱的原理作详细的介绍: 1、有机物的紫外—可见吸收光谱: 分子的紫外—可见吸收光谱是基于物质分子吸收紫外辐射或可见光,其外层电子跃迁而成,又称分子的电子跃迁光谱。紫外—可见分光光度法是基于物质分子的紫外—可见吸收光谱而建立的一种定性、定量分析方法。有机化合物此外吸收光谱(电子光谱)是由分子外层电子或价电子跃迁所产生的。按分子轨道理论,有机化合物分子中有:成键σ轨道,反键σ*轨道;成键π轨道,反键π*轨道(不饱和烃);另外还有非键轨道(杂原子存在)。各种轨道的能级不同,如图1所示。

射线的吸收与物质吸收系数的测定

实验九γ射线的吸收与物质吸收系数μ的测定实验目的 1.了解γ射线与物质相互作用的特性 2.了解窄束γ射线在物质中的吸收规律 3.测量其在不同物质中的吸收系数 实验原理 一、γ射线与物质的作用 γ射线是由于原子核由激发态到较低的激发态退激(而原子序数Z和质量数A均保持不变)的过程中产生的,包括:(1)α或β衰变的副产品(2)核反应(3)基态激发三部分,是处于激发态原子核损失能量的最显著方式;由于γ射线具不带电、静止质量为0等特点决定了它同物质的作用方式与带电粒子不同,带电粒子(α或β粒子等)在一连串的多次电离和激发事件中不断地损失其能量,而γ射线与物质的相互作用却在单次事件中完全吸收或散射。光子γ(γ射线)通过物体时会与其中的下述带电体发生相互作用: 1)被束缚在原子中的电子; 2)自由电子(单个电子); 3)库仑场(核或电子的); 4)核子(单个核子或整个核)。 这些类型的相互作用可以导致:光子的完全吸收、弹性散射、非弹性散射三种效应中的一种(在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种)表现为: 光电效应: 低能γ光子所有的能量被一个束缚电 子吸收,核电子将其能量的一部分用来克 服原子对它的束缚,成为光电子;其余的 能量则作为动能,发生光电效应。(光电效应)

康普顿效应: γ光子还可以被原子或单个电子散射, 当γ光子的能量(约在1MeV)大大超过 电子的结合能时,光子与核外电子发生非 弹性碰撞,光子的一部分能量转移给电 子,使它反冲出来,而散射光子的能量和 运动方向都发生了变化,发生康普顿效应。(康普顿效应) 电子对效应: 若入射光子的能量超过1.02MeV, γ光子在带电粒子的库仑场作用下则 可能产生正、负电子对,产生的电子对 总动能等于γ光子能量减去这两个电子 的静止质量能(2mc2=1.022MeV) (电子对效应) 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原 γ子发生光电效应、康普顿效应和电子对效应损失能量;γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为hν的光子就消失,或散射后能量改变、并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射γ束中移去。 二、物质对γ射线的吸收规律: 作用特点:γ射线与物质原子间的相互作用只要发生一次碰撞就是一次大的能量转移;它不同于带电粒子穿过物质时,经过许多次小能量转移的碰撞来损失它的能量。带电粒子在物质中是逐渐损失能量,最后停止下来,有射程概念;γ射线穿过物质时,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 吸收规律:本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,通过吸收片后的γ光子,仅由未经相互作用或称为未经碰撞的光子所组成。“窄束”一词是实验上通过准直器得到细小的束而

相关主题
文本预览
相关文档 最新文档