当前位置:文档之家› 太阳能热泵相变蓄热器的研究进展

太阳能热泵相变蓄热器的研究进展

太阳能热泵相变蓄热器的研究进展
太阳能热泵相变蓄热器的研究进展

太阳能热泵相变蓄热器的研究进展

2011-03-23 13:25:27 来源:北极星太阳能网

由于相变材料的传热系数一般较低,且在相变过程中伴有体积变化。因此,合理地设计相变蓄热器是相变蓄热系统中的一个重要组成部分,各国的研究者们尝试设计了各种类型的蓄能换热器。

1、相变蓄能材料/水换热器

相变蓄能换热器的形式主要有壳管式和矩形式,绝大多数的相变蓄能换热器的换热介质为水,对于采用这种介质蓄能的换热器研究起源较早,直到今天仍然有很多学者在不断的研发新型的相变蓄能材料/水换热器,并对其换热特性、传热机理等进行不断的深入研究,以期早日实现工程应用。

在国外, 2000年,Mehmet对圆柱形蓄热装置进行了理论分析,并采用焓法对相变蓄热单元的瞬时过程作了分析,指出相变材料、圆柱体的半径、流体的流量、入口温度等蓄热装置的运行效率均有影响。2002年, Giovanni对平板型相变材料在固液变化过程中热传递进行了数值和实验研究,实验结果和模拟值相吻合。Kamal A. R.Ismail等对融化区存在自然对流的水平圆柱蓄热器中的相变问题进行了数值模拟,建立了二维稳态数学模型,并进行了验证。2003年, Uros St2ritih对具有加肋表面的相变蓄热器传热特性进行了实验研究,将凝固和融化过程与平板表面的换热器进行了对比。肋片效率由通过肋片的热流和不通过肋片的热流比例来确定。2005年, K.C. Nayak等对相变蓄热器中的传热强化装置进行了研究,采用有限容积法对两种类型的换热器进行了数值模拟,可以看出,传热强化装置在蓄热器运行中起了很重要的作用。2008年, V. Sha2tikian等对恒热流条件下的内加肋相变蓄热器进行了数值研究,采用Fluent软件进行了动态数值模拟,结果显示,瞬时相变过程取决于热流、相变材料的蓄热能力和肋片尺寸三个因素。

在国内,张寅平等对相变蓄能技术进行了深入研究,在理论探索和实验研究方面都取得了丰硕的成果。2002年,陈颖等提出了圆柱形相变蓄热器的结构,通过传热分析和实验研究,总结出放热性能变化规律,得出了满足工程精度的实验准则式。2003年,杨启容等通过建立与实际相似的加肋同心套管式潜热蓄热器模拟实验台,对潜热蓄热器内通流体时的充热、放热过程进行了实验研究,得出了流体的出口温度、充热量和放热量随时间的变化规律。2005年,马贵阳等研制开发了在低谷用电时段储存电能、在用电高峰时放热的相变蓄热装置,装置中加装了强化传热的导热翅片和放热的换热盘管。通过对不同出水流量下时放热过程中的热工参数测试结果分析可知,导热翅片起到很好的强化传热作用。

王增义等研制了热管式相变蓄热换热器,采用石蜡作为蓄热材料,对其储、放能过程即内部石蜡的融化与凝固过程进行了实验研究,结果表明,热管在该换热器内极好地发挥了换热元件的作用,换热器运行状况良好,各项功能均能较好地实现。2007年,朱孝钦等研究了一种以传统的管壳式换热器作为结构基础,管内充填相变材料CaCl2. 6H2O的新型换热器的储热性能。

2、相变蓄能材料/制冷剂换热器

采用制冷剂作为换热介质,与相变蓄能材料间进行直接换热的蓄能换热器是近几年才开始研究的,其省略了传统的中间换热环节,故换热效率有所提高。 2007年, FuqiaoWang等在制冷系统中采用制冷剂作为换热介质的相变蓄热器,将其作为系统中的预冷凝器,系统COP可以提高6% ,随后又通过数值模拟

研究了将相变蓄热器设置于系统不同位置时的不同效果。吕磊磊等介绍了一种应用于空调系统冷凝热回收的复合相变蓄热器。这种复合相变蓄器是一种片管式换热器外套蓄热箱体,在高温制冷剂管外侧加装翅片,相变材料在壳体与翅片管间储存,冷、热流体分别在管内流动,具有管壳式和翅片管式换热器各自的优点,利用相变材料放出潜热提高供水温度,不需用热水时,压缩机不必停机,而是加热融化相变材料,以储存热量。

综上所述,我们可以看出太阳能热泵一直是利用可再生能源的有效途径,太阳能蓄能热泵的研究更是国内外的热点研究课题。近年来,随着相变蓄能材料研究的进步、相变蓄热器强化换热研究的深入,相变潜热蓄热吸引了各国学者越来越多的关注。但是,相比而言,国内的研究仍落后于国外,其研究主要依靠对国外技术的引进、吸收,缺乏创新。因此,未来的研究应力争在系统上突出“新”, 在技术上突出“用”, 在目标上突出“远”。

目前的太阳能热泵蓄能技术,其蓄能设备基本上是机械地连接在系统上,尤其是在蓄能装置在冬季蓄热,夏季蓄冷两工况下均使用的时候,这就在太阳能热泵系统中增加了换热环节,降低了换效率,导致系统的复杂、成本的提高,控制的复杂。在某种程度上,使推广与应用变得缓慢。因此,通过系统集成创新,构建高度简化、造价便宜、用能合理的太阳能热泵集成系统才是解决问题的途径。但是,由于太阳能热泵应用的成本偏高,规模偏小,如何突破核心关键技术,推动太阳能热泵技术领域相关设备的生产与发展,提高太阳能利用领域的集成创新能力,仍是期待解决的问题。

蓄热技术及其应用

蓄热技术及其应用 蓄热技术是缓解人类能源危机的一种重要手段。本文首先介绍了蓄热技术的分类和特点,分析了蓄热技术在国内外的研究情况,又阐述了它在暖通空调等领域的应用状况,最后对蓄热技术的发展进行了展望。 Key words:heat storage technology;phase transition;HV AC;energy saving 在许多能量利用系统中,往往存在着能量供应和需求的时间性差异,造成了能量利用的巨大浪费。蓄热技术是解决该问题的一种有效途径。蓄热技术的核心应用在于调和热能供给与需求在时间和空间上不相匹配的矛盾,在太阳能热利用、电力的“移峰填谷”、废热和余热的回收利用以及建筑节能、暖通空调等领域具有广泛的应用前景。 1.蓄热技术分类及特点 蓄热技术目前主要有显热蓄热、潜热蓄热(相变蓄热)和化学反应蓄热三种。 显热蓄热是利用物质温度的变化来存蓄热量的。常用的显热蓄热介质有水、水蒸气、鹅卵石等。显热蓄热介质来源广泛,价格低廉,系统简单,是目前最成熟、应用最广泛的蓄热方式。 潜热蓄热是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,吸收或放出相变潜热的原理。由于液气或固气转化时,容积变化非常大,不易控制,在实际工程中较难应用,目前有实际应用价值的是固液相变式蓄热。该技术的优势是:蓄热密度大、相变时温度稳定、所用装置简单、体积小、设计灵活等。 化学反应蓄热是指利用可逆化学反应的结合热储存热能。化学能蓄热的特点是:可逆性好;正逆反应转变的速率快;蓄热密度比显热蓄热和潜热蓄热都大,可以贮存高温热能;也无须绝热保温,可以长时间的蓄热。但化学能蓄热系统复杂、价格也高。 2.蓄热技术国内外研究情况 20世纪30年代以来,相变蓄热的基础理论和应用技术研究在发达国家(如美国、加拿大、日本、德国等)迅速崛起。材料科学,太阳能,航天技术,建筑物空调采暖通风及工业废热利用等领域的相互渗透与迅猛发展为相变蓄热研究和应用创造了条件。在相变蓄热的理论和应用研究方面,美国一直处于领先地位。Dr. Maria Telkes等先后在相变材料的配制和性能研究、相平衡、相变传热、相变材料性能改善等方面做了大量工作,并在马萨诸塞州建起了世界上第一座PCM 太阳能暖房。60年代,随着载人空间技术的迅速发展,美国NASA 大力发展了相变材料热控技术。70 年代早期,日本三菱电子公司和东京电力公司联合进行

太阳能热发电站聚光器技术的简述

《太阳能热发电站》结课论文 题目:关于槽式热发电站中太阳能聚光器技术的简述 学生姓名: 学号: 专业班级:能科-1403 学校:华北电力大学 2017年6月5日

[摘要]本文对槽式热发电站中的主要聚光器技术进行简述及比较。 [关键词]槽式热发电站;聚光器技术;聚光器技术比较。 一引言 太阳能热发电是通过对太阳光聚焦,获得几十倍,几百倍的太阳辐射能量进而进行热功转换,带动发电机发电。对于槽式热发电站,聚光集热系统以线聚焦代替点聚焦,而聚光的关键在于聚光器技术。槽式太阳能聚光集热系统由多个太阳能集热器组合SCA(Solar Collector Assembly)组成而每个太阳能集热器组合又由若干个太阳能集热器单元SCE(Solar Collector Elements)构成。太阳能集热器组合包括聚光器,集热管和跟踪系统。 聚光器由反光镜和支架两部分组成。聚光器应具有以下几点要求: ①具有较高的反射率 ②具有良好的聚光性能 ③具有足够的刚性 ④具有良好的抗疲劳能力 ⑤具有良好的抗风载荷能力 ⑥具有良好的抗腐蚀能力 ⑦具有良好的运动性能 ⑧具有良好的保养,维护,运输性能 如图1是一个基本的聚光器结构和一个实例。

二发展历史及现状 世界上第一台槽式太阳能聚光器由美国工程师Ericsson建造于1870年,输出热功率为373W。1912年,另一位美国发明家FrankSchuman在埃及建立了一个小型太阳能聚光器。20世纪70年代的石油危机加速了太阳能热发电技术的发展,在8O年代中期,抛物面槽式太阳能聚光器进入商业化阶段。美国Luz公司自1984一1991年陆续建立装机总容量为354MV的SEGS槽式电站,至2013年底已经商业化运营30年。SEGS电站中的槽式太阳能聚光器有3种型号,包括LS-1,LS-2和LS-3,其中LS-2和LS-3是主要型号,由于SEGS是最早的商业化电站,囚此这两种型号也成为事实的槽式太阳能聚光器的标准规格。在这两种槽式太阳能聚光器的基础上,各种新型、优化的槽式太阳能聚光器不断地被开发出来。 目前,世界各地都有着比较成熟的槽式太阳能聚光器。例如::美国的Luz公司的LS-2型聚光器;美国的Acures soler公司的Acures3001和Acures3011两种型号的聚光器;美国的Accrona soler power公司的SGX-1和SGX-2型聚光器。 欧洲LS-3的基础上研制的新型聚光器;SENER公司研制的SENER-1和SENER-2型槽式太阳能聚光器;太阳千年公司(solermillennium)在倒闭前也制造出LS-4型聚光器。 中国科学院电工所和皇明公司合作也制造了一种槽式太阳能聚光器;中金盛唐公司与2009年建立了240米槽式示范项目。 兰州大成真空科技有限公司于2012年5月建立一套槽式一线性菲尼尔式聚光发电示范系统。 华电工程公司采用欧洲槽式技术,于2010年在河北廊坊建立了长100m的槽式系统,规格与LS-3聚光器相同。中广核太阳能公司与2013年在青海德令哈建立了一套槽式系统。 北京工业大学、华北电力大学、上海交通大学、中山大学、东莞康达新能源公司、常州龙腾太阳能公司、华锐风电公司、山东奇威特公司也都建有不同长度和开口尺寸的槽式太阳能聚光器样机。

相变蓄热技术在热泵中的应用

相变蓄热技术在热泵中的应用 汪南,杨硕,朱冬生 (华南理工大学化学与化工学院传热强化与过程节能教育部重点实验室,广州, 510640) 摘要:本文综述了蓄热技术的研究进展及其在热泵中的应用,并重点介绍了一种相变蓄热式热泵热水器,最后对这种技术的发展进行了展望。 关键词:蓄热相变热泵热水器 0 前言 能源是一个国家经济增长和社会发展的重要物质基础,随着人类对能源的需求量不断增大,能源问题越来越引起人们的重视。但是,大多数能源存在间断性和不稳定性的特点,导致大量热能在时间与空间匹配上的不平衡性,从而使得一方面能源短缺,另一方面又有大量余热被白白浪费。因此,合理利用能源、提高能源利用率是当务之急。 蓄能技术就是采用适当的方式,利用特定的装置,将暂时不用的或者多余的热能通过一定的储能材料储存起来,等到需要时再利用的方法,是提高能源利用效率和保护环境的重要技术。相变蓄热技术在太阳能、工业余热、废热利用以及电力调峰等方面具有很大的潜在应用优势,近年来引起了众多科研工作者的重视。 1 蓄热技术的研究进展 1983年,美国Telkes博士在蓄热技术方面做了大量工作[1]。她对水合盐,尤其是十水硫酸钠(Na2S04?10H2O)进行了长期的研究,对Na2S04?10H2O的相变寿命进行了多达1000次的实验,并预测该材料可相变2000次,并在马萨诸塞州建起了世界上第一座PCM被动太阳房。20世纪70年代早期,日本三菱电子公司和东京电力公司联合进行了用于采暖和制冷系统的相变材料的研究,他们研究了水合硝酸盐、磷酸盐、氟化物和氯化钙。在相变材料应用方面,他们特别强调制冷和空调系统中的储能。东京科技大学工业和工程化学系的Yoneda等人研究了一系列可用于建筑物取暖的硝酸共晶水合盐,从中筛选出性能较好的MgCl2?6H20和Mg(NO3)2?6H2O共晶盐(熔点59.1℃)。位于Ibaraki的电子技术实验室对相变温度范围为200~300℃的硝酸盐及它们的共晶混合物进行了研究。德国GawronK和Schroder J在对-65~0℃的温度范围内相变性能的研究后,推荐在储冷中采用NaF-H20共晶盐(-3.5℃);在低温储热或热泵应用中采用KF?4H20;在建筑物采暖系统中,采用CaCl2?6H20(29℃)或Na2HP04(35℃)。Krichel绘制了大量PCMs的物性图表。他认为石蜡、水合盐和包合盐(elath-rate)是100℃以下储能用相变材料的最佳候选材料。 我国对蓄热相变的理论和应用也进行了广泛的研究[2-9],中国科学技术大学从1978年开始进行相变储热的研究,陈则韶、葛新石、张寅平等人[10~12]在相变材料热物性测定和相变过程导热分析方面做了大量工作,申请了多项专利。1983年,华中师范大学阮德水等[13]对典型的无机水合盐Na2S04?10H2O

太阳能热利用中的蓄热问题

热设计与电磁兼容结构设计 报告题目:太阳能热利用中的蓄热问题学院:机械电子工程学院 学生:冯宇 学号: 授课老师:王皓

太阳能热利用中的蓄热问题 摘要:太阳能是理想的可再生能源,通过解决太阳能热利用中的蓄热问题可以大大提高太阳能的利用效率。根据储热机制的不同,文章介绍了三种太阳能蓄热方式:显热蓄热、潜热蓄热和化学蓄热,并分析了常用蓄热介质的特性,提出了当前太阳能蓄热技术的发展趋势。 关键词:太阳能蓄热技术蓄热介质 1 前言 随着煤、石油、天然气等传统矿物燃料的大量开采利用,不仅造成了全球性环境污染和生态破坏,而且其对人类生存和发展构成的威胁。为应对能源危机,世界各国正在积极开展水能、风能、生物质能、太阳能等新型清洁可再生能源的研究工作。 作为一种除风电以外最具竞争力的数量可观、无公害的可再生能源,太阳能日益受到人们的重视,也是21世纪后人类可期待的最有希望的能源。太阳表面温度高达6000°C,每3天向地球辐射的能量就相当十地球所有矿物燃料能量的总和,其每秒钟辐射的能量相当于500万t煤。我国地域辽阔,年日照时间大于2000小时的地区约占全国面积的2/3,处于利用太阳能较有利的区域内[1]。 但是太阳能是稀薄的能源,它的地球表面的能源密度极低。并且太阳辐射热量有季节、昼夜的规律变化,同时还受阴晴云雨等随机因素的强烈影响,故太阳辐射热量具有很大不稳定性[2]。 要利用太阳能,必须要解决太阳能的间隙性和不可靠性问题。而在太阳能利用系统中设置蓄热装置是解决上述问题的最有效的方法之一。通过太阳能蓄热系统可以将太阳能多余的热量暂时储存起来,等到没有日照或阴雨天气时再将这部分热量释放出来,保证系统正常运行。实践证明,蓄热装置对提高太阳能的利用效率具有特别重要的意义。 2 太阳能蓄热技术概述

相变式蓄热材料

相变蓄热球 基本原理: 相变蓄热是依靠物质相变过程(固-液态转化)中必须吸收或放出大量相变潜热的物理现象进行能量的存储和释放。由于单位体积的相变蓄热材料能够蓄存的能量远远大于单位体积的显热蓄能材料能够承受的范围,因此相变蓄热材料具有极大的应用范围。但合适的相变材料研发一直是全世界的热点和难点。 经过长期研究,开发出具有完全自主知识产权的中温相变蓄热材料SXC-CZ。该蓄热材料依靠物质相变过程中转移大量相变潜热,可提供79摄氏度供热平台,蓄能能力达到同体积常压水的7倍。 相变蓄热球是相变蓄热产品和相变蓄热应用工程中最基础的结构产品。它以良好的热传导材料为载体,填充锦立独有的SXC-CZ相变蓄热材料,在保持良好的相变蓄热性能的情况下,大大方便了产品的安装和工程的实施,它可广泛应用于各种蓄热产品和场所,在相同的效能下,它比取代传统的水蓄热体积将缩小7倍以上。

1. 79摄氏度的相变温度满足多种蓄热要求 2.优秀的蓄热性能,在相同体积下,蓄热能力是石蜡的3倍 3.良好的热传导性,热传导速度是石蜡10倍 4.物理性能非常稳定,可长期使用无衰减 5.标准化设计,易于蓄热产品的开发和蓄热工程中的应用基本参数: 二、 蓄热球产品说明 蓄热球又称球状蓄热体,蓄热小球具有热震稳定性好、蓄热量大、强度高、易清洗、可重复利用等优点。适用于气体及非气体燃料工业炉的蓄热球燃烧系统选用。

联盛高效蓄热球,比表面积可达到240m2/m3。众多蓄热小球将气流分割成很小流股,气流在蓄热体中流过时,形成强烈的紊流,有效的冲破了蓄热体表面的附面层,又由于球径很小,传导半径小、热阻小、密度高、导热性好,故可实现蓄热式烧嘴频繁且快速换向的要求。 蓄热球可利用20~30次/h的换向,高温烟气流经蓄热体床层后内便可将烟气降至130℃左右排放。 高温煤气和空气流经蓄热体在相同路径内即可分别预热到 仅比烟气温度低100℃左右,温度效率高达90%以上。 因蓄热小球体积十分小巧,加之小球床的流通能力强,即使积灰后阻力增加也不影响热换指标。 蓄热球具有抗氧化、抗渣性强的特点。 蓄热球主要用于冶金行业热风炉蓄能蓄热用的耐火球。蓄热球具有纯度、高强度大、热震稳定性好,使用寿命长等优点,蓄热球是一种以AL2O3、高岭土、合成骨料,莫来石晶体等材质制成。按照滚制和机压成型法两种。该产品具有强度高、抗热震性优良、更换清洗方便、使用寿命长等优点。蓄热瓷球主要有陶瓷小球、多孔圆柱瓷球、多孔圆瓷球三种,该产品具有耐高温、抗腐蚀、热震稳定性好、密度高、热阻小、强度高、蓄放热量大、导热性能好等显著优点,特别适应于空气分离设备蓄热器和钢铁厂高炉煤气加热炉作蓄热填料,该技术是通过对煤气和空气进行双预热,即使低热值的劣质

相变蓄热材料综述

相变蓄热材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

相变虚热材料综述蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

关于太阳能相变蓄热系统的研究与分析

关于太阳能相变蓄热系统的研究与分析 阐述了太阳能蓄热技术的发展背景,说明了太阳能相变蓄热系统的工作原理。通过改变散热管形状和分布方式,增加换热面积来提高蓄热效率的技术方案。并对系统的特点进行分析,归纳了系统在应用中所面临的问题。提出把探索新型相变材料和研发太阳能蓄能热泵集成系统作为未来发展的方向,以此提高系统设备的蓄热效率,降低热损失。 标签:太阳能蓄热技术;相变蓄热系统;相变材料;蓄热效率 引言 随着现代社会经济的高速发展,寻求新的能源,特别是无污染的清洁能源已成为现在人们研究的热点。在余热和太阳能能量利用系统中,采用合适的相变蓄热材料可以提高能源利用效率,还能解决供需双方在时间、地点、强度上不匹配的矛盾[1]。相变蓄热技术在太阳能利用、电力的调峰、废热和余热的回收利用等领域具有广泛的应用前景。因此,为了能广泛利用太阳能,就必须解决技术上的问题,提出效率更高的改进方案,从而在經济上同常规能源相竞争。 太阳能蓄热系统的水循环系统是一个封闭的系统,在循环水循环加热过程中会产生一些不凝气体或汽水热气,从而导致换热系数的降低,使得太阳能无法充分利用[2]。现有技术的太阳能蓄热系统中,基本上采用非相变材料,蓄热能力差。针对上述问题,太阳能相变蓄热系统能够解决换热系数低以及蓄热能力差的问题。 1 太阳能相变蓄热系统的工作原理 太阳能相变蓄热系统,包括集热器、箱体、循环泵和散热管,散热管设置在蓄热箱体中,如图1所示。集热器加热的热水经过散热管,通过散热管将热量传递给蓄热箱体,蓄热箱体内设置相变蓄热材料。相变蓄热材料一般是石蜡或脂肪酸或者石蜡和脂肪酸混合物[3]。 为了能增加换热面积,散热管为并联或串联的多个,从而形成连片式散热管,并在散热管外部设置翅片。沿着热水的流动方向,外部翅片高度不断的增加,高度增加的幅度越来越大。通过增加翅片高度,从而增加翅片的换热面积。散热管是板翅式散热管,板翅式散热管包括扁管和设置在扁管中的翅片,其中扁管包括互相平行的管壁,翅片设置在管壁之间;翅片包括倾斜于管壁的倾斜部分,在倾斜部分上通过冲压方式加工突尖,从而使倾斜部分两侧的流体通过倾斜部分上冲压方式形成的孔连通,其中突尖从倾斜部分沿着热水流动方向向外延伸,如图2所示。 翅片包括水平部分,水平部分与管壁平行并且与管壁贴在一起,倾斜部分与水平部分连接;突尖为等腰三角形,等腰三角形的底边设置在倾斜部分上,相邻

具有蓄热相变材料的太阳能辐射采暖

具有蓄热相变材料的太阳 能辐射采暖 Solar radiant heating with heat storage phase change materials 姓名:彭松涛 学号:129044398 专业:建筑节能技术与工程 班级:节121 指导老师:程波 学校:安徽工业大学 2015年12月12日

具有蓄热相变材料的太阳能辐射采暖Solar radiant heating with heat storage phase change materials 【摘要】:在当今注重节能、环保和舒适的环境下,太阳能地板辐射采暖逐渐以其舒适性和安全性为大家所接受。本文主要讨论了地板辐射采暖的形式,优缺点以及相变蓄热材料等。说明太阳能地板辐射采暖蓄能技术具有明显的经济、社会效益和广阔的应用前景。 【关键词】太阳能,地板辐射采暖,定形相变材料。相变蓄热 0引言 低温地板辐射采暖是一种更为先进、舒适的采暖形式,该采暖形式已经在西方发达国家广泛应用,在我国的应用也越来越广泛。随着我国社会经济的发展和人们生活水平的提高,更为舒适的地板辐射采暖形式必会越来越多地被人们接受和使用。太阳能地板辐射采暖是一种以采集的太阳能作为热源,通过敷设于地板中的盘管加热地面进行供暖的系统。 相变材料在其本身发生相变的过程中,可以吸收环境的热(冷)量,并在需要时向环境放出热(冷)量,从而达到控制周围环境温度的目的。把相变材料与建筑围护结构结合,制成相变蓄能围护结构,用于建筑物室内温度的调控。相变蓄能围护结构可以大大增加围护结构的蓄热作用,使建筑物室内和室外之间的热流波动幅度被减弱、作用时间被延迟(如图 1 所示),从而提高建筑物的温度自调节能力和改善室内环境,达到节能和舒适的目的。

太阳能热泵相变蓄热器的研究进展

太阳能热泵相变蓄热器的研究进展 2011-03-23 13:25:27 来源:北极星太阳能网 由于相变材料的传热系数一般较低,且在相变过程中伴有体积变化。因此,合理地设计相变蓄热器是相变蓄热系统中的一个重要组成部分,各国的研究者们尝试设计了各种类型的蓄能换热器。 1、相变蓄能材料/水换热器 相变蓄能换热器的形式主要有壳管式和矩形式,绝大多数的相变蓄能换热器的换热介质为水,对于采用这种介质蓄能的换热器研究起源较早,直到今天仍然有很多学者在不断的研发新型的相变蓄能材料/水换热器,并对其换热特性、传热机理等进行不断的深入研究,以期早日实现工程应用。 在国外, 2000年,Mehmet对圆柱形蓄热装置进行了理论分析,并采用焓法对相变蓄热单元的瞬时过程作了分析,指出相变材料、圆柱体的半径、流体的流量、入口温度等蓄热装置的运行效率均有影响。2002年, Giovanni对平板型相变材料在固液变化过程中热传递进行了数值和实验研究,实验结果和模拟值相吻合。Kamal A. R.Ismail等对融化区存在自然对流的水平圆柱蓄热器中的相变问题进行了数值模拟,建立了二维稳态数学模型,并进行了验证。2003年, Uros St2ritih对具有加肋表面的相变蓄热器传热特性进行了实验研究,将凝固和融化过程与平板表面的换热器进行了对比。肋片效率由通过肋片的热流和不通过肋片的热流比例来确定。2005年, K.C. Nayak等对相变蓄热器中的传热强化装置进行了研究,采用有限容积法对两种类型的换热器进行了数值模拟,可以看出,传热强化装置在蓄热器运行中起了很重要的作用。2008年, V. Sha2tikian等对恒热流条件下的内加肋相变蓄热器进行了数值研究,采用Fluent软件进行了动态数值模拟,结果显示,瞬时相变过程取决于热流、相变材料的蓄热能力和肋片尺寸三个因素。 在国内,张寅平等对相变蓄能技术进行了深入研究,在理论探索和实验研究方面都取得了丰硕的成果。2002年,陈颖等提出了圆柱形相变蓄热器的结构,通过传热分析和实验研究,总结出放热性能变化规律,得出了满足工程精度的实验准则式。2003年,杨启容等通过建立与实际相似的加肋同心套管式潜热蓄热器模拟实验台,对潜热蓄热器内通流体时的充热、放热过程进行了实验研究,得出了流体的出口温度、充热量和放热量随时间的变化规律。2005年,马贵阳等研制开发了在低谷用电时段储存电能、在用电高峰时放热的相变蓄热装置,装置中加装了强化传热的导热翅片和放热的换热盘管。通过对不同出水流量下时放热过程中的热工参数测试结果分析可知,导热翅片起到很好的强化传热作用。 王增义等研制了热管式相变蓄热换热器,采用石蜡作为蓄热材料,对其储、放能过程即内部石蜡的融化与凝固过程进行了实验研究,结果表明,热管在该换热器内极好地发挥了换热元件的作用,换热器运行状况良好,各项功能均能较好地实现。2007年,朱孝钦等研究了一种以传统的管壳式换热器作为结构基础,管内充填相变材料CaCl2. 6H2O的新型换热器的储热性能。 2、相变蓄能材料/制冷剂换热器 采用制冷剂作为换热介质,与相变蓄能材料间进行直接换热的蓄能换热器是近几年才开始研究的,其省略了传统的中间换热环节,故换热效率有所提高。 2007年, FuqiaoWang等在制冷系统中采用制冷剂作为换热介质的相变蓄热器,将其作为系统中的预冷凝器,系统COP可以提高6% ,随后又通过数值模拟

相变蓄热材料综述

相变虚热材料综述 蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。混合类又可分为:有机混合类、无机混合类及无机一有机混合类。 根据使用温度范围的不同,潜热蓄热材料(相变蓄热)又可分为分为高、中、低温三种. 1低温相变蓄热材料 低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金.结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点.但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂.例如,Dr.Telkes经过千余次试验后发现在Na2SO。·10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放臵有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍

相变蓄热材料的节能分析

2019年4月 2019年第4期0引言 近年建筑能耗在总能耗中所占的比例越来越大,其中取暖和空调能耗在建筑能耗中就占50%耀70%,相变储能节能技术亟待应用于建筑节能领域。相变储能技术是利用相变蓄热材料将一定形式的能量在特定条件下贮存、释放,应用于建筑节能领域时能有效降低室内温度的波动幅度,保证室内供热质量;同时相变蓄热材料具有热密度大、相变过程材料可以近似恒温地稳定输出热量、装置简单等优点,是目前蓄热技术研究和应用的主要方向[1]。 1建筑节能相变蓄热材料的类型和比较 1.1蓄热材料的分类1.1.1显热蓄热材料 显热蓄热材料是依靠物质本身温度的变化过程来进行热量储存,由于可采用直接接触式换热,或流体本身就是蓄热介质,因而蓄、放热过程相对比较简单,是早期应用较多的蓄热材料;由于其放热过程不能恒温,蓄热密度小,蓄热设备体积大,蓄热效率低,而且与周围环境存在温差会造成热量损失,热量不能长期储存,所以不适合长时间、大容量蓄热,限制了显热蓄热材料的进一步发展[2]。1.1.2热化学蓄热材料 热化学蓄热材料蓄热密度高、无污染,在有催化 剂、温度高和远离平衡态时热反应速度快,但反应过程复杂、技术难度高,而且对设备安全性要求高,一次性投资大,与实际工程应用尚有较大距离。1.1.3吸附蓄热材料 吸附蓄热材料的蓄热密度可高达800kJ/kg ~1000kJ/kg ,具有蓄热密度高、蓄热过程无热量损失等优点。但由于吸附蓄热材料通常为多孔材料,传热传质性能较差,而且吸附蓄热较为复杂,这是吸附蓄热材料应用的主要问题[3]。 1.1.4相变蓄热材料 相变蓄热材料是利用物质在相变过程产生的相变热来进行热量的储存和利用。与显热蓄热材料相比,相变蓄热材料蓄热密度高达200kJ/kg 以上,能通过相变在恒温下放出大量热量,且具有蓄、放热过程近似等温,过程容易控制等优点,因此相变蓄热材料是当今蓄热材料研究和应用的主流。常见的潜热蓄热材料有CaCl 2·6H 2O 、C 2H 3NaO 2·3H 2O 、有机醇等。1.2蓄热材料的选择及分析 通过对显热蓄热、相变蓄热、热化学蓄热及吸附蓄热材料的对比和分析,从经济性、热物性、化学性、储能方式等方面看,相变蓄热材料在当今世界有更好的应用前景。 2相变蓄热材料的实例应用分析 不同气候条件的地区应采用不同的相变储能方式,针对100℃以下低温余热,考虑到太原市冬季浴室蓄热系统用户端的用热需求,选定CaCl 2·6H 2O 为研究对象并对该相变材料进行了相应的热力学分析。 收稿日期:2019-01-20 第一作者简介:侯婉靖,1998年生,女,山西河津人,2020年将毕业于山西大学建筑环境与能源应用工程专业,在读本科生。 相变蓄热材料的节能分析 侯婉靖,孔令娜,王 萍,王晓东,管 磊 (山西大学动力工程系,山西太原030013) 摘要:随着现代城市供热区域不断增加,供热管网不能完全满足供热增长需求,而相变蓄热技术是缓解热量供求双 方在时间、强度及地点上不匹配和不均匀的有效方式,是合理、高效利用能源及减轻环境污染的有效途径。通过对各种余热回收相变蓄热材料进行分析研究,以浴室供暖为实例,具体分析研究了CaCl 2·6H 2O 相变材料的节能经济效益。关键词:余热回收;相变蓄热材料;节能技术中图分类号:TK02文献标识码:A 文章编号:2095-0802-(2019)04-0069-02 Energy-saving Analysis of Phase Change Heat Storage Materials HOU Wanjing,KONG Lingna,WANG Ping,WANG Xiaodong,GUAN Lei (Department of Power Engineering,Shanxi University,Taiyuan 030013,Shanxi,China) Abstract:With the continuous increase of heating districts in modern cities,the existing heating pipe networks cannot fully meet the heating demand growth.The phase change heat storage technology is an effective way to alleviate the mismatch and unevenn-ess of heat supply and demand in time,intensity and location,and is an effective way to rationally and efficiently use energy and reduce environmental pollution.Through the analysis and research on various waste heat recovery and phase change heat storage materials,taking a bathroom heating as an example,this paper analyzed the energy-saving and economic benefits of CaCl 2·6H 2O phase change materials in detail. Key words:waste heat recovery;phase change heat storage material;energy-saving technology (总第163期)节能减排 69··

蓄热方式

按蓄热方式来分,蓄热材料可以分为四类:显热蓄热材料、相变蓄热材料、热化学蓄热材料和吸附蓄热材料。 1、显热蓄热材料 显热蓄热材料是利用物质本身温度的变化过程来进行热量的储存,由于可采用直接接触式换热,或者流体本身就是蓄热介质,,因而蓄、放热过程相对比较简单,是早期应用较多的蓄热材料。在所有的蓄热材料中显热蓄热技术最为简单也比较成熟。 显热蓄热材料大部分可从自然界直接获得,价廉易得。显热蓄热材料分为液体和固体两种类型,液体材料常见的如水,固体材料如岩石、鹅卵石、土壤等,其中有几种显热蓄热材料引人注目,如Li2O与Al2O3、TiO2等高温烧结成型的混合材料。 由于显热蓄热材料是依靠蓄热材料的温度变化来进行热量贮存的,放热过程不能恒温,蓄热密度小,造成蓄热设备的体积庞大,蓄热效率不高,而且与周围环境存在温差会造成热量损失,热量不能长期储存,不适合长时间、大容量蓄热,限制了显热蓄热材料的进一步发展。 2、相变蓄热材料 相变蓄热材料是利用物质在相变(如凝固/熔化、凝结/汽化、固化/升华等)过程发生的相变热来进行热量的储存和利用。 与显热蓄热材料相比,相变蓄热材料蓄热密度高,能够通过相变在恒温下放出大量热量。虽然气一液和气一固转变的相变潜热值要比液一固转变、固一固转变时的潜热大,但因其在相变过程中存在容积的巨大变化,使其在工程实际应用中会存在很大困难,因此目前的相变潜热蓄热研究和应用主要集中在固—液和固—固相变两种类型。根据相变温度高低,潜热蓄热可分为低温和高温两种,低温潜热蓄热主要用于废热回收、太阳能储存以及供热和空调系统。高温相变蓄热材料主要有高温熔化盐类、混合盐类、金属及合金等,主要用于航空航天等。常见的潜热蓄热材料有六水氯化钙、三水醋酸钠、有机醇等。 潜热蓄热方式具有蓄热密度较高(一般都可以达到200kJ/kg以上),蓄、放热过程近似等温,过程容易控制等优点,因此相变蓄热材料是当今蓄热材料研究和应用的主流。 3、热化学蓄热材料 热化学蓄热材料多利用金属氢化物和氨化物的叮逆化学反应进行蓄热,在有催化剂、温度高和远离平衡态时热反应速度快。国外已利用此反应进行太阳能贮热发电的实验研究,但需重点考虑储存容器和系统的严密性,以及生成气体对材料的腐蚀等问题。 热化学蓄热材料具有蓄热密度高和清洁、无污染等优点,但反应过程复杂、技术难度高,而且对设备安全性要求高,一次性投资大,与实际工程应用尚有较大距离。 4、吸附蓄热材料 吸附是指流体相(含有一种或多种组分的气体或液体)与具有多孔的固体颗粒相接触时,固体颗粒(即吸附剂)对吸附质的吸着或持留过程。因吸附剂固体表面的非均一性,伴随着吸附过程产生能量的转化效应,称为吸附热。在吸附脱附循环中,可通过热量储存、释放过程来改变热量的品位和使用时间,实现制冷、供热以及蓄热等目的。 吸附蓄热是一种新型蓄热技术”,研究起步较晚,是利用吸附工质来对吸附/解吸循环过程中伴随发生的热效应进行热量的储存和转化。吸附蓄热材料的蓄热密度可高达800 ~1000kJ/kg,具有蓄热密度高、蓄热过程无热量损失等优点。由于吸附蓄热材料无毒无污染,是除相变蓄热材料以外的另一研究热点,但由于吸附蓄热材料通常为多孔材料,传热传质性能较差,而且吸附蓄热较为复杂,是目前需要重点研究解决的问题。 蓄热材料的工作过程包括两个阶段:一是热量的储存阶段,即把高峰期多余的动力、工业余热废热或太阳能等通过蓄热材料储存起来;二是热量的释放阶段,即在使用时通过蓄热材料释放出热量,用于采暖、供热等。热量储存和释放阶段循环进行,就可以利用蓄热材料解决热能在时间和空间上的不协调性,达到能源高效利用和节能的目的。

【CN109945713A】相变蓄热系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910203737.6 (22)申请日 2019.03.18 (71)申请人 上海理工大学 地址 200093 上海市杨浦区军工路516号 (72)发明人 陆威 毕书乾 刘桂志 王华可儿  翟帅楠 王莉  (74)专利代理机构 上海申汇专利代理有限公司 31001 代理人 王晶 (51)Int.Cl. F28D 20/02(2006.01) (54)发明名称 相变蓄热系统 (57)摘要 本发明涉及一种相变蓄热系统,包括蓄热箱 体、循环风机以及保温风管,所述的蓄热箱体内 放置分块框架和换热器;两台换热器分别设置在 分块框架两端;所述分块框架为上下分层结构, 左右隔列有若干个蓄热单元,每个蓄热单元中放 置加热板和相变材料板;所述蓄热箱体左右两端 的出风口和进风口之间通过保温风管和循环风 机连接。本发明不仅使装填、更换相变材料更加 方便快捷,还可以使热空气在系统中循环利用, 并且能够控制进出口热空气的温度,从而提高能 源的实用效率,减小成本, 更加环保。权利要求书1页 说明书3页 附图2页CN 109945713 A 2019.06.28 C N 109945713 A

权 利 要 求 书1/1页CN 109945713 A 1.一种相变蓄热系统,包括蓄热箱体、循环风机以及保温风管,其特征在于:所述的蓄热箱体内放置分块框架和换热器;两台换热器分别设置在分块框架两端;所述分块框架为上下分层结构,左右隔列有若干个蓄热单元,每个蓄热单元中放置加热板和相变材料板;所述蓄热箱体左右两端的出风口和进风口之间通过保温风管和循环风机连接。 2.根据权利要求1所述的相变蓄热系统,其特征在于:所述相变材料板由盒体、盖板、相变材料组成,所述盒体与盖板之间装有所述相变材料。 3.根据权利要求1所述的相变蓄热系统,其特征在于:所述蓄热单元由相变材料板和加热板组成,两块相变材料板上下夹着一块加热板。 4.根据权利要求1所述的相变蓄热系统,其特征在于:两台换热器分别布置在蓄热箱体内部的两侧。 5.根据权利要求1所述的相变蓄热系统,其特征在于:所述分块框架在蓄热箱体内顺着空气流动方向分段排布。 6.根据权利要求1所述的相变蓄热系统,其特征在于:所述蓄热箱体内的加热板可以把蓄热箱体内部温度升高到1000℃。 2

基于Fluent石蜡相变材料模拟

一、问题背景: 为了解决日益严重的能源短缺问题,如何更加充分地利用现有的化石能源,开发利用绿色能源成为世界各国关注的重要议题。随着现有化石能源的逐步开采利用,世界各国已经普遍认识到降低对传统能源(如煤炭、石油、天然气能源等)的依赖性,以及对绿色能源(如太阳能、风能、地热能等)实现充分开发利用的重要性,使用再生类能源并通过提高能源利用效率的方式成为应对能源枯竭现状的重要手段。蓄热技术就是这类能够提高能源利用效率的典型技术手段,蓄热技术通过将间歇性或者不稳定的热量通过蓄能介质暂时储存,在有使用要求时释放能量,解决能源利用高峰阶段造成的能源匹配不足的问题。经过多年应用发展,蓄热技术已经在太阳能、地热能、风能、工业废热、电网系统的“移峰填谷”等领域有了一定程度的应用,并表现出强劲的发展势头。 二、蓄热技术 蓄热技术一般通过利用蓄热介质的比热容、潜热等物理特性实现对采集能源多余热量的暂时储存,主要分为显热蓄热、潜热蓄热和化学热反应蓄热,其中前两种技术属于物理蓄热范畴。 显热蓄热 显热蓄热通过提升蓄热介质材料的温度进而提高物质内能的方式实现储热,储热能力取决于材料的比热容(提升物质单位温升所需要的外部能量)等物理参数。显热蓄热的突出弱点在于由于蓄能介质

(例如水)在多余能量的储存过程中伴随着物质温度的上升,不能满足部分设备对于恒温放热的要求。同时,显热蓄热材料蓄热能力有限,储能密度较低,往往需要较大容积的容器提供储能保证,限制了显热蓄热技术的大规模推广应用。 ●潜热蓄热 潜热蓄热技术充分利用了相变介质在相态改变时会吸收或释放巨大的能量,并藉此实现对多余能量的储存和释放。这类利用相变过程实现能量吸收释放的材料被称为相变材料。相比显热蓄热材料,相变材料的相变潜热与蓄热材料的比热特性相比在储热能力方面有了极大的提升,同等质量的储热介质能够实现对更多能量的储存,降低了对储热设备容积、质量等方面的要求,降低了整体设备成本。同时,潜热蓄热材料在相变吸热放热过程中近似等温过程,方便了实际工程控制。尽管如此,由于相变蓄热材质在导热、传热特性方面的不足,以及某些无机盐相变材料存在的相分离和过冷现象以及某些固有的化学反应,会严重影响储热设备的使用寿命。 ●化学热反应蓄热 化学热反应在反应过程中会释放大量热量,与外部环境进行热交换,化学热反应蓄热即是利用这一热交互过程实现能量和吸收和释放。基本原理如下:利用正化学反应吸热,将能量转化为化学能储存,之后利用负反应放热,将通过正反应储存的能量通过热量的方式释放出来。化学热反应蓄热与相变潜热蓄热技术有相似的优势特点,但是由于化学热反应存在反应过程复杂、反应速度过快、反应过程复杂难

相变蓄热技术在商业建筑供暖中的应用

相变蓄热技术在商业建筑供暖中的应用 2017-07-14 | 中国暖通空调网|【大中小】 张继皇1,杨强2,李效禹2,薛祝亮1 1. 江苏启能新能源材料有限公司; 2. 中国建筑科学研究院建筑环境与节能研究院 [摘要]相变储能是一种先进的储热技术,在谷电时间采用相变储能技术进行电热蓄热,并将电热蓄热应用于建筑供暖,对电网的电力调峰以及用户供暖运行成本都具有很好的价值。本文对相变蓄热技术及产品进行具体分析,同时对采用谷电蓄热供暖的北方典型的商业建筑进行详细监测并分析。 [关键词]相变蓄热;谷电蓄热;蓄热供暖 目前我国建筑能耗已经占到整个社会能源消耗的40%,而制冷和供暖又在建筑能耗中占了40% 以上。在所有建筑类型中,商业建筑由于其建筑使用特性决定了具有较大的单位能耗。商业建筑一般都有集中的制冷和供暖系统,在我国北方冬季供暖区域,商业建筑的供暖一般采用市政集中供热方式。由于近年来城市建设扩张迅速,市政热力供热能力以及管网建设速度都无法满足日益增长的建筑需求。与此同时,随着我国对大气环境污染治理的加大,城市中大量中小煤锅炉在被取缔,这些锅炉往往都是用于市政供暖。因此很多新建建筑和既有建筑无法接入市政热力管网,需要采用其他方式解决冬季供暖问题。 目前在商业建筑供暖中除了采用市政热力以外,一般可采用燃气锅炉、地源热泵、空气源热泵、谷电蓄热、电锅炉直供等技术。燃气供暖受限于燃气管网的覆盖区域,另外燃气普遍成本较高,而且还是具有排放。热泵技术近年来在我国北方开始被大量使用,热泵具有能效高、运行成本低等特点,但是地源热泵只能适合新建建筑,空气源热泵机组功率小,极端气温时制热效果不佳等问题,性能还有待提高。谷电蓄热供暖技术比较成熟,主要有水蓄、固体蓄热、相变蓄热三种形式,利用谷电价格低的特点,降低建筑供暖成本。另外谷电蓄热对电网进行了移峰填谷,对平衡整个电网的电力负荷有重大的意义[1]。 1 相变蓄热技术分析 相变蓄热技术是一种热储能技术,储能技术可解决能量供求在时间和空间上不匹配的矛盾,因此是提高能源利用率的有效手段。相变储能是利用相变材料相变时吸收或者释放大量潜热并保持温度恒定的特性,并且相变潜热所蕴藏的能量比固体或者液体的显热大得多[2]。相变储热具有储能密度大、系统体积小的优点,按相变转变的形式可分为固–气、液–气、固–固和固–液四类,固–气、液–气两类材料相变过程体积变化大,固–固相变材料潜热小并存在严重塑晶现象。固–液材料转变热量大、体积变化小,过程可控是主要应用形式。按工作温度可分为低温和中高温相变材料,低温包括无机水合盐及石蜡、脂肪酸等有机物,中高温包括无机盐、金属和合金等[3]。江苏启能新能源材料有限公司开发出了高密度高稳定性的无机相变材料,并以相变材料技术为核心成功研发了系列相变蓄热产品。下面将对相变

带相变蓄热材料热管仿真与试验对比研究

Modeling and Simulation 建模与仿真, 2014, 3, 12-16 https://www.doczj.com/doc/dd15879199.html,/10.12677/mos.2014.31003 Published Online February 2014 (https://www.doczj.com/doc/dd15879199.html,/journal/mos.html) The Contrast of Simulation and Experiment of Heat Pipe with Heat Storage Material Jiangfeng Lu, Tong Zhu, Hai Wang School of Mechanical Engineering, Tongji University, Shanghai Email: lstar5101@https://www.doczj.com/doc/dd15879199.html, Received: Dec. 27th, 2013; revised: Jan. 13th, 2014; accepted: Jan. 17th, 2014 Copyright ? 2014 Jiangfeng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unre-stricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons At-tribution License all Copyrights ? 2014 are reserved for Hans and the owner of the intellectual property Jiangfeng Lu et al. All Copyright ? 2014 are guarded by law and by Hans as a guardian. Abstract:Heat storage material combined with heat pipe is a new type of heat pipe used in spacecraft. Taking full ad-vantage of heat storage characteristics of phase change material and the excellent transfer performance of heat pipe, it offers new ideas for spacecraft thermal control design on high-power and short-term operation equipment or intermit-tent work equipment. By modeling and contrasting the simulation and experiment results, the heat pipe with heat sto-rage material has a good effect on temperature control. Keywords: Heat Storing Materials; Heat Pipe; Simulation; Experiment 带相变蓄热材料热管仿真与试验对比研究 陆江峰,朱彤,王海 同济大学机械与能源工程学院,上海 Email: lstar5101@https://www.doczj.com/doc/dd15879199.html, 收稿日期:2013年12月27日;修回日期:2014年1月13日;录用日期:2014年1月17日 摘要:带相变蓄热材料热管是一种新型的航天器用热管,它充分利用了相变材料的相变蓄热特性和热管优异的等温性,为航天器大功率短时工作单机或脉冲式工作单机的热控设计提供新思路。本文对这种新型热管建立了空间应用模型,并通过计算及试验对比,表明该热管具有良好的热控效果。 关键词:相变蓄热材料;热管;仿真;试验 1. 引言 带相变蓄热材料热管是一种新型的航天器用热管[1],它充分利用了相变材料的相变蓄热特性[2]和热管优异的等温性[3],为航天器大功率短时工作单机或脉冲式工作单机的热控设计提供了新的思路。对于航天器来说,能源的供应、管理及高效利用一直是航天技术发展的热点[4]。针对今后月球探测及地月系以外的航天活动来说,如何合理利用航天器上能源、充分利用单机产生的热能,是该类型探测活动的关键问题所在。而利用相变蓄热材料存储、释放热量[5,6]来控制单机的温度,或抑制其温变速率及温度波动,是解决此问题的一种简单而有效的方法[7,8]。 本文针对已经研制出来的某种型号带相变蓄热材料热管[9],在典型的大功率短时工作单机热控方案基础之上,建立了该热管的空间应用模型,模拟出了该热管在轨应用的状况;同时通过该热管实物模型的摸底试验,与仿真结果做出了对比,分析研究了带相

相关主题
文本预览
相关文档 最新文档