当前位置:文档之家› 李凡长版组合数学课后习题答案习题 (1)

李凡长版组合数学课后习题答案习题 (1)

李凡长版组合数学课后习题答案习题 (1)
李凡长版组合数学课后习题答案习题 (1)

第一章 排列组合

1、 在小于2000的数中,有多少个正整数含有数字2?

解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10;

千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1;

故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。

2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()62-1=14。

(或:()()4142*2+=14)

(3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53-1

种;②其中两个0一组,另外一个单独,则有()()2*)2,2(4152-P 种。

(4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。

3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6

4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。

解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。

以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则

m = a 1+10a 2+100a 3+1000a 4。

因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故

a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。

因此, m = 720 + 612*(10 + 100 + 1000) = 680040。

5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数

字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数:

()())4,4(2)5,5(53

5

3

P P ??-?

只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

故总方案数:()())4,4(2)5,5(5353P P ??-?+())5,5(25

4P ??+ P(5,5)

6、 安排5个人去3个学校参观,每个学校至少一人,共有多少种安排方案? 解:方法一:有两种方案:①有两个学校只要一个人去,剩下的那个去3人;②

有两个学校去2人,剩下的去1人。故方案数为:(()()()()2/2/32524

151

+)*P(3,3)=150。

方法二:()()()()()()2

132********+=150。

7、 现有100件产品,其中有两件是次品. 如果从中任意抽出5件,抽出的产品

中至多有一件次品的概率是多少? 解:无次品:()985;

有一件次品:()984()21

因此,概率为(()985+()984()21)/

()100

5

8、 有七种小球,每个小球内有1~7个星星。一次活动中,主办方随机发放礼

品盒,每个盒里放两个这样的小球,那么共有多少种这样的礼品盒?

解:方法一、()281

272

=-+ 方法二、(7×7-7)/2+7=28

方法三、一个球是一星球,另一个球可以是一~七星球,故有7种; 一个球是二星球,另一个球可以是二~七星球,故有6种;

…………

一个球是七星球,另一个球可以是七星球,故有1种。 因此,共7+6+…+1=28种。

9、 服务器A 接到发往服务器B 、C 、D 、E 、F 的信包各3个,但它一次只能发出一个信包。问共有多少种发送方式?如果发往服务器B 的信包两两不能相邻发出呢? 解:(1){3?B,3?C,3?D,3?E,3?F}的全排列

(2)其余4个服务器全排列,在插入B 的三个:???

?

??+++!3!3!3!3)!3333(3

10、 有m 个省,每省有n 个代表,若从这mn 个代表中选出k (k ≤m )个组

成常任委员会,要求委员会中的人来自不同的省,一共有多少种不同的选法?

解:()m k ?n

k

11、 7对夫妇围一圆桌而坐,每对夫妇都不相邻的坐法有多少种? 解:7个夫人先坐:7!/7

第一个丈夫不坐在他夫人旁边,则有5个地方可以坐;

第二个丈夫由于可以坐在第一个丈夫旁边,故有6个地方可以坐;

……………………

第7个丈夫有11分地方可以坐。

因此:5*6*7*8*9*10*11*7!/7=1197504000。 12、 设S = {n 1·a 1, n 2·a 2,…,n k ·a k },其中n 1 = 1,n 2 + n 3 +…+ n k = n ,证明S 的

圆排列的个数等于:

!

!!!

k n n n n ???32

证明:S 的全排列为:

!

!!)!

1(21k n n n n +

因为要排成(n+1)圆,故圆排列数为

!!!)!1(21k n n n n +/(n+1)= !

!!

2k n n n

13、 有8个大小相同的棋子(5个红的3个蓝的),放在12×12的棋盘上,

每行、每列都只能放一个,问有多少种放法.

解:()())3,7()5,12(7

3125P P

先放红的。选出5行出来()125,列可任选为P(12,6)。

再先放蓝的。选出3行出来()7

3

,列可任选为P(7,3)。 14、

设1≤r ≤n ,考虑集合{1,2,…,n}的所有r 元子集及每个子集中的最小数,

证明这些最小数的算数平均数为 1

1

++r n .

证明:r 元子集共()n r 个,于是共有()n

r 个最小数。下面我们求出这些最小数之和。

如果r 元子集中的最小数为k ,那么除k 外的r-1个数只能从{k+1,k+2,…,n}

中取,有()k n r --1种取法,即以k 为最小数的r 子集有()k

n r --1个,因此这些最小数

之和为

()k

n r r n k k --+-=∑1

1

1

。于是平均数为()()k n r r n k n r

k --+-=∑1

1

1

1

由()()n m n n m -=和()()()1

1+-=+n m n m n m 有

()(

)(

)()∑∑∑-=+++-+--=--+-==+=+-r

n k n r k n r

k n r

r

n k k

n r r n k r r r k n 1

11

111

1

11

)1(

()()n r

r n k k n r n n )1()

1(1

1

1

+=+∑+-=--

上面两式相减得:

()()()11

1

1

1

)1(+++-=---+=∑n r n r

r n k k n r r n k

因此()

()k n r r n k n

r

k --+-=∑1

1

1

1

=11

++r n 。 15、

用二项式定理展开(4x - 3y)8.

解:()∑=--8

88)

3()4(r r

r r y x 16、

(3y – 2z)20的展开式中,y 5z 15的系数是什么?

解:()155

205

)2(3- 17、

证明:()()()()()()???+++=???+++n n n n n n

531420

证明:该等式的组合意义是说,n 元集S 的偶子集数与奇子集数相等。 现在我们任取S 中的一个元x 。对S 的任何一个偶子集A ?S ,如果x ∈A ,则令B =A-{x};否则,令B =A ∪{x}。B 显然是S 的奇子集。不难证明这是

所有偶子集与所有奇子集之间的一一对应。所以,S 的偶子集数与奇子集数相等。 18、

证明等式∑=-+=?n

0k 11)!(n k!k 并讨论其组合意义.

证明:(n+1)!= n*n!+n!

n! = (n-1)*(n-1)!+(n-1)! ……………… 2! = 1*1!+1!

以上各式相加,整理得:(n+1)! = n+n!+(n-1)*(n-1)!+…+2*2!+1*1!+1 故

∑=-+=?n

k 11)!(n k!k 。

组合意义:将(n+1)个不同物体a 1,a 2,…,a n+1放入(n+1)个不同的盒子A 1,A 2,…,A n+1内的方法如下:

(a 1不在A 1内)+(a 1在A 1内但a 2不在A 2内)+(a 1,a 2分别在A 1,A 2内但a 3不在A 3内)+……+(a 1,a 2,…, a i 分别在A 1,A 2,…, A i 内但a i+1不在A i+1内)+……+(a 1,a 2,…, a n+1分别在A 1,A 2,…, A n+1内) 即: ∑=+?=+n

0k 1k!k 1)!(n

故 ∑=-+=?n

k 11)!(n k!k

19、

证明:

(

)()!

!!)!

(k n m k n m n m m

k n m k

++=+++

证明:()()!

!!)!

(!!)!()!(!)!(k n m k n m n m n m n m k k n m n

m m k n m k

++=+?+++=+++

20、

证明:()()?

?

?>==∑=m

n 0,m

n 1(-1)k m

n

m

k n k

k

-n 若,若. 证明:若n=m :()()()()n

m n n n -n k m n

m

k n k k -n (-1)

(-1)=∑==1。 若n>m :我们知道,(1+x) n

=

()k

n

k n k x

∑=

对该式两边求m 阶导数:

()m

k n

k n k

m

n x

m k k x m n n -=--=+-∑)!(!)1()!(!0

乘以!

2m x k

n m -+:()()()m

k k m

n

k n k

m

n n m k

n m x

x x -=--+∑=

+0

2)

1(

令x = -1:0 = ()()k m

n

m

k n

k

k -n (-1)∑=

21、

证明下列等式:

(1)()()()∑=-=m

k n

m m n k k n m -n 2

证明:()()()()n m

m k

n k k n m -n )!

()!(!!

)!(!)!()!(!)!(=

--=----=

-k m m n k n k n k k m m n n k n

因此,()()()∑=-=m

k n

m m n k k n m -n 2

(2)()()()1

r n m

i r i m

i i n i m +++=--=∑ 证明:利用路径问题解决。

左边第i 项相当于从点c (-r-1,0)到点(-1,i),再经点(0,i),最后到达b (n-m,m)的所有路径数。而右边为从c 到b 的所有路径数。因此得证。

22、 证明:()()()()()

2n 1n 2n n 1

2n 1n 12n 1n 2n n 1

n 1--+---=-=+

证明:

()1

1

!!)!2(1n 12n n

+?

=+n n n n ()())

1(!!)!2()1()!1(!2

2)!2()!

1(!)!1()!2(!

)!1()!12()!2()!1()!12()!2()!1()!12(!)!1()!12(1

2n 1

n 12n 1

n +=

+-?=

+------+-=

-+----=--+--n n n n n n n n n n n n n n n n n n n n n n n n n

()())

1(!!)!

2()!1()!1(!!!!)!2()!1()!1()!2()!1()!1()!2(!!)!2(2n 1

n 2n

n

+=

+--+-=+--=--n n n n n n n n n n n n n n n n n n n n 因此 ()()()()()2n 1

n 2n n

12n 1

n 12n 1

n 2n n

1

n 1--+---=-=+

23、

试证明:

(1)()∑=-+=n

k 2

n n k 21)2

n(n k 证明:由二项式定理知:()

k n

k n k x ∑= = (1+x) n 等式两边对x 求2次导数得:()

k n

k n k 2)(x k k ∑=- = n(n-1) (1+x) n-2 令x=1,则:()∑=-n

k n k 2)(k k = n(n-1) 2

n-2

整理得:()()()∑=-=m

k n m m n k k n m -n 2

(2)()()()n k n 1k n k k 1)(k n ++=+

证明:()k)!

(n k!n!

n n n k -?

=

()()k)!

(n k!n!

n 1)!

k (n 1)!k)(k k(n k

k n 1)!

k (n 1)!k)(k (n n!

1)!k (n 1)!(k k n!k)!

(n k!n!

k 1)!-k -(n 1)!(k n!1)(k k 1)(k n k

n

1

k -?

=----+-=

----+

---?=

-?

+++=+++

得证。 24、

证明:()

=+++--=++n

0k 2n n k

2)

1)(n (n 3n 22)

1)(k (k 1

. 证明:由二项式定理知:()

k n

k n k x ∑= = (1+x) n 等式两边对x 积分得:()1n

0k 1

n k

)1(1)

(n 1111)

(k 1+=+++=++

+∑

n k x n x

再次积分:

()∑

=+++++=+++++++n

0k 22

n k

2)

1)(n (n )1(2)1)(n (n 1

12)

1)(k (k 1

n k x n x x

令x =1。整理,得证。 25、 展开(a+3b-7c-d)5.

解:()

43214321)()7()3(n 5

0k 5n n n n n n n d c b a --∑=+++(n 1+n 2+n 3+n 4 = 5)。 26、

(4x + 3y – 2z)20的展开式中,x 5y 7z 8的系数是什么?x 5y 15的呢?

解:x 5y 7z 8的系数:

87

5)2(34!

8!7!5!20-??? x 5y 15的系数:15

534!

15!5!20??

27、 求(3+x+x 2+2x 3)6的展开式中x 5的系数.

解:

53223324213!

5!1!6312!3!2!1!6311!2!3!1!6311!3!1!2!6312!4!1!1!6??+???+???+???+??? 28、

证明:整数n 的m 分拆数等于整数n-()m 2的m 分拆数.

证明:设n=a 1+ a 2+…+a m 是n 的一个m 项分拆,并假定a 1≥a 2≥…≥a m ≥1,则

(a 1-1)+( a 2-1)+…+( a m -1)=n-m

是n-m 的一个项数不超过m 的拆分。

反之,设a 1+ a 2+…+a r =n-m(r ≤m)是n-m 的一个分拆,则

r m r r a a a -+???+++++???++++111)1()1()1(21 = ((n-m)+r)+(m-r)=n 是n 的一个m 项拆分。于是这两种拆分一一对应,故其拆分数相等。 得证。

29、 设将N 无序分拆成正整数之和且使得这些正整数都小于等于m 的方法数

为B ’(N,m). 证明:B ’(N,m) = B ’(N,m-1) + B ’(N-m,m).

证明:B ’(N,m)分为两类:一类是m 不是其中一个,则为B ’(N,m-1);一类是m 是其中一个,即B ’(N-m,m)。故B ’(N,m) = B ’(N,m-1) + B ’(N-m,m).

30、 证明:周长为2n ,边长为整数的三角形的个数等于数n 的3分拆数. 证明:设n 的一个拆分n=x+y+z ,则

2(x+y+z)=(x+y)+(x+z)+(y+z)=2n

其中 (x+y)+(x+z)=2x+(y+z)>y+z

同理 (y+z)+(x+z)>(x+y),(x+y)+(y+z)>(x+z)

因此(x+y),(x+z),(y+z)可以组成一个三角形,且周长为2n 。

反之,设一个周长为2n 的三角形,其三条边长a ,b ,c 是整数,则

n=

2

c

b a ++

设x=n-a ,y=n-b ,z=n-c 。显然x ,y ,z 都是正整数,而

x+y+z=n-a+n-b+n-c=3n-(a+b+c)=n

即构成n 的一个拆分。

得证.

31、 n 个人出去野炊,其中r 个人围一圈,另外n-r 个人围一圈,问共有多少

种不同的方案? 解:()r

n r n r r n r --?

?

)!

(! 32、 把n 个不同颜色的小球放入r 个不同形状的盒子,恰好有1个空盒的放

法有多少种?恰好有m (m

33、 一凸十边形内任意三条对角线不共点(即不相交于同一点),问这些对角

线被它们的交点分成多少条线段?

解:该10边形的对角线条数为:()3510102=-,交点数为()21010

4=。

设第i 条对角线上交点数为ni ,则线段有ni+1条;即总数为:

()35

135

1

35

1

+=

+∑∑==i i

i i

n

n

每个交点由2条对角线相交而成,因而∑=35

1

i i

n =2*210=420

故总线段数为420+35=455。

34、 一次小型聚会中,主人要把4块相同的蛋糕、6杯不同的饮料和5盘不

同的水果分给5个客人,其余各项可随便使用。问任一客人接到3份不同食物的概率是多少?

解:先把4块相同的蛋糕分给5个人:()701

544

=-+; 再分6杯不同的饮料:56=15625;

再分5盘不同的水果:55=3125。

而一位客人接到3种物品的情况有:1*6*5=30种。因此所求概率为:

()

3125

*15625*704*4**304

56

3*100。

35、

(x 1 + x 2 +…+ x m )n 的展开式有多少项?

解:,!

!!!)(21212121m n

m n n m n m x x x n n n n x x x ??????=+???++∑

其中n i ≥0,且

n 1+n 2+…+n m =n (*)

则原题即相当于求方程(*)的非负整数解的个数。即为:()1

-+n m n

。 36、 10个人进行排名,其中甲必须在乙的前面,丙必须在丁的后面,问共有

多少种排名方案?

解:先排好甲、乙。则可把除丙、丁外的6人插入,方案数为36。

那么现在有9个位置可以插入丁;然后再把丙放在它后面的位置,方案数为:

1+2+…+9=45。

故总方案数为45*36。

37、 10套试验设备由15位学生使用,其中第一与第二、第三套使用人数相

同,与第四、第五套不同。问有多少种分配方案? 提示:分情况考虑。

(1)第一、二、三套没有学生使用: 715-615()2

1

+515; (2)第一、二、三套各由一位学生使用:

P(15,3)*712-P(15,4)*611()2

1

+P(15,5)*510; (3) 第一、二、三套各由两位学生使用:

()()()42

62

15

6

*79

-()()()()()2174262821586*+()()()()()5

42

628210215105

*;

(4) 第一、二、三套各由三位学生使用:

()()()63

93

159

*76

-()()()()()213639312315126*+()()()()0

63

931231535

*;

(5) 第一、二、三套各由四位学生使用:

()()()84

144

1512

*73

(6) 第一、二、三套各由五位学生使用:;

()()()55

105

155

综合以上六种情况和得分配方案数。

工程数学试题1答案-自考

装 --------------------------------- 订 --------------------------------- 线 ------------------------------------------------ 装 订 线 左 侧 不 要 书 写 内 容 试卷类型: 试卷形式:闭卷 满分:100 分 考试时间: 分钟 考试科目: 专业: 班级: 一、填空题 (本大题共5小题,每小题2分,共10分) 1. 310- ,110 2. (21),(0,1,2,)k i k π+=±± 3. 34i e - 4. 1 5. 2i ± 二、计算下列各题的值(本大题共2小题,每小题5分,共10分) 11 cos[arctan ]sin[arctan ] 2226.-------------212cos[arctan(2)]sin[arctan(2)] 11 cos[arctan arctan(2)]sin[arctan arctan(2)]---------222 -------------i i i i i i ++=--+-=--+--=(分)(分) (1分) 7. 224 (cos sin 44 i e e i π π π -+-=+----------------------(3分) 2 22()22e i ---=+=+-----------------(2分) 三、证明题(本大题共5分) 8.证明:由于1Re ()2 z z z =+------------------(2分) 所以 22211121221112 2Re()() z z z z z z z z z z z z z z =+=+=+----------------(3分) 四、 讨论题(本大题共5分) 9. 由于22()12f z x y xyi =-++-,因此22 (,)1,u x y x y =-++(,)2v x y xy =-, 于是 2,2,2,2u u v v x y y x x y x y ????==-==????,------(3分) 显然,上述四个一阶偏导数均连续,且C-R 方程处处满足, 因此2 ()2f z z =+在复平面处处可导,处处解析。------(2分) 五、计算题(本大题共7小题,每小题10分,共70分) 10. 解:22sin z z i e z dz z -=? =02(sin )(62(4z z i e z i ππ='-----=-----分)分) 11. 解:22222,2,2,2u u u u x ky k x y x y ????====????,--------------------------(2分) u 为调和函数,则有22220.u u x y ??+=?? 即220k +=,所以 1k =-。 ---------------------------(3分) (,) (0,0) 2222(3x y y v ydx xdy C xdy C xy C =++=+=+-------? ?分) 所以 2 2 ()(2)f z x y i xy C =-++,又由()1,f i =- 得0.C = 从而 2 2 2 ()2f z x y xyi z =-+= ---------------------------(2分) 12. 解:0;1;1z =-分别为()f z 的二阶极点,一阶极点,一阶极点。 -----------(3分) 因此 220011 Re [(),0]lim [(0)](21)!(1)(1) 2lim (1)(1) z z d s f z z dz z z z z z z →→= --+--==+--------------(3分)

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

组合数学课后答案

作业习题答案 习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n 个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 证明: 方法一: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。 方法二: 对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。 2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.9将一个矩形分成(m +1)行112m m +?? + ??? 列的网格每个格子涂1种颜色,有m 种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。 证明: (1)对每一列而言,有(m+1)行,m 种颜色,有鸽巢原理,则必有两个单元格颜色相同。 (2)每列中两个单元格的不同位置组合有12m +?? ??? 种,这样一列中两个同色单元格的位置组合共有 12m m +?? ??? 种情况 (3)现在有112m m +?? + ??? 列,根据鸽巢原理,必有两列相同。证明结论成立。 2.11证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。 证明:

工程数学练习题(附答案版)

(一) 一、单项选择题(每小题2分,共12分) 1. 设四阶行列式b c c a d c d b b c a d d c b a D = ,则=+++41312111A A A A ( ). A.abcd B.0 C.2 )(abcd D.4 )(abcd 2. 设(),0ij m n A a Ax ?==仅有零解,则 ( ) (A) A 的行向量组线性无关; (B) A 的行向量组线性相关; (C) A 的列向量组线性无关; (D) A 的列向量组线性相关; 3. 设8.0) (=A P ,8.0)|(=B A P ,7.0)(=B P ,则下列结论正确的是( ). A.事件A 与B 互不相容; B.B A ?; C.事件A 与B 互相独立; D.)()()(B P A P B A P += Y 4. 从一副52张的扑克牌中任意抽5张,其中没有K 字牌的概率为( ). A.552548C C B.52 48 C.5 54855C D.555548 5. 复数)5sin 5(cos 5π πi z --=的三角表示式为( ) A .)54sin 54(cos 5ππi +- B .)54sin 54(cos 5π πi - C .)54sin 54(cos 5ππi + D .)5 4sin 54(cos 5π πi -- 6. 设C 为正向圆周|z+1|=2,n 为正整数,则积分 ?+-c n i z dz 1)(等于( ) A .1; B .2πi ; C .0; D .i π21 二、填空题(每空3分,共18分) 1. 设A 、B 均为n 阶方阵,且3||,2|| ==B A ,则=-|2|1BA . 2. 设向量组()()() 1231,1,1,1,2,1,2,3,T T T t α=α=α=则当t = 时, 123,,ααα线性相关. 3. 甲、乙向同一目标射击,甲、乙分别击中目标概率为0.8, 0.4,则目标被击中的概率为 4. 已知()1,()3E X D X =-=,则2 3(2)E X ??-=??______.

清华组合数学()习题答案

?1.证:对n 用归纳法。先证可表示性: 当n=0,1时,命题成立。 假设对小于n 的非负整数,命题成立。对于n,设k!≤n <(k+1)!,即0≤n-k!<k·k!由假设对n-k!,命题成立, 设n-k!=∑a i ·i!,其中a k ≤k-1,n=∑a i ·i!+k!,命题成立。i=1 k i=1 k 再证表示的唯一性: 设n=∑a i ·i!=∑b i ·i!, 不妨设a j >b j ,令j=max{i|a i ≠b i }a j ·j!+a j-1·(j-1)!+…+a 1·1! =b j ·j!+b j-1·(j-1)!+…+b 1·1!,(a j -b j )·j!=∑(b i -a i )·i!≥j!>∑i·i!≥∑|b i -a i |·i!≥∑(b i -a i )·i! 另一种证法:令j=min{i|a i ≠b i }∑a i ·i!=∑b i ·i!,两边被(j+1)!除,得余数a j ·j!=b j ·j!,矛盾. i=1 k i=1k i=1 j-1i=1 j-1 i=1j-1i=1 j-1 i ≥j i ≥j ?2.证: 组合意义: 等式左边:n 个不同的球,先任取出1个,再从余下的n-1个中取r 个; 等式右边:n 个不同球中任意取出r+1个,并指定其中任意一个为第一个。显然两种方案数相同。 nC(n-1,r) = n ————= ——————— (n-1)! (r+1)·n! r!·(n-r-1)! (r+1)·r!·(n-r-1)! = ——————= (r+1)C(n,r+1).(r+1)·n! (r+1)!·(n-r-1)! ?3.证: 设有n 个不同的小球,A 、B 两个盒子,A 盒中恰好放1个球,B 盒中可放任意个球。有两种方法放球: ①先从n 个球中取k 个球(k ≥1),再从中挑 一个放入A 盒,方案数共为∑kC(n,k),其余球放入B 盒。 ②先从n 个球中任取一球放入A 盒,剩下n-1个球每个有两种可能,要么放入B 盒, 要么不放,故方案数为n2 . 显然两种方法方案数应该一样。 k=1n n-1 ?4.解:设取的第一组数有a 个,第二组有b 个,而 要求第一组数中最小数大于第二组中最大的,即只要取出一组m 个数(设m=a+b),从大到小取a 个作为第一组,剩余的为第二组。此时方案数为C(n,m)。从m 个数中取第一组数共有m-1中取法。总的方案数为∑(m-1)C(n,m)=n ·2 +1. ?5.解:第1步从特定引擎对面的3个中取1个有 C(3,1)种取法,第2步从特定引擎一边的2个中 取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。 所以共有C(3,1)·C(2,1)·C(2,1)=12种方案。 m=2 n n-1 ?6.解:首先所有数都用6位表示,从000000到 999999中在每位上0出现了10 次,所以0共出现 了6·10 次,0出现在最前面的次数应该从中去掉, 000000到999999中最左1位的0出现了10 次, 000000到099999中左数第2位的0出现了10 次, 000000到009999左数第3位的0出现了10 次, 000000到000999左数第4位的0出现了10 次, 000000到000099左数第5位的0出现了10 次, 000000到000009左数第6位的0出现了10 次。另外1000000的6个0应该被加上。所以0共出现了 6·10 –10 –10 –10 –10 –10 –10 +6 = 488895次。 5 5 5 4 3 2 1 5543210 ?7.解:把n 个男、n 个女分别进行全排列,然后 按乘法法则放到一起,而男女分别在前面,应该 再乘2,即方案数为2·(n!) 个. 围成一个圆桌坐下, 根据圆排列法则,方案数为2 ·(n!) /(2n)个. ?8.证:每个盒子不空,即每个盒子里至少放一 个球,因为球完全一样,问题转化为将n-r 个小球放入r 个不同的盒子,每个盒子可以放任意个球,可以有空盒,根据可重组合定理可得共有C(n-r+r-1,n-r) = C(n-1,n-r)中方案。根据C(n,r)=C(n,n-r),可得 C(n-1,n-r)=C(n-1,n-1-(n-r))=C(n-1,r-1)个方案。证毕。 2 2 ?9.解:每个能整除尽数n 的正整数都可以选取每个素数p i 从0到a i 次,即每个素数有a i +1种选择,所以能整除n 的正整数数目为(a 1+1)·(a 2+1)·…·(a l +1)个。 ?10.解:相当于把n 个小球放入6个不同的盒子里,为可重组合,即共有C(n+6-1,n)中方案,即C(n+5,n)中方案。 ?11.解:根据题意,每4个点可得到两条对角线,1个对角线交点,从10个顶点任取4个的方案有C(10,4)中,即交于210个点。

组合数学课后标准答案

组合数学课后标准答案

————————————————————————————————作者:————————————————————————————————日期:

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

工程数学试题与答案

仲恺农业工程学院 试题答案与评分标准《工程数学Ⅰ》2008至2009 学年度第 2 学期期末(A)卷 一、单项选择题(3* 8分) 二.填空题(3*7分) 1. 5 . 2.1 11 . 3. 0、7 . 4. 0、7 . 5. 1 . 6. 0、1915 . 7. 3 μ. 三.计算题(本大题共2小题,每小题5分,满分10分) 1.设方阵A= 211 210 111 - ?? ? ? ? - ?? , 113 432 B - ?? = ? ?? ,解矩阵方程XA B =、 解: 1 101 1 232 3 330 A- ?? ? =-- ? ? - ?? 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、3分1 221 82 5 33 X BA- - ?? ? == ? -- ? ?? 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、5分 2.某人对同一目标进行5次独立射击,若每次击中目标的概率就是2 3 ,求 (1)至少一次击中目标的概率; (2)恰有3次击中目标的概率。

解:(1) 5124213243??-= ??? 、、、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、、、、、、、、、、、、、、、、、、、、、、 3分 (2) 323 5 218033243C ????= ? ?????、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、、、、、、、、、、、、、、、、、、、、、、 5分 四.计算题(本大题共2小题,每小题6分,满分12分) 1.计算2 51237 1459 2746 12D ---=--. 解:25 12152237 14021659 270113461 20120D -----==----、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 、、、、3分 152 21522011 3011390216003001 200033--===----、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、6分 2.某工厂有三个车间生产同一产品,第一车间的次品率为0、05,第二车间的次品率为0、03,第三车间的次品率为0、01,各车间的产品数量分别为2500,2000,1500件,出厂时三个车间的产品完全混合,现从中任取一件产品,求该产品就是次品的概率。 解:设B ={取到次品},i A ={取到第i 个车间的产品},i =1,2,3,则123,,A A A 构成一完备事件组。……………… ……… …… …………… ………2分 利用全概率公式得, ∑=++==3 1332211)()()()()()()()()(i i i A B P A P A B P A P A B P A P A B P A P B P

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

组合数学题目及标准答案

组合数学 例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。问共有多少种不同的安全状态? 解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。 用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。这种对应显然是一对一的。因此,安全状态的总数等于这8个数的全排列总数8!=40320。 例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。证明n 偶数。 证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。 例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。 证 设n +1个数是a 1, a 2, ···, an +1。每个数去掉一切2的因子,直至剩下一个奇数为止。组成序列r 1, r 2,, ···, rn +1。这n +1个数仍在[1 , 2n ]中,且都是奇数。而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。若ai >aj ,则ai 是aj 的倍数。 例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k h ,使得 ah+1+…+ ak= 39 证 令Sj= ,j =1 , 2 , …,100。显然 ∑=j i i a 1 ∑=h i i a 1

工程数学试卷及标准答案

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。 A. 全部击中. B. 至少有一发击中. C. 必然击中 D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。 A. X 和Y 独立。 B. X 和Y 不独立。 C. D(X+Y)=D(X)+D(Y) D. D(XY)=D(X)D(Y) 3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。 A . 其它1||0|)|1(2)(≤???-=x x x f 。 B. 其它2 ||05.0)(≤? ??=x x f C. 0 021)(2 2 2)(<≥??? ? ???=--x x e x f x σμπ σ D. 其它0 0)(>???=-x e x f x , 4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P , }5{2+≥=μY P P , 则有( ) A. 对于任意的μ, P 1=P 2 B. 对于任意的μ, P 1 < P 2 C. 只对个别的μ,才有P 1=P 2 D. 对于任意的μ, P 1 > P 2 5.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( ) A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)

6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。 7.设A= ??? ? ? ??-????? ??--10000002~011101110x ,则x = 。 8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统 正常工作的概率为 。 9.设随机变量X 的概率密度函数为其它A x x x f <>?? ?=+-y x ke y x f y x ,则系数=k 。 11.求函数t e t f β-=)(的傅氏变换 (这里0>β),并由此证明: 二、填空题(每空3分,共15分) 三、计算题(每小题10分,共50分)

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

李凡长版-组合数学课后习题答案-习题3

李凡长版-组合数学课后习题答案-习题3

第三章递推关系 1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限 区域数记为f(n),求f(n)满足的递推关系. 解: f(n)=f(n-1)+2 f(1)=2,f(2)=4 解得f(n)=2n. 2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求 f(n)满足的递推关系. 解:设a n-1a n-2 …a 1 是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1) 表示。 a n 可以有两种情况: 1)不管上述序列中是否有2,因为a n 的位置在最左边,因此0 和1均可选; 2)当上述序列中没有1时,2可选; 故满足条件的序列数为 f(n)=2f(n-1)+2n-1 n 1, f(1)=3 解得f(n)=2n-1(2+n). 3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足 的递推关系. 解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。 则有 h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1) f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2) 将(1)得到的h(n)=(2n+4n)/2代入(2),可得 n+4n)/2-2f(n), 4.求满足相邻位不同为0的n位二进制序列中0的个数f(n). 解:这种序列有两种情况: 1)最后一位为0,这种情况有f(n-3)个; 2)最后一位为1,这种情况有2f(n-2)个; 所以 f(1)=2,f(2)=3,f(3)=5. 5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n). 解:最后两位是“00”的序列共有2n-2个。 f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能; f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能; 依此类推,有 17

工程数学(本)模拟试题1及参考答案

工程数学(本)模拟试题2011.11 一、单项选择题(每小题3分,本题共15分) 1. B A ,都是n 阶矩阵,则下列命题正确的是 ( ) . (A) B A AB = (B) 2222)(B AB A B A +-=- (C) BA AB = (D) 若0AB =,则0A =或0B = 2. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是( ). (A) 1 (B) 2 (C) 3 (D) 4 3. 设0AX =是n 元线性方程组,其中A 是n 阶矩阵,若条件( )成立,则该方程组没有非0解. (A) n r <)(A (B) A 的行向量线性相关 (C) 0=A (D) A 是行满秩矩阵 4. 袋中放有3个红球,2个白球,第一次取出一球,不放回,第二次再取一球,则两次都是红球的概率是( ). (A) 256 (B) 10 3 (C) 203 (D) 25 9 5. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计. (A) 3215 15151x x x ++ (B) 321x x x ++ (C) 321535151x x x ++ (D) 321525252x x x ++ 二、填空题(每小题3分,共15分) 1. 设B ,A 均为3阶矩阵,且3,6=-=B A ,='--3)(1B A . 2. 设A 为n 阶方阵,若存在数λ和非零n 维向量x ,使得x x A λ=,则称λ为A 的 . 3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P . 4. 设随机变量?? ????a X 5.02.0210~,则=a .

工程数学试题B及参考答案

工程数学试题B 一、单项选择题(每小题3分,本题共21分) 1.设B A ,为n 阶矩阵,则下列等式成立的是( ). (A) BA AB = (B) T T T )(B A AB = (C) T T T )(B A B A +=+ (D) AB AB =T )( 2.设? ? ??? ???? ???=4321 43214321 4321A ,则=)(A r ( ). (A) 0 (B) 1 (C) 3 (D) 4 3.设B A ,为n 阶矩阵,λ既是A 又是B 的特征值,x 既是A 又是B 的特征向量,则结论( )成立. < (A) λ是B A +的特征值 (B) λ是B A -的特征值 (C) x 是B A +的特征向量 (D) λ是AB 的特征值 4.设A B ,为随机事件,下列等式成立的是( ). (A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=- 5.随机事件A B ,相互独立的充分必要条件是( ). (A) )()()(B P A P AB P = (B) )()(A P B A P = (C) 0)(=AB P (D) )()()()(AB P B P A P B A P -+=+ 6.设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意 b a <,有=≤<)(b X a P ( ). (A) ?b a x x F d )( (B) ? b a x x f d )( % (C) )()(a f b f - (D) )()(b F a F - 7. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,

微积分课后题答案习题详解

微积分课后题答案习题 详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明 上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2 22111(1) (2)n n n ??+++ ?+?? =0; (2) lim n →∞2!n n =0. 证:(1)因为 222 222111 112(1)(2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=,

李凡长版 组合数学课后习题答案 习题1

1 第一章 排列组合 1、 在小于2000的数中,有多少个正整数含有数字2? 解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10; 千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1; 故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。 2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()6 2 -1=14。 (或: ()()41 42 *2+=14) (3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53 -1 种;②其中两个0一组,另外一个单独,则有 ()()2*)2,2(41 52 -P 种。 (4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。 3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6 4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。 解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。 以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则 m = a 1+10a 2+100a 3+1000a 4。 因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故 a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。 因此, m = 720 + 612*(10 + 100 + 1000) = 680040。 5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数 字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数: ()())4,4(2)5,5(53 5 3 P P ??-? 只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

相关主题
文本预览
相关文档 最新文档