当前位置:文档之家› 稀土湿法冶金

稀土湿法冶金

稀土湿法冶金
稀土湿法冶金

工业废水处理工艺

工业废水处理工艺 近年来,不断有新的方法和技术用于处理工业废水,但各有利弊。单纯的生物氧化法出水中含有一定量的难降解有机物,COD值偏高,不能完全达到排放标准。吸附法虽能较好地除去COD,但存在吸附剂的再生和二次污染的问题。催化氧化法虽能降解难以生物降解的有机物,但实际的工业应用中存在运行费用高等问题。本文介绍一些典型的工业废水处理工艺。 一、工业废水处理超导磁分离工艺 超导磁分离法与传统的化学法、生物法以及普通电磁体磁分离不同,不仅具有投资小、占地少、处理周期短、处理效果好等优点,还可达到普通电磁体3倍以上的磁场强度,从而提高磁分离能力,是未来极具潜在应用价值的技术。 一项超导磁体应用技术研究表明,采用超导高梯度磁分离技术可用于造纸、化工、医药工业废水的净化分离。与传统的超导磁分离技术只能分离矿物、煤、高岭土中磁性杂质不同,该技术通过预先加入改性的磁种子颗粒材料,从而分离工业废水中无磁性的有机、无机污染物,实现工业污水的达标排放。 工业废水如不达标排放,危害颇多。然而,目前使用的化学法和生物化学法存在投资大、运行成本高、反应时间长、占地面积大、效率低、能耗高等诸多问题。对于小型排污企业废水处理,这些问题则愈加突出,厂家若因建立污水处理设施投资过高,大多可能采取直排或偷排,给环境造成了更大危害。因此,开展新型、高效、低成本工业废水处理技术的研究显得重要而迫切。———技术解析——— 铁磁颗粒与污染物絮接 工业废水中一般皆为有机、无机污染物,由于这些污染物本身没有磁性,靠磁场产生的磁吸引力无法分离。研究人员设计并研制出制冷机直接冷却的超导磁体,磁场可达 3.92T。利用该超导磁体对造纸厂废水进行了磁分离处理。 实验采用预先在废水中加入经过表面等离子有机聚合改性的铁磁性颗粒并与污水中非磁性有害物质絮接,通过强磁场实现水中污染物的分离。实验结果表明,经磁分离处理的废水其COD值由起始的1780mg/L降到147mg/L,净化效果良好。 ———技术背景——— 磁分离的发展 磁分离是一种通过磁体提供的磁场吸力来实现物质分离的技术,属于物理分离法,是上世纪

稀土提取与分离技术 (发)

产业技术情报—————————————————————————————————————————————————————————————2013年12月18日第6期(总第6期) 编者按: 稀土提取及分离技术的基本内容有如下几个方面:稀土矿物的富集、稀土的提取、稀土富集物的制备、稀土元素的分离与提纯、稀土化合物的制备。本期通过专利分析,对稀土提取及分离技术的专利数量、专利国家和地区分布、专利技术布局,以及稀土提取与分离技术国家分布、技术主题、核心专利等进行了分析,并得出以下结论。 本期重点:稀土提取与分离技术专利分析 ●中国在稀土提取与分离技术领域起步较早,但由于我国稀土技术保密规定等 原因,文献报道不多,2006年后迅速发展,专利数量跃居世界第一,但专利影响力(核心专利)很小。 ●稀土提取与分离技术主要集中在提取与分离过程与方法、分离过程中使用的 体系和萃取剂、稀土分离、提取的设备与装置以及对稀土提取过程中废水的处理。 ●日本企业为该技术领域的主要专利持有人,专利均集中在从合金或其他混合 物中回收稀土元素以及提取与分离过程中所使用的萃取剂。此外,日本机构还擅长从一些废料(例如荧光粉材料和磁性材料)中回收稀土金属。 ●中国有5家高校、科研单位和5家企业专利申请量进入全球Top30,分别为 北京大学、北京科技大学、东北大学、内蒙古科技大学、中科院长春应用化学研究所、北京有色金属研究总院、包头稀土研究院、甘肃稀土新材料有限公司等。 ============================================================= 主编:刘细文执行主编:贾苹本期策划:徐慧芳陆彩女陈枢舒联系地址:北京北四环西路33号中科院国家科学图书馆区域信息服务部邮编:100190 电话:82625972邮件地址:xxcykb@https://www.doczj.com/doc/dd14714556.html,

浅析稀土材料的制备技术(doc 9页)

浅析稀土材料的制备技术(doc 9页)

第04周:教学内容:稀土元素的提取与分离 1.稀土的地球化学性质与稀土矿石分解的关系;稀土矿石分解的方法(干法与湿法) 2.详述稀土矿的湿法分解的两个具体工艺流程;2.简述稀土元素的分离和提纯。 教学要求:重点掌握稀土矿分解方法(干、湿法) 熟悉稀土矿的湿法分解的“高温H2SO4分解包头混合 稀土矿工艺及原理”、“南方离子吸附态稀土矿的提取工艺及原理”;了解稀土元素与非稀土 元素的分离、稀土元素之间的分离基本原理;了解稀土元素之间分离和提纯工艺方法。 第4章稀土材料的制备技术 §1 稀土元素的提取和分离 一.稀土材料制备的工作范畴 广义来讲,稀土材料的制备应包括从稀土矿物原料到稀土材料的全过程,如图4-1所示。 具体是指以稀土精矿为原料,经过稀土冶金过程(稀土提取、分离及金属制备)得到稀土金属 或(和)化合物(很多情况下它们可直接作为稀土材料产品);再将稀土化合物或金属按设计要 求配以相关的原料(无机物或有机物),采用一定的制备技术和工艺流程制备出符合使用要求 的各种稀土材料,包括单晶、多晶、非晶态、玻璃、陶瓷、涂料、低维化合物、复合材料、 超细粉末和金属、合金、金属间化合物以及稀土高分子化合物等稀土材料。在这一全过程中, 稀土冶金过程和材料制备过程是主体,由于这两个过程的完成,可直接制备出各种稀土金属、 合金和多种多样的稀土化合物材料。 由于稀土元素本身固有的结构和性能特点,使稀土材料的制备具有下述特点。 ①稀土材料的组成与结构复杂,因此对其化学成分、显微结构要进行严格的设计和监控。 ②稀土元素的活泼性及光、电、磁、热等特性,要求制备环境苛刻(如温度、压力、介质、 溶剂及保护气氛等)。 ③除采用传统的金属熔炼法、陶瓷法、物理及化学方法外,更多的则是采用高新技术条 件,例如高温、高压、低温、高真空、失重、辐射及其他极端技术条件;采用新的合成方法

稀土生产与分离工业工艺流程

稀土生产与分离工业工艺流程 一、稀土选矿 选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。 当前我国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。采出的矿石中含铁30%左右,稀土氧化物约5%。在矿山先将 大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~ 65%Fe2O3的一次铁精矿。其尾矿继续进行浮选与磁选,得到含45%Fe2O3以上的二次铁精矿。稀土富集在浮选泡沫中,品位达到10~15%。该富集物可用摇床选出REO 含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。 二、稀土冶炼方法 稀土冶炼方法有两种,即湿法冶金和火法冶金。 湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。

“稀土冶金学”课程教学改革与实践

“稀土冶金学”课程教学改革与实践 【摘要】“稀土冶金学”是内蒙古科技大学材料与冶金学院根据包头地区白云鄂博矿的特点为冶金工程专业所开设的一门专业课程。多年的教学实践和课程发展,显示出该课程的教学适应包头地区优势人才培养的专业特色。经过对课程内容设置、教材选编和教学手段现代化的不断探索与实践,设置了系统的课程教学内容体系,形成了多元化的教学模式,把教师讲授、多媒体教学以及实验演示相结合使学生的整体专业素质得到显著提高。 【关键词】稀土冶金学;教学改革;多元化;实验演示 稀土冶金学是研究从矿石中提取稀土或稀土化合物及用各种加工方法将稀土制成具有一定性能的金属材料或合金材料的过程和工艺。其研究内容包括稀土元素及其主要化合物的性质和特征、稀土矿物原料及其处理、稀土元素分离、稀土纯化合物制备、稀土金属及其合金的制取、稀土金属的精炼提纯等。 1 课程开设背景 我国包头氟碳铈矿-独居石混合型稀土精矿是世界第一大轻稀土资源和第二大钍资源,其不仅储量丰富,而且经过40多年的开发,已经建立了从采矿、选矿到冶炼、分离提纯等一套完整的工业体系[1-5]。 内蒙古科技大学材料与冶金学院是为适应包头地区经济建设和社会发展而建立并发展起来的本科院校。在长期的办学实践中,学校紧紧依靠地方政府和社会力量,针对包头白云鄂博矿资源的开发和综合利用情况,为国家培养能适应21世纪我国社会主义现代化建设需求的,掌握稀土冶金的基本知识、基础理论和基本技能的复合型高级技术人才和管理人才。 2 “稀土冶金学”课程的建设 基于内蒙古科技大学立足于包头白云鄂博矿资源优势的办学特色和冶金工程专业学生部分就业服务于包头本地的现实状况,因此材料与冶金学院自2008年开始将冶金工程专业的专业课程分为两个模块开课,一个是以钢铁冶金专业为重点的课程设置,另一个是以稀土冶金为重点的有色金属冶金专业。学生可以根据自己的兴趣及将来的发展方向任意选择两个模块中的任一专业进行学习。其中稀土冶金工艺学是以稀土冶金为重点的有色金属冶金专业的重点课程,因此该课程的建设对于教学效果极为重要。 为保证“稀土冶金学”课程的系统性和完整性。在确定该课程内容时,坚持“浅而宽、理论联系实际”的原则,以经典理论为基础,重点介绍稀土冶金过程的知识,并将最新科技成果和前沿技术纳入教学内容,编写《稀土冶金学》教材。 2.1 “稀土冶金学”课程内容的设置

稀土湿法冶金废水处理

摘要:对稀土矿物氟碳铈矿、独居石和氟碳铈矿的混合矿湿法冶金分解和分离过程中所产生的废水进行了分类。综述了不同的冶金工艺所采用的废水处理方法,认为对稀土冶金废水的处理应注意分类治理,回收副产品;以废治废,降低成本,提高废水回用率;开展清洁冶金工艺研究,从源头解决污染问题。 关键词:稀土;氟碳铈矿;独居石;湿法冶金;废水处理 稀土湿法冶金过程中的废水污染问题受到各方面的关注。我国稀土湿法冶金的原料主要是氟碳铈矿、氟碳铈矿和独居石的混合矿(以下简称混合稀土精矿)及广东、江西等地的离子吸附型稀土矿。离子吸附型稀土矿采用原地浸矿、碳铰沉淀工艺制备碳酸稀土产品,氟碳铈矿主要采用氧化焙烧工艺分解,而混合稀土精矿主要采用浓硫酸高温焙烧分解(以下简称酸法分解工艺)和液碱法分解两种工艺制备碳酸稀土和氯化稀土初级产品,然后由初级产品再通过萃取分离生产不同纯度的单一稀土产品。本文对稀土矿物的3种分解工艺及萃取分离制备单一稀土工艺等湿法冶金过程中的废水分类及研究现状作简单综述。 1 稀土湿法冶金过程废水的分类 1.1 混合稀土精矿的分解 1.1.1 酸法分解工艺 混合稀土精矿浓硫酸高温焙烧分解工艺是以混合稀土精矿为原料的稀土企业的主体分解工艺。该工艺在冶金过程中产生酸性废水A(ρ(F-)=2~5g/L,ρ(H2SO4)=15-25 g/L)和含硫酸铰的氨氮类废水 B(pH=7-8,ρ(NH4+)=5~18 g/L)。初级产品碳酸稀土还可以进一步革取分离单一稀土产品并产生相应的废水。 1.1.2 液碱法分解工艺 液碱法分解工艺是分解混合稀土精矿的另一个主要工艺,目前仍有少部分企业采用该工艺生产。该工艺产生两种废水:酸性废水C(含钙镁离子和盐酸,盐酸浓度约l~2 mol/L)和碱性废水D(含NaOH,Na3PO4和NaF等,ρ(F-)=0.4~0.6 g/L,ρ(NaOH)=100~400g/L,ρ(Na2CO3)=20~30g/L,pH=10~11)。初级产品氯化稀土还可以进一步苹取分离出单一稀士产品。 1.2 氟碳饰矿的分解——氧化焙烧分解工艺 氧化焙烧分解工艺是四川氟碳钝矿的主要分解工艺,主要产生两种废水,一种是酸性废水E,ρ(F-)= 4~6 g/L,ρ(Fe2(SO4)3)=25~35 g/L,w(H2SO4)= 8%~10%和 Na2SO4 及少量的 P2O5等;一种为碱性废水F,主要是含Na2SO4,ρ(Na2SO4)=

冶金工业废水处理技术

冶金工业废水处理技术 冶金工业产品繁多,生产流程各成系列,排放出大量废水,是污染环境的主要废水之一。冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有:冷却水,酸洗废水,除尘和煤气、烟气洗涤废水,冲渣废水以及由生产工艺中凝结、分离或溢出的废水等。 冷却水的处理 冷却水在冶金废水中所占的比例最大。钢铁厂的冷却水约占全部废水的70%。冷却水分间接冷却水和直接冷却水。间接冷却水,如高炉炉体、热风炉、热风阀、炼钢平炉、转炉和其他冶金炉炉套的冷却水,使用后水温升高,未受其他污染,冷却后,可循环使用。若采用汽化冷却工艺,则用水量可显著减少,部分热能可回收利用。直接冷却水,如轧钢机轧辊和辊道冷却水、金属铸锭冷却水等,因与产品接触,使用后不仅水温升高,水中还含有油、氧化铁皮和其他物质,如果外排,会对水体造成淤积和热污染,浮油会危害水生生物。处理方法是先经粗颗粒沉淀池或水力旋流器,除去粒度在100微米以上的颗粒,然后把废水送入沉淀,除去悬浮颗粒;为提高沉淀效果,可投加混凝剂和助凝剂;水中浮油可用刮板清除。废水经净化和降温后可循环使用。冷轧车间的直接冷却水,含有乳化油,必须先用化学混凝法、加热法或调节pH值等方法,破坏乳化油,然后进行上浮分离,或直接用超过滤法分离。所收集的废油可以再生,作燃料用。 酸洗废水的处理 轧钢等金属加工厂都产生酸洗废水,包括废酸和工件冲洗水。酸洗每吨钢材要排出1~2米废水,其中含有游离酸和金属离子等。如钢铁酸洗废水含大量铁离子和少量锌、铬、铅等金属离子。少量酸洗废水,可进行中和处理并回收铁盐;较大量的则可用冷冻法、喷雾燃烧法、隔膜渗析法等方法回收酸和铁盐或分离回收氧化铁。若采用中性电解工艺除氧化铁皮,就不会出酸洗废水。但电解液须经过滤或磁分离法处理,才能循环使用。 洗涤水的处理 冶金工厂的除尘废水和煤气、烟气洗涤水,主要是高炉煤气洗涤水、平炉和转炉烟气洗涤水、

三种稀土废水处理方法与处理原则

三种稀土废水处理方法与处理原则 稀土生产中产生的废水,含有多种化学物质,如果做不到有效治理,会严重污染环境。根据稀土生产中排出废水组成成分的不同,其处理方法也是多种多样,下面我们介绍三种稀土废水处理方法: 放射性废水的处理 稀土生产中放射性废水的主要来源是独居石矿的碱法分解,这种废水尽管组成比较复杂,放射性元素超过了国家标准,但仍属于低水平放射性废水。其处理方法可分为化学法和离子交换法两大类。 (1)化学处理法由于废水中放射性元素的氢氧化物、碳酸盐、磷酸盐等化合物大多是不溶性的,因此化学方法处理低放射性废水大多是采用沉淀法。化学处理的目的是使废水中的放射性元素移到沉淀的富集物中去,从而使大体积的废液放射性强度达到国家允许排放标准而排放。化学处理法的特点是费用低廉,对大部分放射性元素的去除率显著,设备简单,操作方便,因而在我国的核能和稀土工厂去除废水中放射性元素都采用化学沉淀法。 ①中和沉淀除铀和钍向废水中加入烧碱溶液,调pH值在7~9之间,铀和钍则以氢氧化物形式沉淀,化学反应式为:

Th4+4NaOH→Th(OH)4↓+4Na+ UO22++2NaOH→UO2(OH)2↓+2Na+ 有时,中和沉淀也可以用氢氧化钙做中和剂,过程中也可加入铝盐(硫酸铝)、铁盐等形成胶体(絮凝物)吸附放射性元素的沉淀物。 ②硫酸盐共晶沉淀除镭在有硫酸根离子存在的情况下,向除铀、钍后的废水中加入浓度10%的氯化钡溶液[1],使其生成硫酸钡沉淀,同时镭亦生成硫酸镭并与硫酸钡形成晶沉淀而析出。化学反应式为: Ba2+Ra2++2SO2-4→BaRa(SO4)2↓ ③高分子絮凝剂除悬浮物在稀土生产厂中所用的絮凝剂大部分是高分子聚丙烯酰胺(PHP)。按分子量的大小可以分为适用于碱性介质中的PHP絮凝剂和适用于酸性介质中的PHP絮凝剂。PHP是一种表面活性剂,水解后会生成很多活性基团,能降低溶液中离子扩散层和吸附层间的电位,能吸附很多悬浮物和胶状物,并把它们紧密地联成一个絮状团聚物,使悬浮物和胶状物加速沉降。 放射性废水除去大部分我铀、钍、镭后,加入PHP絮凝剂,经充分搅拌,PHP絮凝剂均匀地分布于水中,静置沉降后,可除

有色冶金行业资料

有色冶金行业资料 一、有色行业定义及包含金属种类 1.1 定义 人类已发现蕴藏在自然界的103种天然元素中,凡具有良好导电、导热和可煅性的天然元素称金属,现在世界上有86种金属。通常把金属分为黑色金属和有色金属两大类,中国在1958年将铁、铬、锰列入黑色金属;除铁、铬、锰以外的83种金属(包括13种人造超铀元素)都叫有色金属。 狭义的有色金属又称非铁金属,是铁、锰、铬以外的所有金属的统称。 广义的有色金属还包括有色合金。有色合金是以一种有色金属为基体(通常大于50),加入一种或几种其他元素而构成的合金。 1.2金属种类

有色金属分类补充说明: 1)轻有色金属:这类金属的共同特点是:密度小(0.53-4.5),化学活性大,与氧、硫、碳和卤素的化合物都相当稳定。 2)重有色金属:其特点是密度大,如铅为11.34.每一种重有色金属根据其特性,在国民经济各部门中都具有其特殊的应用范围和用途。例如,铜是军工及电气设备的基本材料;铅在化工方面制耐酸管道、蓄电池等有着广泛应用;镀锌的钢材广泛应用于工业和生活方面;而镍和钴则是制定高温合金与不锈钢的重要合金元

素。 3)贵金属:这类金属由于对氧及其他试剂的稳定性,且在地壳中含量少,开采和提取比较困难,故价格比一般金属贵。这类金属除金银铂有单独的矿物,可以从矿石中生产一部分外,大部分要从铜、铅、锌、镍等冶炼厂的副产品(阳极泥)中回收。 4)半金属:这类金属的物理化学性质介于金属和非金属之间,如砷是非金属,但又能导电传热。此类金属根据各自的特性有不同的用途。 5)稀有金属:这类金属的特点是发现较晚,提取困难,工业上应用也较晚。由于数量较多,为了研究上的方便,按其性质、提取方法和在地壳中存在的特征,又将其分为5类: (1)轻稀有金属:其特点是密度小,如锂为0.534,化学活性很强。这类金属的氧化物和氯化物都具有很高的化学稳定性,很难还原,常用熔盐电解法 生产。 (2)稀有高熔点金属(亦称稀有难熔金属):其特点是熔点高,如钨的熔点为3410℃;硬度大,抗蚀性强,可与一些非金属生成非常硬的难熔的稳定化 合物。如碳化物、氮化物、硅化物和硼化物。这些化合物是生产硬质合金 的重要材料。 (3)稀有分散金属(亦称稀散金属):其特点是这类金属在地壳中很分散,常伴生在其他矿床中,但其产量极少,没有工业价值,通常都是从冶金工厂或 化工厂的废料中提取的。如电解铜的阳极泥、冶炼铅锌和铝的炉渣及烟尘 等。 (4)稀土金属:从镧到铕,为轻稀土;从钆到镥含钪、钇为重稀土。18世纪时,

冶金工业废水处理技术

https://www.doczj.com/doc/dd14714556.html, 冶金工业废水处理技术 冶金工业产品繁多,生产流程各成系列,排放出大量废水,是污染环境的主要废水之一。冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有:冷却水,酸洗废水,除尘和煤气、烟气洗涤废水,冲渣废水以及由生产工艺中凝结、分离或溢出的废水等。 冷却水的处理 冷却水在冶金废水中所占的比例最大。钢铁厂的冷却水约占全部废水的70%。冷却水分间接冷却水和直接冷却水。间接冷却水,如高炉炉体、热风炉、热风阀、炼钢平炉、转炉和其他冶金炉炉套的冷却水,使用后水温升高,未受其他污染,冷却后,可循环使用。若采用汽化冷却工艺,则用水量可显著减少,部分热能可回收利用。直接冷却水,如轧钢机轧辊和辊道冷却水、金属铸锭冷却水等,因与产品接触,使用后不仅水温升高,水中还含有油、氧化铁皮和其他物质,如果外排,会对水体造成淤积和热污染,浮油会危害水生生物。处理方法是先经粗颗粒沉淀池或水力旋流器,除去粒度在100微米以上的颗粒,然后把废水送入沉淀,除去悬浮颗粒;为提高沉淀效果,可投加混凝剂和助凝剂;水中浮油可用刮板清除。废水经净化和降温后可循环使用。冷轧车间的直接冷却水,含有乳化油,必须先用化学混凝法、加热法或调节pH值等方法,破坏乳化油,然后进行上浮分离,或直接用超过滤法分离。所收集的废油可以再生,作燃料用。 酸洗废水的处理 轧钢等金属加工厂都产生酸洗废水,包括废酸和工件冲洗水。酸洗每吨钢材要排出1~2米废水,其中含有游离酸和金属离子等。如钢铁酸洗废水含大量铁离子和少量锌、铬、铅等金属离子。少量酸洗废水,可进行中和处理并回收铁盐;较大量的则可用冷冻法、喷雾燃烧法、隔膜渗析法等方法回收酸和铁盐或分离回收氧化铁。若采用中性电解工艺除氧化铁皮,就不会出酸洗废水。但电解液须经过滤或磁分离法处理,才能循环使用。 洗涤水的处理 冶金工厂的除尘废水和煤气、烟气洗涤水,主要是高炉煤气洗涤水、平炉和转炉烟气洗涤水、烧结和炼焦工艺中的除尘废水、有色冶金炉烟气洗涤水等。这类废水的共同特点是:含有大量悬浮物,水质变化大,水温较高。每生产一吨铁水要排出2~4米高炉煤气洗涤废水,水温一般在30℃

稀土行业氨氮废水处理实用方法

2.4 萃取分离工艺氨氮废水的处理 革取分离工艺中主要产生各类氨氮废水,该类废水是稀土湿法冶金过程中产生的主要废水,占稀土企业废水总量的60%~70%,只要涉及稀土湿法冶金几乎都要产生氨氮废水。氨氮废水的处理历来是污水处理的重点和难点,随氨氮废水的种类、氨氮含量的不同主要有物理化学法、化学法、生物法等多种处理工艺厂方[7-8]。对于稀土企业含氨氮的废水目前尚无理想的处理工艺。对该类废水的治理可以采用氨氮催化转化法、蒸发浓缩法、电渗析-蒸发浓缩法、碱性蒸氨法和化学沉淀法等。 ①蒸发浓缩法:废水直接蒸发浓缩回收按盐,工艺简单,废水可以回用实现“零排放”,对各类氨氮废水均适用,但因能耗高,未见有企业应用的报道。 ②电渗析一蒸发浓缩法[9]:是对蒸发浓缩法的改进,采用电渗析的方法使废水中的铰盐浓缩,处理后的废水可以直接回用,渗析得到的浓缩液经进一步蒸发浓缩回收铰盐。该方法已完成了处理氨氮类废水G的工业实验,但该工艺对废水水质要求苛刻,对钙镁杂质较高的硫酸铵废水B不适用,且电渗析设备一次性投资高[10]。

④化学沉淀法:该法是上世纪90年代出现的处理氨氮废水的新方法,利用NH4+和Mg2+,PO43-在适当的pH值下可以生成MgNH4PO4沉淀而去除氨氮,经笔者对碳按沉淀工艺氯化铰废水I的研究表明,该法对氨氮的去除率可达98%以上,得到的MgNH4PO4是一种长效缓释复合肥,肥效利用率高,对作物无伤害,可做堆肥和花园土壤、也可以作为结构制品的阻燃剂或做耐火砖等。处理后的水偏碱性,可用于酸性废水的中和、尾气喷淋吸收等。该法对于稀土湿法冶金中

产生的几类氨氮废水(硝酸铵除外)可以适用,处理方法比较老式,尚未工业应用。 另外:还有人研究了离子交换法[11],采用天然沸石做吸收剂吸附氨氮,对氨氮的去除率只有50%。由于该法适合于低浓度的氨氮废水,对高浓度的稀土氨氮废水的处理不适用,可以作为一种辅助方法考虑使用。 稀土分离过程中草酸沉淀得到的酸性废水H,主要含c(HCI)= 1.5~2.0 mol/L,ρ(H2C2O4)=12~15 g /L。蔡英茂等[12]采用蒸馏冷凝、浓缩结晶的方法回收盐酸和草酸,盐酸和草酸的回收率分别为93%和98%,回收的盐酸和草酸再回用于生产中,有较好的经济效益和社会效益。但对设备的耐腐蚀性要求比较高。 3 对稀土湿法过程中废水处理的建议 稀土湿法冶金工业因生产工艺的不同、处理稀土原料的不同和产品结构的不同所产生的废水的种类是不同的,因此不可能有统一的废水处理模式,对不同的企业应该有不同的处理工艺来优化处理废水问题。目前虽然有很多废水处理的研究和成熟的处理工艺,但大部分稀土企业只进行了部分处理,对环境造成了污染,

稀土生产过程

中国稀土火法冶金技术发展评述 稀土火法冶金专业委员会 一、稀土火法冶金技术发展概要 1.稀土火法冶金发展历程

稀土金属冶炼工艺研究是由瑞典化学家G.Mosander于1862年首次用于金属钠、钾还原无水氯化铈制备金属铈开始的,以后在1875年W.Hitekrand和T.Norton又首次用氯化物熔盐电解法制得了金属铈、镧和少量镨钕混合金属,到20世纪30年代末逐步发展了稀土氯化物和氟化物金属热还原和熔盐电解两大工艺技术开始工业生产混合稀土金属,当时主要是生产打火石(发火合金)。 稀土金属和合金冶炼工艺技术的进步、生产规模的扩大无不同市场新的需求和时代的科技进步相联系。第二次世界大战后至20世纪60年代末美国等先进发达国家大力发展核技术,其中包括核技术需要的材料科学和技术,极大地促进了单一稀土元素分离工艺的发展,使离子交换法和溶剂萃取法分离单一稀土元素得到了发展,成为工业生产的方法,同时获得原子俘获截面小的金属钇和俘获截面大的金属钐、铕,发展了稀土氟化物钙热还原法和氧化钐、氧化铕直接用镧还原-蒸馏法分别制备金属钇和金属钐、铕的工艺技术,这些成果基本上奠定了这两种工艺方法产业化的基础。20世纪70年代,混合稀土金属在钢中应用,尤其在低合金钢管线钢上应用有了突破,使稀土在钢铁中应用的消耗量占到总消耗量的50%以上,从而推动了稀土氯化物熔盐电解法生产混合稀土金属产业化技术的发展,相继有德国Goldschmidt公司开发了5万安培的大型电解槽和我国上海跃龙化工厂10000安培电解工艺设备投入生产,世界和我国混合稀土金属的产量在20世纪70年代末分别达到8400吨和1200吨。在稀土钢中应用突破进展的同时,稀土硅-镁球化剂得到了工业规模的应用。我国利用包钢高炉渣为原材料以硅铁合金为还原剂在电炉中冶炼稀土硅铁合金的工艺技术得到很大发展,建立了专业生产厂,在20世纪70年代末产量达到了4000多吨。 20世纪70年代初钐钴永磁材料开发成功并很快达到了工业规模的应用,这一重要的市场动力,迅猛地促进了金属钐的工艺技术成果转为工业生产,从而使稀土氧化物还原-蒸馏工艺、设备达到产业化规模,单炉量由100克级到公斤级,到2000年已达到100公斤级,钐的回收率也由试验室的90%,提高到95%,金属钐的纯度由99%提高到99.95%。 20世纪80年代初日本住友金属公司开发成功NdFeB高性能永磁材料,由于其性能价格比的极大优势,市场需求异常强劲,年产量在最初的数年间成倍增长,市场动力推动了我国稀土氟化物体系氧化钕电解工艺、设备产业化的进程,电解槽规模由试验室100余安培提到了3000安培,到2000年末达到6000安培,2002年万安级电解槽已投入工业生产,且稀土技术经济指标和金属质量都大幅度提高,同时NdFeB永磁材料需要金属镝的市场扩大,使金属热还原法制备金属镝的工艺技术和设备也达到了产业化的规模,单炉产量达到百公斤级,直收率达到96%,金属镝纯度达99.5%。 20世纪90年代初镍氢二次电池成果开始产业化,由于其比容量高于镍镉二次电池且不会造成环境污染,很快打开市场且增长迅速,Ni/MH电池的市场需求极大地推动了电池阴极合金生产技术和设备的发展完善,主要表现在利用稀土氯化物熔盐体系电解,成功地生产出低镁、低铁的富镧或富铈混合稀土金属。一般铁镁含量较前约低了一倍,满足了电池阴极合金的要求。2002年电池级混合稀土金属产量已达4000多吨。在此时期大磁致伸缩材料(TbDyFe合金)的应用也已打开了市场,年生产量由数公斤增加到数百公斤,这一应用市场推动了高纯稀土金属镝、铽的工艺技术的产业化,不仅生产规模单炉产量由百克级提高到数十公斤级,而且纯度达到99.5%~99.99%,2002年全国高纯金属镝和铽的产量分别达到500公斤和250公斤。 随着高新技术的发展,对稀土金属及合金的需求还将进一步扩大,从而定会促进稀土金属及合金制备工艺技术和设备的进一步发展。 2.稀土火法冶金技术分类和发展目标 稀土火法冶金技术分为三大类:熔盐电解、金属热还原和火法提纯技术。这三类工艺技术的发展目标是短流程、低消耗、高效益和利于环保。 二、稀土金属熔盐电解工艺技术发展概况和评述 采用稀土氯化物熔盐体系(RCl3-KCl)电解工艺技术,以1000A级规模生产混合稀土金属是由奥地利Treibacher厂从20世纪50年代初开始的,电解槽型为上插石墨阳极,以铁棒为阴极,槽体是由耐火砖砌筑,在以后50年的发展中,电解规模扩大到10000A、50000A,槽型改进为以耐腐蚀的钨或钼为上插阴极,上插石墨多阳极,耐火砖砌筑槽体;阳极气体(含氯气和氯化物挥发物)经水淋洗和碱中和后排放;稀土氯化物原料由轻稀土全混氯化物原料改进为钕钐分组后(即不含变价元素Sm、Eu)的轻稀土氯化物原料,电流效率约提高5 个百分点以上,在此基础上,由于元素Nd价高,又进一步采用Pr-Nd分离后,少Nd的混合稀土氯化物为原料进行电解,使电流效率进一步提高到55%~60%。 氟化物熔盐体系(RF3-LiF)电解稀土氧化物工艺技术,早期在20世纪60年代进行了试验研究,对于氟化物熔盐体系、电解温度、

07310710有色金属冶金学

有色金属冶金学 Nonferrous Metals Metallurgy 课程编号:07310710 学分:3 学时:45 (其中:讲课学时:45 实验学时:0 上机学时:0)先修课程:无机化学、物理化学、冶金物理化学、传输原理、湿法冶金原理 适用专业:冶金工程材料成型及控制工程 教材:《有色金属冶金学》;邱竹贤主编;冶金工业出版社,2006 开课学院:材料科学与工程学院 一、课程的性质与任务 课程性质:必修课。 有色金属冶金是GB/T 13745-2009《学科分类与代码》中与冶金物理化学、钢铁冶金等并列的二级学科之一,学科代码45040。 本课程是冶金工程专业学生有色冶金方向的重要专业课。 通过本课程的教学,要求本科生掌握常用有色金属的冶炼工艺、原理、主体设备的构造和技术经济指标控制,使学生了解常用有色金属产品及其原料的性质、用途以及有色金属冶炼工艺的发展动态; 拓宽并提升学生在提取冶金及无机盐化工等领域的知识面和业务能力,为其今后从事或涉及有色金属生产技术或相关新产品开发,以及开展环境保护和资源综合利用工作奠定基础。 课程基本任务是: 1.掌握典型有色金属冶炼主要工艺及设备的原理与特点、冶炼方法与目的; 2.针对具体适用有色金属的冶炼要求,学习选择最优化的有色金属冶金工艺; 3.促进有色金属产品之高效、优质、低耗、环保的绿色制造理念的树立和新工艺新产品的开发。 二、课程的内容及要求 前言有色冶金基础知识 1.教学内容 (1)本课程的性质、研究对象与方法、目的、任务; (2)本课程的学习方法、授课计划、参考资料、考核要求; (3)本课程的发展及在冶金学科的地位,GB/T 13745-2009《学科分类与代码》; (4)有色冶金基础知识,金属分类及有色冶金单元过程。 2.基本要求

稀土生产废水治理方案综述

污染治理(100~101) 稀土生产废水治理方案综述 蔡英茂 (包头市辐射环境管理处,内蒙古自治区包头014030) 摘要:论述了稀土生产废水对环境的影响和危害.针对其影响和危害,从回收资源和废水达标排放角度,对稀土生产产生的酸性废水、硫铵废水和氯铵废水的各种处理方法进行了论述;通过对各种处理方法的筛选、优化,确定了最佳处理方案. 关键词:稀土废水;治理方法;筛选确定 中图分类号:X703文献标识码:B文章编号:1009-1211(2001)02-0100-02 包头白云鄂博铁矿蕴藏着丰富的稀土资源,使包头市成为世界著名的稀土之乡.全市共有稀土冶炼企业近百家,凭借资源优势和稀土应用技术的不断发展,稀土工业在当地的经济发展中占有极其重要的地位.但是稀土工业生产(包括稀土精矿的分解、稀土元素的分离、稀土产品的制造和提纯)需使用大量的化学品,导致在生产过程中产生大量的废气、废水和废渣,严重污染周围环境.包头市年排放稀土生产废水约250万t(占包头市工业废水排放总量的4%),废水中主要污染物的年排放量为:氟化物1780t、氨氮1145万t、硫酸根2117万t、氯离子1174万t、放射性钍核素2108t.上述废水的排放严重地污染了地表水和地下水,引起了工农纠纷和工牧纠纷,严重地制约着稀土生产的健康、可持续发展. 1稀土生产工艺废水排放种类和水质 在稀土矿石冶炼过程中主要排放3种废水:1稀土精矿焙烧尾气喷淋净化产生的酸性废水;o碳酸稀土生产过程中产生的铵盐(硫酸铵)废水;?稀土分离产生的铵盐(氯化铵)废水. 111酸性废水 酸性废水是由尾气净化系统通过水洗尾气中的污染物质而产生,废水中主要含有硫酸、氢氟酸和氟硅酸.废水pH[2,F\2000mg/L, H2SO4\16000mg/L. 112硫铵废水 硫铵废水是稀土生产中利用焙烧后的焙烧矿 收稿日期:2001-01-02. 作者简介:蔡英茂(1954)),男,河北省人,高级工程师,包头市辐射环境管理处,现从事辐射环境管理、监测、科研工作.石(或硫酸稀土)为原料,在生产碳酸稀土过程中而产生的废水,废水中硫酸铵的质量浓度为5000 mg/L,并含有少量的钙、镁离子. 113氯化铵废水 氯化铵废水产生于P507皂化、单一稀土分离及碳沉铵盐废水,废水中氯化铵的质量浓度为11000mg/L. 从以上3种废水的水质可以看出,均已超过了5污水综合排放标准)(GB8978-96)的标准限值. 2治理方案选择 211治理方法 21111酸性废水 治理酸性废水目前有2种成熟工艺,即直接中和或回收硫酸及氟化盐. (1)直接中和.利用廉价的碱性物质,如石灰或电石渣等将废水中的酸性物质中和,同时使废水中的有害物质生成沉淀物及盐类后去除,再进行深度除氟及水澄清处理,废水即可达标排放.此种方法工艺简单、流程短、投资少,适合中小型企业采用,但消耗石灰的数量较大,水处理成本较高,所产生的大量废渣(石灰渣)还需进行妥善处置,否则会造成二次污染. (2)回收硫酸及氟化盐.通过对尾气强化冷却,稀酸吸收等措施,将洗涤中的硫酸含量富集到可回收的浓度(40%左右),再通过蒸发浓缩分离氢氟酸,使液体中的硫酸体积分数提高到93%,分离出的氢氟酸通过/两反应、一合成工艺0制成冰晶石或生产其他氟化盐.该方案无二次污染,并可节约大量的水(大部分可回用),大大地减轻了水处理负 第14卷第2期甘肃环境研究与监测2001年6月

基于稀土湿法冶金废水处理措施探究

基于稀土湿法冶金废水处理措施探究 发表时间:2018-07-12T14:07:14.587Z 来源:《防护工程》2018年第6期作者:曾永春 [导读] 近年来,因国家不断加大环保的治理力度,在内蒙古(地区)、四川南部和广东、广西等地,形成了不同的污水处理技术。 四川省冕宁县方兴稀土有限公司 615601 摘要:我国稀土资源丰富,稀土产业发展迅速,目前已建立起完整的稀土开采、冶炼及应用产业体系。稀土湿法冶炼过程中使用大量酸、碱、盐、萃取剂等化工原料并产生了酸性废水、碱性废水、氨氮废水等各种生产废水,废水含盐量较高,严重威胁生态环境安全。本文就针对稀土湿法冶金废水处理措施进行了探究。 关键词:稀土;湿法冶金;废水;处理措施 近年来,因国家不断加大环保的治理力度,在内蒙古(地区)、四川南部和广东、广西等地,形成了不同的污水处理技术。结合多年的稀土湿法冶金废水处理的经验,总结了目前稀土冶炼废水处理的方法,以四川氟碳铈矿氧化焙烧盐酸浸出工艺为例。 1废水的来源和特征 湿法冶金提取分离稀土元素在目前工业生产中应用最广泛。根据稀土矿物的不同性质及相应冶炼技术,产生的废水是不同的。当前使用的稀土冶炼过程中矿物主要是氟碳铈矿、独居石、离子型稀土矿和混合稀土矿等,这些矿物质通常包含钍和镭的放射性物质和其他氟、铅有害成分,进入冶炼废水,污染周围的环境。我国四川主要采用氧化焙烧盐酸浸出工艺,包头混合稀土矿主要采用硫酸高温焙烧过程,离子吸附型稀土矿主要采用离子型稀土冶炼原位浸出技术。稀土矿物湿法过程中使用盐酸、硫酸、苛性钠、金属盐、萃取剂等化学试剂。 1.1酸性废水 酸性废水包括硫酸废水、盐酸废水、酸泡废水、喷淋废水、萃取分离废水等。硫酸废水主要在复盐沉淀过程中产生,主要污染物是 H+、Fe3+、Na+、SO42+等污染物。盐酸废水主要在草酸沉淀和萃取分离过程中产生,主要包括H+、Cl-、SO42+和其他污染物。喷淋废水主要是稀土焙烧生产的有毒有害废气,尾气通过碱液喷淋净化产生,主要包括H-、SO42-、Na+、Ca2+等污染物。 1.2碱性废水 碱性废水是在碱性生产过程中产生的,废水中主要含有氢氧化钠、氟等污染物。 1.3放射性废水 稀土矿石中的放射性元素钍、铀与酸碱反应溶解进入稀土溶液,捞稀土后,放射性元素钍、铀进入废水,形成放射性废水。 1.4含盐废水 含盐废水包括氯化物、氟化物、销酸盐和硫酸盐废水。在稀土的冶炼过程中,氟化稀土的转型产生碱性废水,含有氟化物;稀土沉淀和稀土皂产生含氯化钠、氯化铵、氯化钙或销酸盐的废水;复盐沉淀产生含硫酸盐的废水。这些废水都含有较高的盐份。 2废水的处理措施和方法 在污水处理过程中,首先要控制原材料品质,选择含有较少污染物的矿物,从源头做起;其次,提高回水利用率,节约水资源,减少废水排放量;最后,开发利用新技术,提高对污染物的处理是十分重要的。只有这样,我们才能减少有害物质流入环境,保护环境的目的。由于稀土湿法冶金行业由于生产技术的差异,加工的稀土材料和不同的产品结构,不同的工艺流程会产生不同的废水,所以不可能有统一的污水处理工艺。废水的处理,首先应对废水中污染因子进行全面的分析,在熟悉稀土冶炼生产过程的基础上,采取不同的处理技术。 2.1酸性废水处理 酸性废水含有H+、Cl-、F-、Ca2+、Mg2+、Na+、SO42-、C2O42-、COD等污染物,可通过直接中和或循环利用降低产污量。直接中和,加入废碱液或石灰乳液或电石渣,中和废水中的余酸,同时使废水中的有害物质形成沉淀。萃取酸性废水还含有少量的溶解性有机物,经石灰的破乳,吸附载带,混凝沉降,生化处理,深度澄清除掉污染物。循环利用,将含有较低酸度的废水作为底水重新利用,节省用水,减小水处理负载。 2.2碱性废水的处理 碱性废水含有Na+、OH-、F-等污染物,可用于中和酸性废水,也可用于吸收酸雾,氯气,燃煤锅炉产生的二氧化硫气体,硫酸法焙烧产生含有氟化氢的废气。加入氯化钙形成氟化钙沉淀,从而去除氟。 2.3放射性废水 像钍、铀和镭这样的放射性元素,通常在使用碱法处理独居石精矿生产过程中产生的废水。这些放射性元素的去除,通常是通过沉淀和絮凝去除的。 2.4含盐废水 酸性废水、碱性废水、稀土沉淀废水经前期处理后,最终产生高盐废水,如何脱盐是目前污水处理的难点,如四川氧化焙烧浸出分离生产工艺中,外排废水氯化钠浓度在5~15g/l。处理这种含盐废水,通常采用物理的方法,即蒸发浓缩结晶法或电渗析-蒸发浓缩结晶的方法回收盐。但每处理1吨稀土氧化物,约排65m3废水,若全部采用蒸发结晶的方法,成本太高。为了降低处理成本,只有加大废水的重复利用率,降低废水排放量。方法有将沉淀及碱转的原液,先进行固液分离,分离出来的高浓度的含盐废水进入电渗析-蒸发结晶,如此可以大大减少蒸发浓缩的废水量,降低处理成本。水洗采取高效水洗方式,降低洗水量,碳酸盐的洗水回用于碱转的水洗,萃取的酸性废水回用于配制盐酸。如此降低废水排放量,亦可降低生产用水量,节约水资源。 2.5综合治理 根据稀土湿法冶炼生产的特殊性,改进稀土生产工艺能极大地提高资源利用率、减少污染物排放,但并不能完全解决稀土湿法冶炼过程的废水污染问题。而稀土湿法冶炼废水的资源综合利用处理需综合考虑废水水质特性、回收产品的品质与市场销售及回收的经济效益等问题,并非所有的工艺废水都适合进行资源回收处理,此外,资源回收处理后的稀土湿法冶炼废水可能仍然存在某些污染物指标超标而不能直接排放。因此,稀土湿法冶炼废水的污染控制应采用污染物的源头控制,资源的综合利用与废水的末端治理相结合的综合治理思路。近年来,膜分离技术(UF、NF、RO)发展迅速,在工业废水回用领域的应用越来越广泛。随着新标准的实施及水价的上涨,稀土分

冶金业水处理流程

冶金行业水处理工艺流程介绍 ---- 冶金自动化系列专题 [导读]:冶金行业主要用水的工序有:选矿,焦炉煤气的冷却与除尘,高炉和转炉煤气的冷却与除尘,连铸,其它设备的冷却水等,这些环节的耗水量都比较大。随着全社会对环保的重视,冶金行业节水的任务越来越紧迫。本专题主要介绍了各工序的工业废水特点,处理工艺及处理设备等。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】 水处理的目的和意义:废水回用,减少吨钢用水量,提高排放废水的质量。 水处理的工艺流程: 钢铁工业废水技术 现代钢铁工业的生产过程包括材选、烧结、炼铁、炼钢(连铸)、轧钢等生产工艺。钢铁工业废水主要来源于生产工艺过程用水、设备与产品冷却水、烟气洗涤和场地冲洗等,但70%的废水还是源于冷却用水。间接冷却水在使用过程中仅受热污染,经冷却后即可回用;直接冷却水因与产品物料等直接接触,含有污染物质,需经处理后方可回用或串级使用。

矿山废水的处理 烧结厂废水的处理 炼铁废水的处理 炼钢废水的处理 连铸废水的处理 轧钢废水的处理 水处理的主要工艺设备: 水泵: 水泵有很多种。从原理上可以分为气压泵,离心泵,轴流泵,混流泵,螺旋泵等。使用最多的是离心泵。离心泵的原理是离心现象。是依靠叶轮叶片的转动产生离心作用,将液体甩出。所以,其输送效果依赖于叶轮的转速,直径等因素。 [查看全文] 冷却塔 cooling tower: 工业中,使热水冷却的一种设备。水被输送到塔内,使水和空气之间进行热交换,或热、质交换,以达到降低水温的目的。 [查看全文] 沉淀池 settling tank: 应用沉淀作用去除水中悬浮物的一种构筑物。沉淀池在废水处理中广为使用。它 的型式很多,按池内水流方向可分为平流式、竖流式和辐流式三种。 [查看全文] 厢式压滤机:

中国稀土冶金技术的发展

中国稀土湿法冶金技术的发展 黄小卫,龙志奇,李红卫,应娓娟,张国成,薛向欣 (1.北京有色研究总院有研稀土新材料股份有限公司,北京100088; 2.东北大学冶金资源与环境工程学院,沈阳,110004) 摘要:本文综述了处理中国的包头混合型稀土精矿、氟碳铈矿和离子吸附型稀土矿的新工艺进展。介绍了中国单一高纯稀土化合物的分离和净化的研究与应用状况及进展。些外,展望了稀土湿法冶金的发展。我们建议,为了保证稀土消费平衡与扩大应用,应加强应用稀土,特别是应用Ce,Y,Gd,Sm等的产品的研究和开发,为了提高产品的稳定性和一致性,应提高企业的自动控制水平,同时应注意环境保护。 关键词:稀土湿法冶金,分离和净化 中国已建立了一个完整的稀土采矿、选矿、熔炼、分离的工业体系。稀土工业化水平和产品质量快速发展,中国稀土产品的产量占世界的90%以上。目前,中国不仅稀土资源第一,而且稀土产品的产能、产量、稀土出口量和消费量也位居首位。然而,与发达国家相比,在应用于高科技的稀土精细化工产品方面,中国仍然处于落后状态。 1. 稀土矿湿法冶金 长时间以来,中国的科学家和工程师们致力于具有中国特色的特殊稀土资源的研究和开发,使得中国的稀土湿法冶金和分离技术在世界上占主导地位。 中国的稀土冶金工艺可以分为三类,分别适用于包头混合型稀土矿、氟碳铈矿和离子吸附型稀土矿。 1.1包头混合型稀土矿的湿法冶金工艺 包头混合型稀土矿位于中国内蒙古的白云鄂博,是世界上最大的轻稀土矿。矿物中氟碳铈矿与独居石的比例为3:1~2:1。精矿中稀土氧化物占45%~65%,精矿含有铁、氟化物、重晶石、方解石和少量的铌(Nb2O5~0.1%),由于其复杂的成份和特殊的矿物特性,使得分离很困难。但是,该精矿的碱法和酸法工艺已经在中国的稀土工业上发展和应用。 酸法工艺:由北京有色研究总院发明的硫酸焙烧工艺已应用于包头稀土精矿和氟碳铈矿,并逐步从第一代工艺发展到第三代工艺,第三代酸法工艺已应用于中国的许多稀土企业,例如:甘肃稀土股份有限公司,内蒙古包头稀土高科技有限公司等等。目前,用该工艺处理的包头稀土精矿总量达到每年90000吨,超过包头稀土精矿总处理量的90%。 第三代包头稀土矿酸法工艺的简化流程图见图1所示。混有强硫酸的精矿

相关主题
文本预览
相关文档 最新文档