当前位置:文档之家› 生物接触氧化设计计算详解

生物接触氧化设计计算详解

生物接触氧化设计计算详解
生物接触氧化设计计算详解

摘要

水污染问题是我国最大的环境问题之一,水处理的发展对我国能否实现可持续发展起着举足轻重的作用。尤其是水资源的过度开发和不合理利用,导致水污染日益严重。因此,高效、合理、经济的污水处理工艺是解决这些问题的关键。

本设计是山东济南某新区20000m3/d生活污水处理厂的初步设计。根据城市所处的地理位置和污水厂的规模,并结合脱氮除磷的要求,城市污水处理厂设计采用生物接触氧化工艺。生物接触氧化是采用生物膜水处理废水的一种方法,是以附着在载体(填料)上的生物膜,净化有机废水的一种高效水处理工艺。所选的生物接触氧化工艺具有工艺稳定性高,处理构筑物少,流程简化,节省投资等优点。

通过此工艺的处理,出水水质将达到国家《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级B标准。

关键词:生物接触氧化污水处理厂工艺流程

Abstract

One of the foremost Environmental problems in our country is water pollution, especially because of over-exploitation of water resources and unreasonable use,water pollution is increasely serious.So,efficient,rational,economic process of wastewater treatment plant is the key to solve these problems.

The design is a intial design on sewage treatment plants of a new township Ji Nan of Shan dong province.According to the location of the township ,the sacle of the plant and the requirements of nitrogen and phosphorus removal,the craft of the plant is bio-contact oxidation. Bio-contact oxidation is a kind of wastewater treatment method by using biofilm, which is a highly efficient wastewater treatment process of organic materials purification with the biomembrane attached to the carrier (commonly known as fillers).Selected bio-contact oxidation process has some advantages, such as high process stability , less structure, process simplification and saving investment.

Through this craft processing, the effluent will reach the B standard of national "urban sewage treatment plant emission standards (GB18918-2002).

Keywords: bio-contact oxidation Sewage treatment plant Process

目录

摘要............................................................................ I Abstract ......................................................................... I I 第1章设计概论 (1)

1.1设计依据和设计任务 (1)

1.1.1 原始依据 (1)

1.1.2 设计的基本要求 (1)

1.1.3 设计原则 (2)

1.1.4 设计依据 (2)

1.1.5 设计目的 (2)

1.2设计水量 (3)

1.3设计水质 (3)

第2章工艺流程的确定 (4)

2.1设计方案及可行性分析 (4)

2.1.1 CASS工艺 (5)

2.1.2 生物接触氧化工艺 (6)

2.1.3 工艺比选 (7)

2.2工程实例 (8)

2.2.1 CASS工程实例 (8)

2.2.2 生物接触氧化工程实例 (9)

2.3工艺流程 (10)

第3章污水处理构筑物设计计算 (11)

3.1粗格栅 (11)

3.1.1 设计说明 (11)

3.1.2 设计参数 (11)

3.1.3 设计计算 (12)

3.2提升泵房 (15)

3.2.1 设计说明 (15)

3.2.2 设计参数 (15)

3.2.3 设计计算 (15)

3.3细格栅 (16)

3.3.1 设计参数 (16)

3.3.2 设计计算 (17)

3.4平流沉砂池 (19)

3.4.1 设计说明 (19)

3.4.2 设计参数 (19)

3.5水解酸化池 (23)

3.5.1设计参数 (23)

3.5.2 池体计算 (23)

3.5.3 配水系统 (24)

3.6配水井 (26)

3.6.1 设计说明 (26)

3.6.2 设计要求 (26)

3.6.3 设计计算 (27)

3.7生物接触氧化池 (28)

3.8二沉池 (38)

3.8.1 已知条件 (38)

3.8.2 设计参数 (38)

3.8.3 设计计算 (39)

3.9消毒池 (44)

3.9.1 设计参数 (44)

3.9.2设计计算 (44)

3.10加氯间 (45)

3.10.1 消毒剂 (45)

3.10.2 加氯量计算 (45)

3.11污泥浓缩池 (46)

3.11.1 设计参数 (46)

3.11.2 设计计算 (47)

3.12鼓风机房 (49)

3.13贮泥池 (49)

3.13.1 设计参数 (50)

3.13.2 设计计算 (50)

3.14污泥泵房 (51)

3.15污泥脱水机房 (51)

3.15.1 脱水污泥量的计算 (52)

3.15.2 脱水机选型 (52)

3.15.3 污泥运输泵的选型 (53)

3.15.4 加药量的计算 (54)

3.16调节池 (54)

3.16.1 体积计算 (54)

第四章主要设备说明 (55)

第五章污水处理厂布置 (58)

5.1污水处理厂平面布置 (58)

5.1.1平面布置的原则 (58)

5.1.2 平面布置 (58)

5.2污水处理厂高程布置 (60)

5.2.1 高程布置原则 (60)

5.2.2 污水处理高程计算 (60)

5.2.3 污泥处理高程计算 (68)

第六章工程概算与成本分析 (72)

6.1企业组织 (72)

6.1.1 企业情况 (72)

6.1.2 劳动定员 (72)

6.2投资概算 (72)

6.2.1 投资概算 (72)

6.2.2 工器具购置费 (75)

6.3工程建设其他费用计算 (76)

6.4预备费用计算 (76)

6.5运行费用 (76)

6.5.1 能源消耗费E1 (76)

6.5.2 药剂费E2 (77)

6.5.3 工资福利E3 (77)

6.5.4 固定资产基本折旧费E4 (77)

6.5.5 无形资产和递延资产摊销费E5 (78)

6.5.6 大修理基金提成E6 (78)

6.5.7 日常检修维护费E7 (78)

6.5.8 管理费销售费和其他费用E8 (78)

6.5.9 年经营成本E9 (79)

6.5.10 年总成本E10 (79)

6.5.11 单位处理成本E11 (79)

6.5.12 单位经营成本E12 (79)

第7章环境影响评价 (80)

7.1环境质量标准与污染物排放标准 (80)

7.1.1 环境质量标准 (80)

7.1.2 污染物排放标准 (80)

7.2项目建设和生产对环境的影响 (80)

7.2.1 大气污染源 (80)

7.2.2 废水污染源 (81)

7.2.3 固体废气物 (81)

7.2.4 噪声 (81)

7.3环境保护措施初步方案 (81)

7.3.1 大气环境治理 (81)

7.3.2 废水治理 (81)

7.3.3 固体废弃物治理 (82)

7.3.4 噪声治理 (82)

7.4安全措施 (82)

7.5评价结论 (82)

结束语........................................................... 错误!未定义书签。致谢............................................................. 错误!未定义书签。参考文献. (83)

Contents

Abstract .......................................................................... I I Chapter 1 Design summarize .. (1)

1.1 Design basis and design task (1)

1.1.1The original basis (1)

1.1.2 The basic requirements of the design (2)

1.1.3 Design Principles (2)

1.1.4 Design basis (2)

1.1.5 Design Purpose (3)

1.2 Design of water (3)

1.3 Design of water Design of water (3)

Chapter 2 Determination Process (5)

2.1 Design and feasibility analysis (5)

2.1.1 CASS Technology (6)

2.1.2 Biological contact oxidation process (8)

2.1.3 Choosing the craft (8)

2.2 Engineering examples (10)

2.2.1Ngineering examples of cass craft (10)

2.2.2 Engineering examples of Biological contact oxidation process (11)

2.3 Process of the craft (12)

Chapter 3 Wastewater treatment design and calculation of structures (13)

3.1 Coarse grid (13)

3.1.1 Design Notes (13)

3.1.2 Design parameters (14)

3.1.3 Design calculations (14)

3.2 Grit chamber (17)

3.2.1 Design Notes (17)

3.2.2 Design parameters (17)

3.2.3 Design calculations (17)

3.3 Fine grid (18)

3.3.1 Design parameters (18)

3.3.2 Design calculations (19)

3.4 Grit chanber (21)

3.4.1 Design Notes (21)

3.4.2 Design parameters (22)

3.5 Hydrolysis acidification tank (26)

3.5.1 Design parameters (26)

3.5.2 Volume calculations (26)

3.5.2 Water distribution system (27)

3.6 distribution wells (29)

3.6.1 Design Notes (29)

3.6.2 Design repuirements (29)

3.6.3 Design calculations (30)

3.7 Bio-contact oxidation tank (32)

3.8 Sedimentation tank (42)

3.6.1 Known conditions (42)

3.8.2 Design parameters (42)

3.8.3 Design calculations (43)

3.9 Disinfectant tank (48)

3.9.1 Design parameters (48)

3.9.2 Design calculations (48)

3.10Chlorination room (49)

3.10.1 Disinfectant (49)

3.10.2 Chlorine dosage calculation (49)

3.11 sedimentation tank (50)

3.11.1 Design parameters (50)

3.11.2 Design calculations (51)

3.12 Blower housing (54)

3.13 Sludge storage tank (54)

3.13.1 Design parameters (54)

3.13.2 Design calculations (54)

3.14 Sludge pumping station (55)

3.15 Sludge dewatering machine room (56)

3.15.1 Calculation of the amount of dewatered sludge (56)

3.15.2 Dehydrator Selection (57)

3.15.3 Pump Selection sludge transportation (58)

3.15.4 Calculation of dosage (58)

3.16 Regulation ponds (59)

3.16.1 Volume calculation (59)

Chapter 4 Description of major equipment (60)

Chapter 5 Sewage treatment plant layout (63)

5.1 Layout of the sewage treatment plant (63)

5.1.1 The principle of The layout (63)

5.1.2 Layout (63)

5.2 Elevation layout of the sewage treatment plant (65)

5.2.1 Elevation layout principle (65)

5.2.2 Sewage treatment elevation calculation (66)

5.2.3 Sludge treatment elevation calculation (73)

chapter 6 the project budget and cost analysis (77)

6.1 Business organization (77)

6.1.1 Situation of the enterprise (77)

6.1.2 Labor quota (77)

6.2 Investment budget (77)

6.2.1 Investment budget (78)

6.2.2 Apparatus and instruments purchased fee (81)

6.3Other construction costs (81)

6.4 Ready-costs (81)

6.5 Operating costs (81)

6.5.1 Energy consumption charges E1 (82)

6.5.2 Pharmacy fee E2 (82)

6.5.3 Wage welfare E3 (83)

6.5.4 Basic fixed asset depreciation charges E4 (83)

6.5.5 Intangible assets and deferred assets amortization expense E5 (83)

6.5.6 Overhaul fund commission E6 (84)

6.5.7 Routine repair and maintenance fee E 7 (84)

6.5.8 Management fee sales and other expenses E 8 (84)

6.5.9 Annual operating costs E9 (85)

6.5.10 Total annual costs E10 (85)

6.5.11 Unit cost of processing E11 (85)

6.5.12 Unit operating costE12 (85)

chapter 7 Environmental Impact Assessment (86)

7.1 Environmental quality standards and pollutant discharge standards (86)

7.1.1 Environmental quality standards (86)

7.1.2 Pollutant emission standards (86)

7.2 Project construction and production impact on the environment (87)

7.2.1 Air Pollution Sources (87)

7.2.2 Wastewater pollution (87)

7.2.3 Solid waste materials (87)

7.2.4 Noise (87)

7.3 Environmental protection measures the initial program (88)

7.3.1 Atmospheric environmental governance (88)

7.3.2 Wastewater treatment (88)

7.3.3 Solid waste management (88)

7.3.4 Noise control (88)

7.4 Safety measures (89)

7.5 Evaluation findings (89)

Conclusion (90)

Acknowledgements (91)

References (92)

第1章 设计概论

1.1设计依据和设计任务

1.1.1 原始依据 1.设计题目

山东济南某新区3

20000/m d 生活污水处理厂初步设计 2.给定资料 (1)污水水质:

设计原水水质为COD= 380/mg L ,BOD 5=320/mg L ,SS=200/mg L ,NH 3-N=35/mg L ,TN=5/mg L , TP=5/mg L ,PH=6.5~8.0

(2)出水水质要求:

要求出水水质达到国家《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级B 标准要求。排入自然沟壑,夏季用于灌溉,要求设计工艺技术可行、运行灵活,经济合理:

出水水质:COD= 60/mg L ,BOD 5=20/mg L ,SS=20/mg L ,NH 3-N=8/mg L ,TN=20/mg L , TP=1/mg L ,PH=6.5-8.0

去除率:COD 84.21% BOD 93.75% SS 90.00% NH 3-N 77.14% TP 80.00%

(3)流量变化系数:Kz=1.3 (4)气象资料

山东市属温带大陆性季风气候主要风向春季多为东北风,冬季多为东南风,海拔高度51.6m 年平均气温 14.2℃ 最高气温 42.5℃ 最低气温 -19℃ 最大冻深 44cm

主导风向 夏季为东北风,冬季为东南风 最大积雪深度 19 cm 年平均降水量 685mm 年平均风速 2m/s 1.1.2 设计的基本要求

1.说明书要求内容系统完整、计算准确、文理通顺书写工整、装订整齐,数字不得少于2万字,

2.毕业设计图纸要求布置合理、正确清晰,符合制图标准、专业规范。图纸不少于8张(1号图纸)要求至少两张CAD图,一张手工图;

3.参与本专业内容紧密相关地文献15篇,其中至少2篇外文。

1.1.3 设计原则

1.认真贯彻国家关于环境保护工作的方针和政策,符合国家的有关法律、规范、标准。

2.采用适合本地区条件的技术,选用高效节能的废水处理工艺,并充分利用废水厂厂址地形,因地制宜地采用现代化技术,提高管理水平,做到投资省、运行费低、技术可靠、运行稳定。

3.妥善处理、处置废水处理过程中产生的栅渣、污泥,避免二次污染。

4.选择国内或国外先进、可靠、高效,运行管理方便,维修简便的排水专用设备和控制系统。

5.适当考虑周围地区的发展状况,在设计上留有余地。

6.合理利用水资源,考虑废水回用,充分发挥项目的社会、经济和环境效益。

1.1.4 设计依据

1.《污水综合排放标准》(GB8978-2002);

2.《室外给水设计规范》(GB50013-2006);

3.《CAD工程制图规则》(GB/T18229-2000)。

1.1.5 设计目的

目前,我国城市污水处理率较低。据统计1998年和1999年46个重点城市污水处理率分别为20.3%和26.7%,其他城市污水处理率更低。根据中国环境保护远景目标纲要的要求,到2010年全国的污水平均处理率为:设市城市和建制镇不小于50%,设市城市不小于60%,重点城市不小于70%。我国城市污水处理率与国际相比较低,其主要原因是我国的城市污水处理厂建设滞后。美国平均一每万人拥有座污水处理厂,法国和瑞典每5000人拥有一座污水处理厂,英国和德国每7000至8000人拥有一座污水处理厂,我国城市每150万人拥有一座污水处理厂。

因此在今后建设大批的污水处理厂将是必然的趋势。但很多地区由于经济的局限性,虽能建得起污水处理厂,但却无法长期运营。因此要找到一项即能建得起,又能运营得起的工艺至关重

要。所以通过本次20000m3/d城市生活污水处理厂的研究来寻找出一个一个及运营方便又十分有效经济的设计方案来满足现在的城市对污水处理厂的需求?

1.2 设计水量

设计最大水量为26000m3/d,平均水量为20000m3/d。

1.3 设计水质

来自污水管网的污水经过生物处理后排放,出水水质达到《污水综合排放标准(GB18918-2002)》中的二级标准,见表1-1。

表1-1进水指标表

进水水质

BOD5 mg/L 320 SS mg/L 200

COD mg/L 380 TP mg/L 5

NH+4-N mg/L 35 TN mg/l 5

出水水质经过三级处理后达到排放标准,其处理效率见表1-2。

表1-2出水指标表

处理后出水水质

主要性能指标(mg/L) 处理效果(%)

BOD5≤20 ηBOD5=93.75

COD≤60 ηCOD=84.21

SS≤20 ηSS=90.00

TP≤1 ηTP=80.00

NH+4-N≤8 ηNH+4-N=77.14

第2章工艺流程的确定

2.1设计方案及可行性分析

本项目是对小区内生活污水进行处理,污水经消毒处理后方可进行回用。生活污水中的污染物包括由厨房、浴室、厕所等场所排出的污水和污物。生活污水中的污染物,按其形态可分为:

(1)不溶物质,这部分约占污染物总量的40%,它们或沉积到水底,或悬浮在水中。

(2)胶态物质,约占污染物总量的10%。

(3)溶解质,约占污染物总量的50%。这些物质多为无毒,含无机盐类氯化物、硫酸盐和钠、钾、钙、镁等的重碳酸盐。

有机物质有纤维素、淀粉、糖类、脂肪、蛋白质和尿素等。此外,还含有各种微量金属和各种洗涤剂、多种微生物。原水以有机物为主,BOD/COD比值=0.6,可生化性较好,重金属及有毒有害物质不超标,所以处理以除有机物,脱氮为主,除P外排。

根据出水要求,现有城镇污水处理技术的特点,本次设计中磷的进水指标是5mg/L,出水要求为1mg/L,活性污泥法以及生物膜法的一般工艺都可去除这些磷,所以不用刻意考虑除磷。进而根据处理规模,进出水质,出水质要求达到《城镇污水处理厂污染物排放标准》GB18918—2002二级标准),根据处理要求算出去除效率要求BOD的去除效率应大于93.75%, COD去除效率应大于84.21%,SS的去除效率大于90%。污水处理厂要求有效地去除BOD和COD,以及该工程的造价与运行费用,当地的自然条件(包括地形、气候、水资源),污水水量及其变化动态,运行管理与施工,并参考典型的工艺流程和各种生物处理法的优缺点及使用条件。厌氧法中UASB 反应器由于具有高的有机负荷、转化效率和操作简单的优点而广泛用于多种高浓度有机废水的处理,然而本次设计的生活污水不是高浓度的污水,通过查询大量的20000 m3/d 的城市生活污水的工程实例,结合国内的处理工艺,于是本课题选择典型的工艺为:①CASS 工艺,②氧化沟,③生物接触氧化。

对于氧化沟而言,会出现污泥膨胀、泡沫、污泥上浮、流速不均及污泥沉积等一系列问题在同一沟中好氧区与缺氧区各自的体积和溶解氧浓度很难准确地加以控制,因此对除氮的效果是有限的,而对除磷几乎不起作用。另外,在传统的单沟式氧化沟中,微生物在好氧-缺氧-好氧短暂的经常性的环境变化中使硝化菌和反硝化菌群并非总是处于最佳的生长代谢环境中,由此也影响单位体积构筑物的处理能力。因此氧化沟也不适合本工艺的要求。

特别是污泥膨胀问题,当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥

膨胀主要发生在废水水温较低而污泥负荷较高时。微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。

污泥上浮问题,当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。

以下通过对CASS工艺和生物接触氧化法工艺的比较来说明。

方案一:CASS工艺;

方案二:生物接触氧化工艺。

现结合设计任务要求的处理水质效果进行论证选择:

2.1.1 CASS工艺

1.CASS工艺原理:

是将序批式活性污泥法(SBR)的反直池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区+在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气沉淀、排水于一体。CASS工艺是一个好氧/缺氧/厌氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷[11]。

2.CASS工艺的优点:

设备安装简便,施工周期短,具有较好的耐水、防腐能力,设备使用寿命长;对原水的水质水量的变化有较强的适应能力,处理效果稳定,出水水质好,可回用于污水处理厂内的如绿化、浇地、洗车等有关杂用用途;处理工艺在国内外处于先进水平,设备自动化程度高,可用微机进行操作和控制;整个工艺运转操作较为简单,维修方便,处理厂内不产生污染环境的臭气和蚊蝇;投资较省,处理成本低,工艺有推广应用价值。

3.CASS工艺的缺点:

CASS工艺为单一污泥悬浮生长系统,利用同一反应器中的混合微生物种群完成有机物氧化、硝化、反硝化和除磷。多种处理功能的相互影响在实际应用中限制了其处理效能,也给控制提出了非常严格的要求,工程中难以实现工艺的稳定、高效的运行。

(1)微生物种群之间的复杂关系有待研究

CASS系统的微生物种群结构与常规活性污泥法不同,菌群主要由硝化菌、反硝化菌、聚磷菌和

异氧型好氧菌组成。目前对非稳态CASS系统中微生物种群之间的复杂的生存竞争和生态平衡关系尚不甚了解,CASS工艺理论只是从工艺过程进行一些分析探讨,而理清微生物种群之间的关系对CASS工艺的优化运行是大有好处的,因此仍需加强对这方面的理论研究工作。

(2)生物脱氮效率难以提高

一方面硝化反应难以进行完全。硝化细菌是一种化能自养菌,有机物降解由异养细菌完成。当两种细菌混合培养时,由于存在对底物和DO的竞争,硝化菌的生长将受到限制,难以成为优势种群,硝化反应被抑制。此外,固定的曝气时间也可能会使得硝化不彻底。另一方面就是反硝化反应不彻底。CASS工艺有约20%的硝态氮通过回流污泥进行反硝化,其余的硝态氮则通过同步硝化反硝化和沉淀、闲置期污泥的反硝化实现,其效果不理想也是众所周知的。在沉淀、闲置期中,由于污泥与废水不能良好的进行混合,废水中部分硝态氮不能与反硝化细菌接触,故不能被还原。此外,在这一时期,由于有机物己充分降解,反硝化所需的碳源不足,也限制了反硝化效率的进一步提高。这两方面的原因使得CASS工艺脱氮效率难以提高。

(3)除磷效率难以提高

污泥在生物选择器中的释磷过程受到回流混合液中硝态氮浓度的影响比较大,在CASS工艺系统中难以继续提高除磷效率。

(4)控制方式较为单一

目前在实际应用中的CASS工艺基本上都是以时序控制为主的,其缺点是显而易见的,因为污水的水质不是一成不变的,因此采用固定不变的反应时间必然不是最佳选择。

2.1.2 生物接触氧化工艺

1.生物接触氧化工艺工作原理

生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,净化有机废水的一种高效水处理工艺。从生物膜法派生出来的一种废水生物处理法,生物接触氧化法净化废水的基本原理与一般生物膜法相同,就是以生物膜吸附废水中的有机物,在有氧的条件下,有机物由微生物氧化分解,废水得到净化,即在生物接触氧化池内装填一定数量的填料,利用栖附在填料上的生物膜和充分供应的氧气,通过生物氧化作用,将废水中的有机物氧化分解,达到净化目的。

2.接触氧化工艺优点

池内加设适宜形状和比表面积较大的生物膜载体填料,这样在填料表面形成生物膜,由于内部的缺氧环境势必形成生物膜内层供氧不足甚至处于厌氧状态,这样在生物膜中形成了由厌氧菌、兼性菌和好氧菌以及原生动物和后生动物形成的长食物链的生物群落,能有效地将不能好氧生物降解的COD部分厌氧降解为可生化的有机物。

该工艺的特点是填料的比表面积大,生物量高,充氧条件好,生物活性高,而且不需污泥回流,不存在污泥膨胀问题,运行管理方便。具有运行稳定,处理效果好,操作管理简单,承受冲击负荷能力强,投资少,运行费用低的特点。

3.接触氧化工艺缺点

由于池内填充了大量的生物膜载体填料,填料上下两端多数用网格状支架固定,当填料下部的曝气系统发生故障时,维修工作将十分麻烦。填料易老化,一般4~6年需更换一次。由于前端物化处理后废水中SS含量较低,生物膜固着的载体较少,导致生物膜比重较小,极易造成脱膜,挂膜不稳定。脱落的生物膜和絮状污泥在二沉池沉淀效果较差,易导致出水SS超标。

2.1.3 工艺比选

将CASS工艺与生物接触氧化法进行比较,比较结果详见表2-1,表2-2。

表2-1 投资、占地、耗电和处理成本比较

工艺处理规模(m3/d)占地(m2)处理成本(元/吨)耗电(kw)

S-BF工艺1200 962 0.22 32 2400 1376 0.28 39 4800 2183 0.26 83 12000 2835 0.33 236 20000 3880 0.38 400

CASS工艺1200 880 0.23 34 2400 1792 0.38 57 4800 2728 0.33 97 12000 3600 0.39 292 20000 4000 0.44 340

表2-2 方案对比

项目CASS工艺接触氧化工艺

工艺效果温度变化的影响低温有影响不大产泥量剩余污泥量少剩余污泥量少

有无污泥膨胀不易不存在流量变化的影响不大不大

运行费用

水头损失大少曝气量大少药剂量少少电耗大小总运行成本较低低

投资费用

土建工程较少少

机电设备及仪表少少征地费用少少

总投资 1.98亿76. 98万

运行管理

自动化程度较简单简单日常维护和巡视方便方便操作和管理人数5~8人5~8人

通过比较对比可看出接触氧化工艺比CASS[1]在操作方便、投资费用、工艺效果方面占有优势。

2.2 工程实例

2.2.1 CASS工程实例

北京航天城污水处理厂是跨世纪国家重点工程的配套设施。该污水处理厂分两期建设,一期工程于1996年12月破土动工,至1998年4月建成并投入设备调试及试运行,7月29日经北京市环保局验收后转入正常运转。近期排放污水量7200m3/d,远期14 400m3/d。废水主要包括生活污水、工业废水和医院污水,各自所占比例为81.5%、18.0%、0.5%,其污水主要是生活污水,主要污染物包括:有机物、悬浮物和油类等。设计进出水水质及排放标准(北京市综合废水排放二级标准)见表2-3。

表2-3 设计进出水水质及排放标准

项目COD(mg/L)BOD5(mg/L)SS(mg/L)pH 矿物油(mg/L)进水350 250 220 6.5~8.5 5.8

出水<50 <15 <30 6.0~8.5 <3

排放标准60 20 50 6.0~8.5 4 工艺流程图如图2-1。

进水格栅集水池

CASS

反应池

排放

高效过滤消毒

回用

活性絮凝吸附供气装置污泥处理

图2-1 工艺流程图

2.2.2 生物接触氧化工程实例

重庆市某体育馆生活污水处理厂是日处理能力为600 m 3

/ d ,最大时处理量为100 0m 3

/ h 新建的污水厂,经过和论证,结合当地实际情况,该工程采用了生物接触氧化法工艺。

1.设计水量和水质

①设计处理水量为600 m 3

/ d 。 ②设计进水水质。

参照重庆市生活污水的普遍水质状况,确定设计进水水质[2]

为:COD Cr = 450 mg/ L ,SS = 350 mg/ L ,BOD 5 = 250 mg/ L ,NH 3-N =40 mg/ L ,动植物油:100 mg/ L 。

③ 设计出水水质:执行GB 897821996 污水综合排放标准。COD Cr ≤100 mg/ L ,SS ≤70 mg/ L ,BOD 5 ≤20 mg/ L ,NH 3-N ≤15 mg/ L ,动植物油不大于10 mg/ L 。

2.工艺流程

根据进水水质特点和出水水质要求以及当地实际情况,本工程采用生物接触氧化法工艺处理。其工艺流程如图2-2所示。

浮渣、沉渣泥由环卫

图2-2 工艺流程图

2.3工艺流程

经过两种工艺比较,生物接触氧化处理时间短、管理方便、投资少、占地面积小等特点,因此本设计生化处理采用生物接触氧化工艺。工艺流程如图2-3。

图2-3 工艺流程图

生物接触氧化设备设计

生物接触氧化设备设计集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第1章设计任务书 一、设计题目 150m3/h某小区生活污水中生物接触氧化设备的设计 二、原始资料 =300mg/L,CODcr=500mg/L,出水 Q=150m3/h,进水 BOD 5 BOD =20mg/L,CODcr=60mg/L,容积负荷3.0kg/m3.d。 5 三、设计内容 1.方案确定与工艺说明 按照原始资料数据进行处理方案的确定,拟定处理工艺流程,选择设备和构筑物,说明选择理由,工艺说明包括原理、结构特点、设计原则等,论述其优缺点,编写设计说明书。 2.设计计算 (1)计算需氧量、空气量, (2)计算生物接触氧化池有效容积、尺寸 (3)计算穿孔布气空气管道 (4)计算剩余污泥量 3.制图 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) 4.编写设计说明书、计算书

四、设计成果 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) (5)设计说明书、计算书 五、时间分配表(第19周) 七、成绩考核办法 根据设计说明书、设计图纸的质量及平常考核情况由指导教师按优、良、中、及格、不及格评定成绩。 指导教师:CCC、AAAA

化学与生物工程学院环境工程教研室 2011年11月 第2章方案确定与工艺说明 2.1确定方案 污水处理中对小区的概念外延加以拓宽,泛指居民住宅区、疗养院、商业中心、机关学校等由一种或多种功能构成的相对独立的区域,而该区域的排水系统通常不在城市市政管网的覆盖范围内。根据环境要求,需建造独立的污水处理系统。小区污水水量较小,水质水量变化较大,由于土地昂贵等原因对环境质量提出的要求较高(如气味、噪声、建筑风格等)。因此污水处理工艺力求简单实用,管理方便,操作可靠,维护工作量小,并尽可能地采用高效、节能的污水处理技术。 小区污水的处理工艺依据其尾水排放水体的功能不同而异,常用处理方法有化粪池、一级处理(初次沉淀池)、生物二级处理及二级处理后再经消毒回用等。在国外,小区污水的处理基本上采用二级生化、人工湿地或土地处理系统以及亚表层砂滤床处理等方法。其中二级生化处理大多数都采用氧化沟法、生物滤池法(包括滴滤池)。人工湿地、地表漫流和亚表层砂滤床法近20 a来发展较快。一些经济发达国家为了防止水体的富营养化,在传统二级处理的基础上,增加了三级处理单元,使污水得到深度净化,达到回用水水质标准,但基建投资和运行成本都比较高 J。小区污水处理工艺的选择在满足小区污水处理特点的前提下,应

接触氧化法工艺

接触氧化法 一、介绍 接触氧化法是一种兼有活性污泥法和生物膜法特点的一种新的废水生化处理法。这种方法的主要设备是生物接触氧化滤池。在不透气的曝气池中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧,这种方式称谓鼓风曝气装置;空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。活性污泥附在填料表面,不随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。 二、特点 (1)容积负荷高,耐冲击负荷能力强; (2)具有膜法的优点,剩余污泥量少; (3)具有活性污泥法的优点,辅以机械设备供氧,生物活性高,泥龄短; (4)能分解其它生物处理难分解的物质; (5)容易管理,消除污泥上浮和膨胀等弊端。 它的有机负荷较高,接触停留时间短,减少占地面积,节省投资。此外,运行管理时没有污泥膨胀和污泥回流问题,且耐冲击负荷。 生物接触氧化法具有以下特点: 1、由于填料比表面积大,池内充氧条件良好,池内单位容积的生物固体量较高,因此,生物接触氧化池具有较高的容积负荷; 2、由于生物接触氧化池内生物固体量多,水流完全混合,故对水质水量的骤变有较强的适应能力; 3、剩余污泥量少,不存在污泥膨胀问题,运行管理简便。 三、缺点 (1)滤料间水流缓慢,水力冲刷力小;

(2)生物膜只能自行脱落,剩余污泥不易排走,滞留在滤料之间易引起水质恶化,影响处理效果; (3)滤料更换,构筑物维修困难。 生物接触氧化存在的一些缺点: ①生物膜的厚度随负荷的增高而增大,负荷过高则生物膜过厚,引起填料堵塞。故负荷不易过高,同时要有防堵塞的冲洗措施。 ②大量产生后生动物(如轮虫类)。后生动物容易造成生物膜瞬时大块脱落,则易影响出水水质。 ③填料及支架等往往导致建设费用增加。

生物接触氧化设备设计

第1章设计任务书 一、设计题目 150m3/h某小区生活污水中生物接触氧化设备的设计 二、原始资料 Q=150m3/h,进水BOD5=300mg/L,CODcr=500mg/L,出水BOD5=20mg/L,CODcr=60mg/L,容积负荷3.0kg/m3.d。 三、设计内容 1.方案确定与工艺说明 按照原始资料数据进行处理方案的确定,拟定处理工艺流程,选择设备和构筑物,说明选择理由,工艺说明包括原理、结构特点、设计原则等,论述其优缺点,编写设计说明书。 2.设计计算 (1)计算需氧量、空气量, (2)计算生物接触氧化池有效容积、尺寸 (3)计算穿孔布气空气管道 (4)计算剩余污泥量 3.制图 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) 4.编写设计说明书、计算书

四、设计成果 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) (5)设计说明书、计算书 五、时间分配表(第19周) 七、成绩考核办法 根据设计说明书、设计图纸的质量及平常考核情况由指导教师按优、良、中、及格、不及格评定成绩。

指导教师:CCC、AAAA 化学与生物工程学院环境工程教研室 2011年11月 第2章方案确定与工艺说明 2.1确定方案 污水处理中对小区的概念外延加以拓宽,泛指居民住宅区、疗养院、商业中心、机关学校等由一种或多种功能构成的相对独立的区域,而该区域的排水系统通常不在城市市政管网的覆盖范围内。根据环境要求,需建造独立的污水处理系统。小区污水水量较小,水质水量变化较大,由于土地昂贵等原因对环境质量提

生物接触氧化工艺设计方案及计算

1 前言 随着我国社会和经济的高速发展环境问题日益突出,尤其是城市水环境的恶化加剧了水资源的短缺,影响着人民群众的身心健康已经成为城市可持续发展的严重制约因素。近年来国家和地方政府非常重视污水处理事业工程的建设,而决定城市污水处理厂投资和运行成本的很重要因素是污水处理工艺的选择。一座城市污水厂处理工艺的选择虽然应由污水水质、水量、排放标准来确定但是忽略污水处理厂投资和运行成本过分强调污水处理工艺的先进是不足取的。生物膜法是与活性污泥法并列的一种污水生物处理技术,而生物接触氧化工艺便是其中一种。 通过生物接触氧化工艺的课程设计,来巩固水污染学习成果,加深对《水污染控制工程》的认识与理解,规范、手册与文献资料的使用,进一步掌握设计原则、方法等。锻炼独立工作能力,对污水厂的主体构筑物、辅助设施、计量设备及污水厂总体规划、管道系统做到一般的技术设计深度,培养和提高计算能力、设计和CAD绘图水平,锻炼和提高分析及解决工程问题的能力。 2生物接触氧化法在水处理中的作用 生物接触氧化工艺(Biological Contact Oxidation)又称“淹没式生物滤池”、“接触曝气法”、“固着式活性污泥法”,是一种于20世纪70年代初开创的污水处理技术,其技术实质是在生物反应池内充填填料,已经充氧的污水浸没全部填料,并以一定的流速流经填料。在填料上布满生物膜,污水与生物膜广泛接触,在生物膜上微生物的新陈代谢的作用下,污水中有机污染物得到去除,污水得到净化。 生物接触氧化法是一种浸没生物膜法,是生物滤池和曝气池的综合体,兼有活性污泥法和生物膜法的特点,在水处理过程中有很好的效果。其特点有如下几点:第一,由于填料的比表面积大,池内的充氧条件良好。生物接触氧化池内单位容积的生物固体含量高于活性污泥法曝气池及生物滤池,所以生物接触氧化法 有较高的容积负荷,对冲击负荷有较强的适应能力;第二,生物接触氧化法不需要污泥回流,不存在污泥膨胀问题,污泥生成量少,且污泥颗粒较大,易于沉淀,运行管理简便,操作简单,易于维护管理,设备一体化程度高,耗电少。第三,由于生物固体量多,水流又属于完全混合型,因此生物接触氧化池对水质水量的骤变有较强的适应能力。第四,生物接触氧化池有机容积负荷较高时,其F/M 保持在较低水平,污泥产率较低。第五,具有活性污泥法的优点,并且机械设备供氧,生物活性高,泥龄短,净化效果好,处理效率高,处理时间短,出水水质好而稳定,池容小,占地面积少。第六,能分解其它生物处理难分解的物质,具有脱氧除磷的作用,可作为三级处理技术。因此,生物接触氧化污水处理技术是一种适应范围广、处理效率高、运行操作简单的水处理技术。而工业污废水水量

生物接触氧化法处理技术

生物接触氧化法处理技术 生物接触氧化技术是生物膜法的一种形式,是在生物滤池的基础上,从接触曝气法改良演化而来的,因此有人称为“浸没式滤池法”、“接触曝气法”等。 一、生物接触氧化法与其他方法比较,具有如下特点: 优点 1、BOD负荷高,MLSS量大,相对地说效率较高,并且对负荷的急剧变动 适应性强。 2、处理时间短。在处理水量相同的条件下,所需装置设备小,因而占地面 积小。 3、维护管理方便,无污泥回流,没有活性污泥法中所容易产生的污泥膨胀。 4、易于培菌驯化,较长时期停运后,若再运转时生物膜恢复快。 5、剩余污泥量少。 缺点 1、填料上的生物膜的量需视BOD负荷而异。BOD负荷高,则生物膜数量多;反之亦然。因此不能借助于运转条件的变化任意地调节生物量和装置的效能。 2、生物膜量随负荷增加而增加,负荷过高,则生物膜过厚,易于堵塞填料。所以,必须要有负荷界限和必要的防堵塞冲洗措施。 3、大量产生后生动物(如轮虫类等)。若生物膜瞬时大块地脱落,则易影响处理水水质。 4、组合状的接触填料会影响均匀地曝气与搅拌。 二、处理机理 1、主要起作用的是生物膜 好气性污水处理有两种方法,一种是活性污泥法,一种是生物膜法。从生物处理的基点——微生物转化有机物的功能来看,这两种方法的区别在于微生物存在状态的不同。在活性污泥法中,微生物以絮状结构悬浮在所需净化的污水中,经充分混合而成为混合液;在生物膜法中,微生物以生物膜的形态附着在固体填料表面上与所需净化的污水接触。生物接触氧化法是在生物滤池的基础上发展起来的,从生物膜固定和污水流动来说,相似于生物滤池法。从污水充满曝气池和采用人工曝气看,它又相似于活性污泥法。所以生物接触氧化法的特点介于生物

生物接触氧化池的调试

生物接触氧化池的调试 一般来说间歇进水也只要保持均衡进水的原则就行,时间上要分配好.接触氧化池 进水经UASB自流进入接触氧化池进行好氧生物处理。 1接触氧化原理 接触氧化技术是一种好氧生物膜法工艺。接触氧化池内设有填料,部分微生物以生物膜的形式固着生长于填料表面,部分则是絮状悬浮生长于水中。因此它兼有活性污泥法与生物滤池二者的特点。 大量实验证明,立体弹性填料的比表面积大,挂膜速度快,对空气有切割作用,能提高曝气器的氧转移效率,对于接触氧化工艺来讲,是最为理想的填料。本工程选用立体弹性填料。接触氧化工艺中微生物所需的氧通常通过机械曝气供给。生物膜生长至一定厚度后,近填料壁的微生物将由于缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用会造成生物膜的脱落,并促进新生膜的生长,形成生物膜的新陈代谢。 2接触氧化的技术评价 ★由于填料的比表面积大,池内的充氧条件良好,生物接触氧化池内单位容积的生物固体量都高于活性污泥法曝气池及生物滤池,因此生物接触氧化池具有较高的容积负荷; ★由于相当一部分微生物固着在填料表面,生物接触氧化法不需要设污泥回流系统,也不存在污泥膨胀问题,运行管理简便; ★由于生物接触氧化池内生物固体量多,水流属完全混合型,因此生物接触氧化池对水质水量的骤变有较强的适应能力; ★由于生物接触氧化池内生物固体量多,当有机容积负荷较高时,其F/M比可以保持在一定水平,因此污泥产量可相当于或低于活性污泥法。 当接触氧化池体积较大时,很难实现完全混合的水力流态,因此需要在池型结构上进行考虑,为此我们提出一级两段接触氧化池的概念(如上图所示)。 通过对池型布局的改变,可以克服诸如短流、水和填料接触不佳等缺点,从而达到了相应的处理效果。 总结起来,这种布置有以下几个方面的优势: ★避免单级单段式的短流现象,保证了水和填料的充分混合; ★每段渐次有一个COD浓度梯度,最大程度地保证了有机物向微生物细胞的传递,从动力学角度保证了去除效果; ★每段的生物相均不相同,从而最大程度保证各自不同的生存环境在一个最佳的位置上。 3接触氧化池的管理要点 污水处理站对好氧处理设施的运行管理中,可通过对系统中“泥、水、气”的调节,通过排泥和回流维持系统中合适的微生物数量;改善污泥的沉降性能,通过人工曝气控制曝气池中合适的溶解氧、使废水均衡地进入系统并具有合适的营养比例,以使系统长期稳定地达标运行。4气——维持曝气池合适的溶解氧 ★供氧的目的 污水进入天然水体,通过物理的、化学的、生物的作用逐渐得到净化。在净化初期,由于生物在氧化分解有机物时的耗氧作用,水体中溶氧水平不断下降。但水中的藻类可利用有机物分解后生成的N、P等无机盐进行光合作用,放出氧气;加上水面的复氧作用,使水体溶氧水平逐渐恢复。若有机物污染负荷过高,耗氧过多,微生物分解有机物的耗氧作用会使水体溶氧降到零,这时自净作用即行中断。因此水体的自净作用是受水体溶氧水平制约的。 ★废水生物处理就是根据水体自净作用的原理,在曝气池中设置供氧设施,以保证处理装置的活性污泥中,比天然水体中多出成千上万倍的微生物,能在好氧条件下将污水中的有机物

生物接触氧化设计方案

50m3/d中水回用工程 50m3/d污水一体化设备 设计方案

目录 1项目背景 (3) 2 设计依据 (3) 3 水质水量及处理要求 (3) 3.1 进水水质水量的确定 (3) 3.2 处理要求 (4) 4 工艺方案的选择 (4) 4.1 工艺简介 (4) 4.2 本生物接触氧化法主要特征 (5) 4.3 工艺流程 (5) 4.4 主要构筑物和设备 (5) 4.5 主要构筑物尺寸和设备型号一览表 (8) 5 经济性分析 (9) 5.1 工程投资估算 (9) 5.3 吨水生产成本估算....................................... 错误!未定义书签。 5.3 社会效益分析 (10)

1项目背景 本项目为农村优质杂排水处理及回用工程,原水包括楼内盥洗、洗浴及洗衣等优质杂排水,经处理后达到生活杂用水水质标准,回用于绿化、冲厕和洗车等。 2 设计依据 (1)甲方提供的水及水质类型等相关资料 (2)《建筑给水排水设计规范》(GBJ15-88)2003年版 (3)《建筑中水设计规范》(GB50336-2002) (4)《城市污水再生利用城市杂用水水质标准》(GB/T18920-2002) (5)《城市污水再生利用景观环境用水水质标准》(GB/T18921-2002) (6)《污水再生利用工程设计规范》(GB50335-2002) (7)《城市居民生活用水量标准》(GB/T50331-2002) 3 水质水量及处理要求 3.1 进水水质水量的确定 本工程的水源为小区各住户的优质杂排水,设计处理水量为50m3/d。依据《建筑中水设计规范》中建筑分项给水百分率及各种排水污染物浓度统计数据及经验值,确定进水主要水质指标如下: BOD =130mg/L 5 COD=227mg/L SS=72.6 mg/L

生物接触氧化池设计实例.

环境工程专业 《污水处理课程设计》 说明书 姓名及学号: 班级: 指导教师: 设计时间:

前言 在我国,随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。在校期间,我们学习了水污染控制工程这门课程,为了检验学习的内容和自主设计能力,老师安排了此次课程设计。根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。本文是中型污水处理厂,处理流量20000m3/d,无论何种规模的处理厂,在确定污水处理工艺时,除了保证处理效果这一基本条件外,主要目的是降低基建投资,节省日常的运行费用,以求在保证达标排放的前提下,使经营成本最小。要做到这一点,首先应根据实际情况,选择合适的处理工艺。小型污水厂处理厂往往具有这样的特点:(1)由于负担的排水面积小,污水量较小,一天内水量水质变化较大,频率较高; (2)一般在城镇小区或企业内修建,由于所在地区一般不大,而且厂外污水输送管道也不会太长。所以,其占地往往受到限制,处理单元应当尽量布置紧凑。 (3)一般要求自动化程度较高,以减少工作人员配置,降低经营成本。 (4)污水厂往往位于小区或工业企业内,平面布置可能会受实际情况限制,有时可能靠近居民区或地面起伏不平等,平面布置应因地置宜,变蔽为利。 (5)由于规模较小,一般不设污泥消化,应采用低负荷,延时曝气工

艺,尽量减少污泥量同时使污泥部分好氧稳定。 由此,本设计选择生物接触氧化工艺。生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,净化有机废水的一种高效水处理工艺。具有活性污泥法特点的生物膜法,兼有活性污泥法和生物膜法的优点。在可生化条件下,不论应用于工业废水还是养殖污水、生活污水的处理,都取得了良好的经济效益。该工艺因具有高效节能、占地面积小、耐冲击负荷、运行管理方便等特点而被广泛应用于各行各业的污水处理系统。 本设计包扩工艺处理流程、主要构筑物的剖面结构、污水厂初步平面布置和主要设备的说明。本工艺理论上运行可靠,操作简便,出水各项污染指标均达到了国家规定排放标准。

污水处理生物膜法生物接触氧化池

污水处理生物膜法-生物接触氧化池 一、概述 生物接触氧化处理技术的实质之一是在池内充填填料,已充氧的污水将填料浸没全部,并以一定的流速流经填料。而填料上布满生物膜,污水与生物膜通过接触,在生物膜上微生物的新陈代谢功能的作用下,污水中有机污染物得到去除,污水得到净化,因此,生物接触氧化处理技术又称为淹没式曝气生物滤池。 二、生物接触氧化池的构造 接触氧化池是由池体、填料及支架、曝气装置、进出水装置以及排泥管道等部件所组成。生物接触氧化池的构造示意图见图 生物接触氧化池的构造示意图 (一)池体 池体的作用除了进行净化污水外,还要考虑填料,布水、布气等设施的安装。当池体容积较小时可采用圆形钢结构,池体容积较大时可采用矩形钢筋混凝土结构。池体的平面尺寸以满足布水、布气均匀,填料安装、维护管理方便为准。池体的底壁须有支承填料的框架和进水进气管的支座。池体厚度根据池的结构强度要求来计算。高度则由填料、布水布气层、稳定水层以及超高的高度来计算。同时,还必须考虑到充氧设备的供气压力或提升高度。各部位的尺寸一般为:池内填料高度为3.0~3.5m;底部布气层高为 0.6~0.7m;顶部稳定水层0.5~0.6m,总高度约为4.5~5.0m。 (二)填料 1.填料的要求 填料是生物膜的载体,所以也称之为载体。填料是接触氧化处理工艺的关键部位,它直接影响处理效果,同时,它的费用在接触氧化系统的建设费用中占的比重较大,约占55%~60%;同时载体填料直接关系到接触氧化法的经济效果,所以选定适宜的填料是具有经济和技术意义的。接触氧化处理工艺对填料的要求如下: (1)在水力特性方面,比表面积大、空隙率高、水流通畅、阻力小、流速均一; (2)要求形状规则、尺寸均一,表面粗糙度较大;填料表面电位高,附着性强; (3)化学与生物稳定性较强,经久耐用,不溶出有害物质,不导致产生二次污染; (4)在经济方面要考虑货源、价格,也要考虑便于运输与安装等。 2. 填料类型 填料可分为悬挂式填料、悬浮式填料和固形块状填料三种类型。 (1)悬挂式填料 悬挂式填料有四个品种,分别为半软性填料、组合填料、软性填料和弹性立体填料; (2)悬浮式填料 常用的有空心柱状、空心球状、外形呈笼架、内装丝形或条形编织物以及海绵块状的软性悬浮式填料; (3)固形块状填料 固形块状填料主要有蜂窝直管形块状填料和立体波纹块状填料两种。目前常采用的填料是聚氯乙烯塑料、聚丙烯塑料、环氧玻璃钢等做成的蜂窝状和波纹板状填料。近年来国内外都进行纤维状填料的研究,纤维状填料是用尼龙、维纶、晴纶、涤沦等化学纤维编结成束,呈绳状连接。为安装检修方便,填料常以料框组装,带框放入池中。当需要清洗检修时,可逐框轮替取出,池子无需停止工作。 3. 填料的性能 目前国内常用的填料有:整体型、悬浮型和悬挂型,其技术性能见下表。

AO生物接触氧化污水处理工艺介绍

A/O生物接触氧化污水处理工艺介绍 A/O生物接触氧化工艺,操作简单,运转费用低,处理效果好,运行稳定,是目前较为成熟的生活污水处理工艺,能有效地确保污水达标排放。 1、工艺流程 见下图: 2、工艺说明 污水由排水系统收集后,进入污水处理站的格栅井,去除颗粒杂物后,进入调节池,进行均质均量,调节池中设置预曝气系统,再经液位控制仪传递信号,由提升泵送至初沉池沉淀,废水自流至A级生物接触氧化池,进行酸化水解和硝化反硝化,降低有机物浓度,去除部分氨氮,然后入流O级生物接触氧化池进行好氧生化反应,在此绝大部分有机污染物通过生物氧化、吸附得以降解,出水自流至二沉池进行固液分离后,沉淀池上清液流入消毒池,经投加氯片接触溶解,杀灭水中有害菌种后达标外排。 由格栅截留下的杂物定期装入小车倾倒至垃圾场,二沉池中的污泥部分回流至A级生物处理池,另一部分污泥至污泥池进行污泥消化后定期抽吸外运,污泥池上清液回流至调节池再处理。 3、工艺设施 (1)格栅井 设置目的: 在生活污水进入调节池前设置一道格栅,用以去除生活污水中的软性缠绕物、较大固颗粒杂物及飘浮物,从而保护后续工作水泵使用寿命并降低系统处理工作负荷。 设置特点: 格栅井设置钢筋砼结构,格栅采用手动机械框式。 (2)调节池 设置目的: 生活污水经格栅处理后进入调节池进行水量、水质的调节均化,保证后续生化处理系统水量、水质的均衡、稳定,并设置预曝气系统,用于充氧搅拌,以防止污水中悬浮颗粒沉淀而发臭,又对污水中有机物起到一定的降解功效,提高整个系统的抗冲击性能和处理效果。

调节池设计为钢筋砼结构。 (3)调节池提升水泵 设置目的: 调节池内设置潜污泵,经均量,均质的污水提升至后级处理。 设计特点: 潜污泵设置二台,液位控制,水泵采用无堵塞撕裂杂物泵。 (4)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。 设计特点: 设计为竖流式沉淀池,其污泥降解效果好。 采用三角堰出水,使出水效果稳定。 污泥采用气提法定时排泥至污泥池,并设污泥气提回流装置,部分污泥回流至A级生物处理池进行硝化和反硝化,也减少了污泥的生成,也利于污水中氨氮的去除。 该池设计为A3钢结构。 (5)A级生物处理池(缺氧池) 设置目的: 将污水进一步混合,充分利用池内高效生物弹性填料作为细菌载体,靠兼氧微生物将污水中难溶解有机物转化为可溶解性有机物,将大分子有机物水解成小分子有机物,以利于后道O级生物处理池进一步氧化分解,同时通过回流的硝炭氮在硝化菌的作用下,可进行部分硝化和反硝化,去除氨氮。 设计特点: 内置高效生物弹性填料,又具有水解酸化功能,同时可调节成为O级生物氧化池,以增加生化停留时间,提高处理效率。 该池设计为A3钢结构。 (6)O级生物处理池(生物接触氧化池) 设置目的: 该池为本污水处理的核心部分,分二段,前一段在较高的有机负荷下,通过附着于填料上的大量不同种属的微生物群落共同参与下的生化降解和吸附作用,去除污水中的各种有机物质,使污水中的有机物含量大幅度降低。后段在有机负荷较低的情况下,通过硝化菌的作用,在氧量充足的条件下降解污水中的氨氮,同时也使污水中的COD值降低到更低的水平,使污水得以净化。 设计特点: 该池由池体、填料、布水装置和充氧曝气系统等部分组成。 该池以生物膜法为主,兼有活性污泥法的特点。 池中填料采用弹性立体组合填料,该填料具有比表面积大,使用寿命长,易挂膜耐腐蚀不结团堵塞。填料在水中自由舒展,对水中气泡作多层次切割,更相对增加了曝气效果,填料成笼式安装,拆卸、检修方便。 该池分二级,使水质降解成梯度,达到良好的处理效果,同时设计采用相应导流紊流措施,使整体设计更趋合理化。 池中曝气管路选用优质ABS管,耐腐蚀。不堵塞,氧利用率高。 该池设计为A3钢结构。 (7)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。

生物接触氧化法设计参数

生物接触氧化法设计参数: 生物接触氧化法又称浸没式曝气池,它是一种兼有活性污泥法和生物膜法特点的废水处理构筑物。在曝气池中填充填料,使填料表面长满生物膜,当废水流经填料层时,废水在曝气条件下和生物膜接触,使废水中 有机物氧化分解而得到净化。 生物接触氧化池具有如下特征: 1、 目前所使用的填料多是蜂窝式或列管式填料以及软性填料,上下贯通,废水流动的水利条件好,能很好地向固着在填料上的生物膜供应营养及氧。生物膜的生物相很丰富,除细菌外,还有球衣菌类的丝状菌、多种种属的原生动物和后生动物,形成一个稳定的生态系。 2、 填料表面全为生物膜所布满,具有很高的生物量,据实验资料,每平方米填料表面上的生物膜可达125g,相当于MLSS13g/L,有利于提高净化 效率。 3、 生物接触氧化法对冲击负荷有较强的适应能力,污泥生成量少,无污泥膨胀的危害,无需污泥回流,易于维护管理。 4、 生物接触氧化法的主要缺点是填料易于堵塞,布气、布水不均匀。填料是生物膜的载体,是接触氧化池的核心部位,直接影响生物接触氧化处理的效率。对填料的要求是:有一定的生物附着力,比表面极大;空隙率高;水流阻力小;强度高;化学和生物稳定性强;不溶出有害物质,不导致产生二次污染,形状规则,尺寸均一,在填料间能形成均一 的流速;便于运输和安装。 目前在我国使用的填料有硬、软两种类型。硬填料主要制成蜂窝状,简称蜂窝填料,所用材料有聚氯乙烯塑料、聚丙烯塑料、环氧玻璃钢和环 氧纸蜂窝等。 软填料是近几年出现的新型填料,一般用尼龙、维纶、填料涤纶、晴纶等化学纤维编结成束,成绳状连接,因此又称为纤维填料。特点:质轻、高强,物理和化学性能稳定;纤维束呈立体结构,比表面积大,生物膜附着能力强,污水与生物膜接触效率高;纤维束随水漂动,不宜为 生物膜所堵塞。 纤维填料近年来已广泛用于化纤、印染、绢纺等工业废水处理中,实践

生物接触氧化池的设计计算资料

生物接触氧化池的一般规定 ● 生物接触氧化池由池体、填料、及支架、布水系统和曝气装置等部分组成; ● 通常,氧化池填料高度为3.0~3.5m ,底部布气厚度为0.6~0.7m ,顶部稳定 水层为0.5~0.6m ,池的总高约为4.5~5.0m ,排泥所需的静水头不应小于1.2米; ● 生物接触氧化池的个数或分格数应不小于2个,并按同时工作设计; ● 池长一般不大于10m ,长宽比为1:2~1:1; ● 构造层为0.6~1.2m ,填料层为2.5~3.5m ,稳水层为0.4~0.5m ,超高不小于 0.5m ,有效水深3~5m ; ● 进水导流槽宽度不小于0.8m ,用导流墙分隔,其下缘至填料底部距离 0.3~0.5m ,至池底距离不小于0.4m ; ● 进水BOD 浓度应控制在150~300mg/L ,当进水BOD 为120~150mg/L 时,总气 水比为5:1~6:1; ● 通过填料后,出水中溶解氧浓度为2~3mg/L ; ● 可生化性较低的废水,BOD 负荷为0.8~1.2kgBOD5/m3·d ; ● 为保证布水布气均匀,接触氧化池的单格面积一般不大于25m 4.2设计参数 进水BOD 浓度L a =180.5mg/L 出水BOD 浓度L e =90mg/L 取一级生物接触氧化池的BOD 容积负荷M 为2kgCOD/(m 3·d) 4.3.1生物接触氧化池填料容积 5432 1000)905.180(12000)(=?-?=-=M L L Q W e a 式中 W ——填料的总有效容积,m 3; Q ——日平均污水量,m 3; L a ——进水BOD 浓度,mg/L ; L e ——出水BOD 浓度,mg/L ; M ——BOD 容积负荷率,gCOD/(m 3 ·d)。 4.3.2生物接触氧化池总面积 1813 543===H W A 式中 A ——接触氧化池总面积,m 2;

生物接触氧化池设计、剩余污泥量计算

生物接触氧化池设计、剩余污泥量计算 接触氧化池主要由池体、填料床、曝气装置及进出水装置等构成,具体结构如图所示。 图3-3 生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1)生物接触氧化池一般不应少于2 座; (2)设计时采用的BOD5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0~1.8kgBOD5/(m3·d),处理BOD5≤500mg/L的污水时可用1.0~3.0 kgBOD5/(m3·d); (3)污水在池中的停留时间不应小于1~2h(按有效容积计); (4)进水BOD5浓度过高时,应考虑设出水回流系统; (5)填料层高度一般大于3.0 m,当采用蜂窝填料时,应分层装填,每层高度为1 m,蜂窝孔径不小于25 mm;当采用小孔径填料时,应加大曝气强度,增加生物膜脱落速度; (6)每单元接触氧化池面积不宜大于25m2,以保证布水、布气均匀; (7)气水比控制在(10~15):1。 因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取3.5m,二氧池填料高取3m 。 3.5.1 填料容积负荷 Nv=0.2881Se0.7246=0.2881*200.7246=1.443[ kgBOD5/(m3*d)]

式中 N v —接触氧化的容积负荷, kgBOD 5/(m3*d); S e —出水BOD 5值,mg/l 3.5.2 污水与填料总接触时间 t=24*S 0/(1000* Nv)=24*231/(1000*1.443)=3.842(h) 式中S 0 ——进水BOD 5值,mg/L 。 设计一氧池接触氧化时间占总接触时间的60%: t 1=0.6t=0.6*3.842=2.305(h) 设计二氧池接触氧化时间占总接触时间的40%: t 2=0.4t=0.4*3.842=1.537(h) 3.5.3接触氧化池尺寸设计 一氧池填料体积V 1 V 1=Q t 1=1500*2.305/24=144m 3 一氧池总面积A 1-总: A 1-总=V 1/h 1-3=144/3.5=41.2(m 2)>25 m 2 一氧池格数n 取2格, 设计一氧池宽B 1取4米,则池长L 1: L 1=144/(3.5*4)=10.3m 剩余污泥量:在《生物接触氧化池设计规程》中推荐该工艺系统污泥产率为0.3~0.4 kgDS/kgBOD 5,含水率96%~98%。 本设计中,污泥产率以Y =0.4kgDS/kgBOD 5,含水率97%。则干污泥量 用下式计算: W DS =YQ(S 0-S e )+(X 0-X h -X e )Q 式中 W DS ——污泥干重,kg/d ; Y ——活性污泥产率,kgDS/kgBOD 5; Q ——污水量,m 3/d ; S 0 ——进水BOD 5值,kg/m 3; S e ——出水BOD 5值,kg/m 3; X 0——进水总SS 浓度值,kg/m 3; X h ——进水中SS 活性部分量,kg/m 3; X e ——出水SS 浓度值,kg/m 3;。 设该污水SS 中60%可为生物降解活性物质,泥龄SRT 取5d , 则一氧池污泥干重: W DS =0.4*1500*5*(0.231-0.0462)+(0.126-0.126*0.6-0.027)*1500×5 =648.9(kg/5d ) 污泥体积: Q S = W DS /(1-97%)=648.9/(1000*0.03)=21.62m 3 泥斗容积计算公式 Vs=(1/3)*h(A ’+A ’’+sqr(A ’*A ’’) 式中 Vs ——泥斗容积,m 3; h ——泥斗高,m ; A ’——泥斗上口面积,m 2; A ’’——泥斗下口面积,m 2;

生物接触氧化池设计计算.

生物接触氧化池设计 、接触氧化池主要由池体、填料床、曝气装置及进出水装置等构 成,具体结构如图所示 图3-3生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1 )生物接触氧化池一般不应少于 2座; (2)设计时采用的B0D5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0?1.8kgBOD5/(m3 ?,处理B0D5 W500mg/L 的污水时可用 1.0 ?3.0 kgBOD5/(m3 d ; (3)污水在池中的停留时间不应小于 1?2h (按有效容积计); ( 4)进水 BOD5 浓度过高时,应考虑设出水回流系统;

(5)填料层高度一般大于 3.0 m ,当采用蜂窝填料时,应分层装填,每层高度为 1 m ,蜂窝孔径不小于 25 mm ;当采用小孔径填料时,应加大曝气强度,增加生物膜脱落速度; ( 6)每单元接触氧化池面积不宜大于 25m2 ,以保证布水、布气均匀; (7)气水比控制在(10?15 : 1。 因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取 3.5m ,二氧池填料高取 3m 。 3.5.1填料容积负荷 Nv=0.2881Se 0.7246 =0.2881*9.24 0.7246 =1.443[ kgBOD5/(m3*d] 式中 Nv —接触氧化的容积负荷 , kgBOD5/(m3*d; Se—出水 B0D5 值,mg/l 3.5.2污水与填料总接触时间 t=24*S0/(1000* Nv=24*231/(1000*1.443=3.842(h 式中 S0 ——进水 B0D5 值, mg/L 。

生物接触氧化法和曝气生物氧化池的异同点以和应用

生物接触氧化法与曝气生物氧化池的异同点以及应用 1.生物接触氧化法特点 生物接触氧化法是一种兼有活性污泥法和生物膜法特点的一种新的废水生化处理法。这种方法的主要设备是生物接触氧化滤地。在不透气的曝气地中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧;空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。活性污泥附在填料表面,不随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。 1、进水采用进水堰的方式,进水与进气逆向,增加水与生物膜的接触面积。具有活性污泥法的优点,辅以机械设备供氧,生物活性高,泥龄短; 2、载体生物填料采用新式生物浮球,球内能固定和包藏生物膜。不用填料固定支架,可以解决修理更换的困难。采用新式罗茨鼓风机供气,充氧设备采用微孔曝气器。 3、由于填料比表面积大,池内充氧条件良好,池内单位容积的生物固体量较高,因此,生物接触氧化池具有较高的容积负荷,耐冲击负荷能力强; 4、由于生物接触氧化池内生物固体量多,水流完全混合,故对水质水量的骤变有较强的适应能力,能分解其它生物处理难分解的物质; 5、剩余污泥量少,不存在污泥膨胀问题,运行管理简便。 6。生物膜只能自行脱落,剩余污泥不易排走,滞留在滤料之间易引起水质恶化,影响处理效果。

2.1 生物接触氧化池 接触氧化池由池体、填料、支架、曝气装置、布水装置及排泥管道等部件所组成。池体为矩形钢结构,JW-Ⅰ填料均匀分层装填,下部中心进水、PPR穿孔管布气,水、气同向流动。污水处理设备运行15~20d后,填料微孔发生堵塞造成接触氧化池涌水,加大曝气量,定期进行反冲洗。接触氧化池构造示意见图1。 图1 接触氧化池构造示意图 2.2生物过滤沉淀池 该过滤沉淀池的结构下部为沉淀区,为减小设备整体占地面积并增加沉淀体积,沉淀区设计为矩形结构,下部设置排泥管,将沉淀区污泥排出。在滤池上部装填一定量粒径较小的JW-Ⅰ滤料,滤料表面生长着高活性的生物膜,使滤池系

生活污水处理—接触氧化法

(不知道你的水量如何,10000一下用接触氧化吧,工艺成熟,投资也相对好些,运行维护也比较简单。负荷比较高,运行费用也相对低一点1) 接触氧化法的特征 1)接触氧化法与其它生物处理方法比较,具有如下一些特点: ①BOD容积负荷高,污泥生物量大,相对而言处理效率较高,而且对进水冲击负荷(水 力冲击负荷及有机浓度冲击负荷)的适应力强。 ②处理时间短。因此在处理水量相同的条件下,所需装置的设备较小,因而占地面积小。 ③能够克服污泥膨胀问题。生物接触氧化法同其他生物膜法一样,不存在污泥膨胀问题, 对于那些用活性污泥法容易产生膨胀的污水,生物接触氧化法特别显示出优越性。容易在活性污泥法中产生膨胀的菌种(如球衣细菌等),在接触氧化法中,不仅不产生膨胀,而且能充分发挥其分解氧化能力强的优点。 ④可以间歇运转。当停电或发生其它突然事故后,生物膜对间歇运转有较强的适应力。长 时间的停车,细菌为适应环境的不利条件,它和原生动物都可进入休眠状态,显示了对不利生长的环境有较强的适应力;一旦环境条件好转,微生物又重新开始生长、代谢。 有人试验,即使停止运转一个月,再重新开始运行,生物膜数日内即可恢复正常。 ⑤维护管理方便,不需要回流污泥。由于微生物是附着在填料上形成生物膜,生物膜的剥 落与增长可以自动保持平衡,所以无需回流污泥,运转十分方便。 ⑥剩余污泥量少。 2)接触氧化法具有上述的优点,不失为一种高效的生化处理法。其高效处理的原理分析如下: ①生物活性高(泥龄低)。国内采用的接触氧化池中,绝大多数的曝气装置设在填料之下, 不仅供氧充足,而且对生物膜起到了搅动作用,加速了生物膜的更新,使生物的活性提高。如果从“泥龄”来看,活性污泥法的“泥龄”为3~4天,而第一级氧化池的生物膜“平均泥龄”为1~2天。由于平均泥龄低,微生物总是处在很高的活力下工作。经耗氧速度测定,同样湿重的带有丝状菌的生物膜,其耗氧速度较活性污泥法的高 1.81倍。 ②传质条件好,微生物对有机物的代谢速度比较快。在接触氧化法中由于空气的搅动,整 个氧化池的污水在填料之间流动,使生物膜和水流之间产生较大的相对速度,加快了细菌表面的介质更新,增强了传质效果,加快了生物代谢速度,缩短了处理时间。 ③利于丝状菌的生长。在有填料的接触氧化池中,对丝状菌的生长很有利。丝状菌的存在, 能提高对有机物的分解能力。 ④充氧效率高。接触氧化法的填料有增进充氧效果的作用,动力效率在3kgO2/kw h以上, 比无填料的曝气提高30%。充氧效率高,则有机物的氧化速度相应提高。 ⑤有较高的生物浓度。一般活性污泥法的污泥浓度为2~3g/L,而接触氧化法可达10~ 20g/L。由于微生物浓度高,故大大提高了BOD5容积负荷和处理效率。由于生物量大,对低浓度的污水,也能有效地进行处理;而且由于填料表面有利于硝化菌的生长,故能适应污水中氨氮硝化的要求。 3)尽管生物接触氧化法具有许多优点,是一种高效的生化处理构筑物,但也存在着一些缺点: ①生物膜的厚度随负荷的增高而增大,负荷过高则生物膜过厚,引起填料堵塞。故负荷不 易过高,同时要有防堵塞的冲洗措施。

生物接触氧化池设计计算.

生物接触氧化池设计 一、接触氧化池主要由池体、填料床、曝气装置及进出水装置等构成,具体结构如图所示。 图3-3 生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1)生物接触氧化池一般不应少于2 座; (2)设计时采用的BOD5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0~1.8kgBOD5/(m3·d,处理BOD5≤500mg/L的污水时可用1.0~3.0 kgBOD5/(m3·d; (3)污水在池中的停留时间不应小于1~2h(按有效容积计); (4)进水BOD5浓度过高时,应考虑设出水回流系统;

(5)填料层高度一般大于3.0 m,当采用蜂窝填料时,应分层装填,每层高度为1 m,蜂窝孔径不小于25 mm;当采用小孔径填料时,应加大曝气强度,增加生物膜 脱落速度; (6)每单元接触氧化池面积不宜大于25m2,以保证布水、布气均匀; (7)气水比控制在(10~15:1。 因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取3.5m,二氧池填料高取3m 。 3.5.1 填料容积负荷 Nv=0.2881Se0.7246=0.2881*9.240.7246=1.443[ kgBOD5/(m3*d] 式中 Nv—接触氧化的容积负荷, kgBOD5/(m3*d; Se—出水BOD5值,mg/l 3.5.2 污水与填料总接触时间 t=24*S0/(1000* Nv=24*231/(1000*1.443=3.842(h 式中S0 ——进水BOD5值,mg/L。 设计一氧池接触氧化时间占总接触时间的60%: t1=0.6t=0.6*3.842=2.305(h 设计二氧池接触氧化时间占总接触时间的40%: t2=0.4t=0.4*3.842=1.537(h

生物接触氧化池计算

生物接触氧化池计算 摘要:生物接触氧化法作为给水生物预处理工艺,近年来得到了日益广泛的工程实际应用。本文对给水生物接触氧化法预处理工程中常用的两种曝气系统(微孔曝气器曝气和穿孔管曝气),作了充氧性能、系统造价、运行成本及运行管理等方面的比较研究。研究表明,在实际工程应用中,采用微孔曝气器的曝气系统优于采用穿孔管的曝气系统。 关键词:微孔曝气器生物接触氧化池穿孔管充氧性能运行成本 近些年来,随着工农业的迅速发展,城市化建设加快,城市人口膨胀,引起了城市工业与生活用水大量增加;同时,相应的污染排放量也在逐年增加,导致了饮用水水源普遍受到污染,饮用水水质恶化。在给水处理领域中引入生物预处理,已成为微污染水源水处理的技术发展方向和有效手段之一。在我国,给水工程实践中常用生物接触氧化法作为生物预处理工艺。在该方法中,曝气系统的选择直接关系着整个生物预处理工艺的充氧性能、处理效果、运行成本和管理操作。本文结合中试试验和工程实践对这两种不同曝气系统作了多方面的比较与分析。 1 生物接触氧化池的两种曝气系统 为提高氧的利用率,生物接触氧化池宜采用气水逆向流设计。一般用鼓风机鼓风曝气,曝气设备分布于池底;气流自下向上流经填料区,水流自上向下流经填料区。曝气系统一般采用微孔曝气系统或穿孔曝气系统。 微孔曝气系统一般采用膜片式微孔曝气器作为曝气设备,池中填料一般采用弹性填料,设计气水比一般取0.7左右。 穿孔曝气系统采用穿孔管作为曝气设备,池中填料可采用颗粒填料或弹性填料,设计气水比一般取1左右。 2 充氧性能比较 通过对中试装置的清水充氧试验,对两种不同曝气方式的标准状态充氧性能作了测试,并对以下几项充氧性能评定指标作了比较与分析。 (1) 标准状态下的氧总转移系数K Las(h-1)——曝气器在标准状态(水温20℃、1atm大气压强)的测试条件下,在单位传质推动力作用时,单位时间向单位体积水中传递氧的数量; K Las=K La(T)·1.024(20-T)(1)

相关主题
文本预览
相关文档 最新文档