当前位置:文档之家› 最优化课程论文

最优化课程论文

最优化课程论文
最优化课程论文

求解线性规划的单纯形法

摘要:线性规划就是用数学为工具, 来研究一定限制条件下, 如何实现某一线性目标最优化。单纯形法是求解线性规划的主要算法,文章从单纯形法的思想出发,详细论述了单纯形法的主体步骤,并借助单纯形表通过例题加以说明。求解思路是:通过添加人工变量使得标准化后的系数矩阵一定含有单位矩阵, 从而得到一组基变量和初始基本可行解。由于人工变量是人为添加的, 为了不改变原问题, 在目标函数中消去人工变量, 并将人工变量由初始的基变量化成非基变量, 使之取值为零, 然后用普通单纯形法求解。

关键词:线性规划;单纯形法;单纯形表;步骤

1.迭代原理

从一个初始的基本可行解出发,经过判断,如果是最优解,则结束;否则经过基变换得到另一个目标函数值改善的基本可行解,如此一直进行下去,直到找到最优解。2.迭代步骤

第1步:求初始基可行解,列出初始单纯形表。

第2步:最优性检验。

第3步:从一个基本可行解转换到相邻的目标函数值更大的

基本可行解,列出新的单纯形表。

第4步:重复第2、3步,一直到计算结束为止。

2.1确定初始基本可行解

由于可行解是由一个可行基决定的,因此,确定初始基可行解X0 相当于确定一个初始可行基 B0。确定方法:若系数矩阵A中含单位矩阵I,则取B0=I;若A中不含I,则可用人工变量法构造一个I。

2.2 最优性检验

用目标来检验解的优劣。在A中取定一个基矩阵B,则决策向量X可分块为!" ,相应的价格向量C也分块为(CB CN),把这个分块矩阵的形式乘出来,就是 Z=CX=(CB CN) !"=CBXB+CNXN,不妨设B表示A中的前m列,则可记A=(B N),其中N为非基矩阵,约束中的AX=b 可表示为(B N))!" =b,即XB=B-1b-B-1NXN 经整理得 Z=CB(B-1b-B-1NXN)+CNXN,=CBB-1b+(CN-CBB-1N) XN 在这个式子中不难分析出,后边一项XN的系数CN-CBB-1N,当这个向量均为≤0分量时,这时只有当XN取0时,使Z值最大,也就是当XN统统取0时的这个基本可行解是最优的,而当这个系数向量其中有某分量是>0的时候,我们可以分析得到,当前XN统统取0的这个基本可行解不是最优,因此,我们可以用XN的系数向量CN-CBB -1N的符号来判断当前基可行解是不是最优,把这个系数向量叫做检验数向量,记为δ,当δ≤0 时,当前解为最优解。最优性检验的方法:(1)计算每个变量 xj 的检验数δj=Cj-CBB-1Pj,其中Pj 为A中的第j列;(2)若所有δj≤0,则当前解为最优;否则,如果至少有一个δj>0,当前解不是最优,转入第三步。

2.3 寻找更好的基本可行解

由于基本可行解与基对应,即寻找一个新的基可行解,相当于从上一个基B0变换为下一个新的基B1,因此,本步骤也可称为基变换。在基变换的过程中要遵循这样的原则:保证改善目标,再者保证基变换后的解可行。具体变换的方法就是将系数矩阵

A=(P1,P2,……Pi……Pk……Pn)中非基向量部分的某一列和基向量中的某一列互换,而且每次只换一列,在基向量的行列中出去一个进一个,这个基变换的过程就是确定进基出基。具体方法:首先决定进基,令正检验数中最大的那个所对应的 Pk 进基;然后决定出基,令检验比θ i中最小的对应的行 Ps出基,其中θ i= (B-1b)i /(B-1Pk)i,(B-1Pk)i>0,也就是对应分量之比。

在用单纯形法求解线性规划问题之前,有一个预备步骤就是将模型变为标准型,虽然可以由基本的计算求出线性规划问题的最优解,但是为了更加简单、清楚,这个算法的过程我们通过表格的形式来实现,即所谓的单纯形表。

例: 用单纯形法求解下面线性规划问题(以max为例)

maxZ=7X1+12x2

s.t.:

9x1+4x2≤360

4x1+5x2≤200

3x1+10x2≤300

x1,x2≥0

解:化为标准型:

maxZ=7X1+12X2+0X3+0X4+0X5

s.t.:

9x1+4x2+x3=360

4x1+5x2+x4=200

3x1+10x2+x5=300

x1,x2,x3,x4,x5≥ 0

单纯形表:

第一个基是 I,初始表填完后,第一个基本可行解 X=(0, 0,360,200,300) T,这个解是否为最优呢?要计算检验数进行检验。以第一个检验数δ 1为例来加以说明δ 1=C1-CBB-1P1=7-(0,0,0)

(9 4 3 )T =7 同理求出其余几个检验数分别为12、0、0、0。如果检验数的符号均≤0,则当前这个基本可行解最优,否则不是最优。我们看到这张表不是最优,还需继续进行。那么继续进行就需转到第三个步骤基变换,主要是确定进基和出基,确定进基是在正检验数中选择最大的那个,我们这道题是12,这个12所对应的向量是P2,对应的变量x2 就进基,它刚才是非基变量,确定了进基之后,就可以计算检验比θ,就是用 B-1b比上已决定进基的列 B-1P2,也就是每个分量对应之比, 360比4等于 90,200比5等于40,300比10等于30,在检验比中找到最小的一个θ值,也就是30,它所在的这一行相应的最左边的这个x5就是出基变量,进基列和出基行在这个

表上的一个交叉元就是10,这个交叉元用一个括号括起来,这个元就称为主元素,这个元就作为下边迭代计算的一个出发点,简称为主元。怎样由这个主元迭代计算得到下一张单纯形表呢?原则是:首先把这个主元用初等行变换的方法把它消成1,然后拿这个主元还是初等行变换的方法把它所在的列的其余元素消成0,下面我们把下一张表画出来,它的形式和上一张表是一样的,表头不用重画,紧接上一张表,

计算发现仍有一个正检验数3.4,这张表不是最优,仍需进行换基迭代,以交叉元2.5作为主元进行迭代计算得到下一张表

新的一张表的数据计算完毕,得出X=(20,24,84,0,0) T,通过计算表中检验数均≤0,当前表

为最优,所以最优解X*=(20,24,84,0,0)T,Z*=(0,7,12)*

(84 20 24)T=428

3.小结

单纯形法是解线性规划问题的一种有效的方法, 它需要一个已知的基本可行解, 并需把原始线性规划问题化为标准式, 而在一般情况下线性规划问题并无明显的基本可行解, 则需增加人工变量以获得基本可行解, 这样可能增加计算量, 因而需要改进算法;同时, 实际生活中的线性规划问题规模较大, 即变量个数和约束条件都多, 当用计算机进行计算时会占据大量的内存空间, 在迭代过程中, 实际上有很多计算是多余的, 当迭代次数增多时, 累计误差就会增加, 进而会影响计算精度。针对这一问题, 算法也需改进。因此, 单纯形法解线性规划问题的算法仍需更进一步的探究与改良, 这将对解决线性规划问题非常有意单纯形法的提出使得线性规划在理论上已趋向成熟,实际上的应用日益广泛与深入,应用单纯形法解决线性规划问题时要灵活多变,根据实际背景进行分析,以上只以max型为例,当线性规划模型为min型时,有所改变,需要做进一步探讨。

参考文献:

[1] 钱颂迪.运筹学[M].2 版.北京:清华大学出版社,1990.

[2] 牛映武.运筹学[M].西安:西安交通大学出版社,1994.

[3] Duckworth W E,Gear A E,Lockett A G.A guide to operational research[M].3rd ed.London:Chapman and Hall Ltd,1978.

[4] 篮益中.线性代数引论[M].北京:北京大学出版社,1981.

[5] 申卯兴, 叶微, 刘毅, 等.单纯形法中枢轴元素选取准则的改进[J].计算机工程与应用,2003,39 ( 25) :57-58.

[6] 解可新, 韩立兴, 林友联.最优化方法[M].天津: 天津大学出版社, 1997.

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

机械优化设计课本中编程实例

燕山大学机械优化设计论文 专业:12机械工程 班级:工学部1班 学号: 姓名: 2012年12月05日

摘 要: 机械优化设计是将最优化原理和计算技术应用于设计领域,为工程设计提供一种重要的科学设计方法。机械优化设计包括建立优化设计问题的数学模型和选择恰当的优化方法与程序两方面的内容。由于机械优化设计是应用数学方法寻求机械设计的最优方案,所以首先要根据实际的机械设计问题建立相应的数学模型,即用数学形式来描述实际设计问题。在建立数学模型时,需要用专业知识确定设计的限制条件和所追求的目标,确立各设计变量之间的相互关系等。机械优化设计问题的数学模型可以是解析式,实验数据或经验公式。虽然它们给出的形式不同,但都是反应设计变量之间的数量关系的。MATLAB 是目前国际上最流行的科学与工程计算的软件工具, 它具有强大的数值分析、矩阵运算、信号处理、图形显示、模拟仿真和最优化设计等功能。本文用MATLAB 来解决机械设计中的几个常见的问题。 关键词:MATLAB ;优化;机械设计;软件 1 引 言 近年来发展起来的计算机辅助设计,在引入优化设计方法后,使得在设计过程中既能够不断选择设计参数并评选出最优设计方案,又可以加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益缩短的今天,把优化设计方法与计算机辅助设计结合起来,使设计过程完全自动化,已成为设计方法的一个重要趋势。 2 采用MATLAB 软件进行优化设计 2.1.问题描述: 求3682+-=t t f 的最优解 2.1.1规划模型的建立: 目标函数 36102+-=t t f 约束条件 无约束 2.1.2对应的程序: clc clear syms t f=t^2-10*t+36; x1=0; h=2; f1=subs(f,x1);

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

优化设计小论文

优化设计小论文

机械优化设计 优化设计是20世纪60年代初发展起来的一门新的学科,也是一项新的设计技术。它是将数学规划理论与计算技术应用于设计领域, 按照预定的设计目标,以电子计算机及计算程序作为设计手段,寻求最优设计方案的有关参数,从而获 得较好的技术经济效益。机械的研究和应用具有悠久的历史,它伴随甚至推动了人类社会和人类文明的发展。机构学研究源远流长, 但从古到今,机构学领域主要研究三个核心问题, 即机构的构型原理与新机构的发明创造、机构分析与设 计的运动学与动力学性能评价指标、根据性能评价指标分析和设计机构。机构 是组成机械的基本单元,一般机械都是由一个或多个机构组成。对于机构的研究, 能够为发明、创造新机械提供理论、资料和经验。而对于机构的优化设计, 使 机构具有确定的几何尺寸,能够满足运动学要求, 并能实现给定的运动规律,这 些能够为某些具体的机械设计, 使机械满足某些特定的功能提供了可靠的依 据。 机械设计是机械工程的重要组成部分,是决定机械性能最主要的因素。从 工程设计基础和目标上可将设计分为:新型设计(开发性设计)、继承设计、变 型设计(基于标准型的修改)。所谓新型设计,即应用成熟的科学技术或经过实 验证明可行的新技术,设计未曾有过的新型机械,主要包括功能设计和结构设计,是机械设计发展的方向所在,然而贯穿其中的关键环节即是设计的方法和 实现的手段。人类一直都在不断探索新方法和新设计理念。从17 世纪前形成的直觉设计过渡到经验设计和传统设计,直到目前的现代设计[1],从静态、经验、手工式的‘安全寿命可行设计’方法发展到动态、科学、计算机化、自动化的 优化设计方法,已将科学领域内的实用方法论应用于工程设计中了。 机械优化设计基本思路是在保证基本机械性能的基础上,借助计算机,应 用一些精度较高的力学/ 数学规划方法进行分析计算,让某项机械设计在规定 的各种设计限制条件下,优选设计参数,使某项或几项设计指标(外观、形状、结构、重量、成本、承载能力、动力特性等)获得最优值。

合工大机械优化设计课程实践报告

合肥工业大学 《机械优化设计》课程实践 研究报告 班级:机械设计制造及其自动化12-3班学号: 姓名: 授课教师:王卫荣 日期: 2015年 11 月 14 日

目录 一、一维搜索程序作业 (3) 1.λ=0.618的证明 (3) 2.编写0.618法程序并计算 (4) 二、单位矩阵程序作业 (6) 三、连杆机构问题和自选工程优化问题 (7) 1.连杆机构问题 (7) 2.自选工程优化问题 (14) 四、课程实践心得体会 (18)

一、一维搜索程序作业 1.λ=0.618的证明 黄金分割法,又称作0.618法,适用于[a,b] 区间上的任何单谷函数求极小值问题。黄金分割法是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b] 内适当插入两点α1、α2,并计算其函数值。α1、α2 将区间分成三段。应用函数的单谷性质,通过函数值大小的比较,删去其中一段,使搜索区间得以缩短。然后再在保留下来的区间上做同样的位置,如此迭代下去,使搜索区间无限缩小,从而得到极小点的数值近似值。 黄金分割法要求插入点α1、α2 的位置相对于区间[a,b] 两端点具有对称性,即 图1-1 黄金分割法 α1 = b –λ ( b – a ) α2 = a + λ ( b – a ) (3-1) 其中,λ为待定常数。 下面证明λ = 0.618。 除对称性要求外,黄金分割法还要求保留下来的区间内再插入一点所形成的区间新三段,与原来区间的三段具有相同的比例分布。设原有区间[a,b] 长度为1如图1-1 所示,保留下来的区间[a,b] 长度为λ,区间缩短率为λ。为了保持相同的比例分布,新插入点α3应在λ ( 1 –λ ) 位置上,α1在元区间的1 –λ位置应相当于在保留区间的λ2位置。故有 1 –λ = λ2 即 λ2 + λ– 1 = 0 取方程正数解得 若保留下来的区间为[α1,b] ,根据插入点的对称性,也能推得同样的λ的值。

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化方法课程设计-斐波那契法分析与实现-完整版(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 最优化方法 题目:斐波那契法分析与实现 院系:信息与计算科学学院 专业:统计学 姓名学号:小熊熊 11071050137 指导教师:大胖胖 日期: 2014 年 01 月 10 日

摘要 科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案. 一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题. 斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法. 关键字:一维搜索斐波那契法单峰函数黄金分割法MATLAB

Abstract Mathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution . One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem. Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method. Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB

机械创新设计结课论文

《机械创新设计》 结课论文 课程名称《机械创新设计》 院(系、部、中心)机械工程学院 专业过程装备与控制工程 班级过程装备121 姓名 XXX 学号 201121221 题目便携式笔记本电脑桌的创新设计 起止日期 2015-5-27~2015-6-22 任课教师 XXX

便携式笔记本电脑桌的创新设计 作者:XXX (南京工程学院机械工程学院,南京211167) 摘要:当前的笔记本电脑桌普遍为平板四肢式,虽然用起来小巧方便,但是仅限于室内使用,便携性差。为解决这一问题,笔者引入“折叠”元素,结合手提箱的构造,对现有电脑桌进行改进,使之既能满足便携要求,又能作为电脑包使用。大大提高了笔记本电脑桌的实用性。 关键词:电脑桌改进;折叠;手提箱;电脑包 1引言 笔记本电脑桌,简单地讲就是可以在多个场合(床上,沙发上,腿上,桌子上,阳台上)放置笔记本电脑并使用的一种多功能小桌子。 笔记本电脑桌现在市面上主要以ABS塑胶、实木和多层板几种材质为主,目前多数的塑料外壳笔记本电脑都是采用ABS工程塑料做原料的。采用新ABS工程塑料好处有,做工精细、坚固耐用、抗拉抗压、不老化、永不褪色,重量仅仅为普通木质电脑桌重量的1/4,避免了家具的的笨重。实木的又以橡胶木为高档产品,配合家装颜色材质,但其缺点是处理不好容易变形;而多层板就解决了变形问题,但买要买品牌的,因为多层板多用含有甲醛的胶。 学生族使用的笔记本电脑桌以平板四肢式为主,它造型小巧,又很实用,而且价格不高,深受学生的喜爱,如图1所示。 图1 平板四肢式笔记本电脑桌 折叠元素很常见,并作为一个自然法则早已存在于自然界中。但是在设计领域,“折叠”一词,往往是指上升到哲学层面上的“折叠”概念。哲学家就是通过揭示隐藏的自然法则,对其进行高度地凝练和概括,才创造出哲学层面上的“折叠”概念的。哲学家创造了概念,把折叠带到了一个全新的高度,而设计师们则纷纷从他们那里汲取营养。其中德勒兹的折叠概念是其哲学体系中的核心之一,并最初引申于莱布尼兹的“单子论”。折叠在现代设计领域发挥着重要作用。 2 笔记本电脑桌造型与功能概况 笔记本电脑桌按功能来分主要有以下几类: 1、可折叠。折叠起来后大小只有14寸笔记本电脑大小,方便节省空间。 2、可升降。对于不同身材的人都可以舒适的使用,这已经成为现在笔记本电脑桌的一大特色。 3、散热性。笔记本电脑桌因为是于笔记本电脑接触最多的产品,故散热功能也变为主流。常见的散热主要是由散热孔来完成。当然也有的产品加装了散热风扇,通过从笔记本的usb接口取电,来达到散热的目的。 如图2.1、图2.2、图2.3所示。

机械优化设计

一维搜索方法 摘要:在机械优化设计过程中将求解一维目标函数的极值点的数值迭代方法称之为一维搜索方法,在本质上可归结为单变量的函数的极小化问题。虽然优化设计中的大部分问题是多维问题,但是一维优化方法是优化方法中最基本的方法,在数值迭代过程中都要进行一维搜索,因此,一维搜索方法在优化设计的研究中占据着无可替代的地位。概括起来,可以将一维搜索方法分为两大类:一类是试探法,另一类是插值法。 关键字:优化设计一维搜索方法试探法插值法 引言 一维搜索方法是各种优化方法中最简单又最基本的方法,不仅用来解决一维目标函数的求优问题,也可以将多维优化问题转化为若干次一维优化问题来处理,同时多维优化问题每次迭代计算过程中,每前进一步都要应用一维寻优方法确定其最优步长。一维搜索方法可分为两大类,一类称作试探法,有黄金分割法(0.618法)、裴波纳契(Fibonacci)法等;另一类称作插值法或函数逼近法,属于插值法一维搜索的有二次插值法、三次插值法等。 一维搜索的试探方法 在实际的计算当中,最常用的一维试探方法黄金分割法,即0.618法。黄金分割法适用于[a ,b]区间上的任何单谷函数求极小值问题,因此,这种方法的适应面相当广。 黄金分割法是建立在区间消去法原理基础上的试探方法,即在搜索区间[a ,b]内适当插入两点α1,α2,并计算其函数值。α1,α2将区间分成三部分。利用单谷函数的性质,通过函数值大小的比较删去其中一段,是搜索区间得以缩短。然后再在保留下来的区间上做同样的处理,如此迭代下去是搜索区间无限缩小,从而得到极小点的数值近似值。 黄金分割法要求插入点α1,α2的位置相对区间[a ,b]两端点具有对称性,即 α1=b-λ(b-a) α2=a+λ(b-a) 其中,λ为待定常数。 黄金分割法的搜索过程如下: 1)给出初始搜索区间[a ,b]及收敛精度,将λ赋以0.618; 2)按坐标点计算上公式计算α1和α2,并计算其对应的函数值; 3)根据区间消去法原理缩短搜索区间。为了能用原来的坐标点计算公式,进行区间名称的代换,并在保留区间中计算一个新的试验点及其函数值。 4)检查区间是否缩短到足够小和函数值收敛到足够近,如果条件不满足则返回到步骤 2); 5)如果条件满足,则取最后两试验点的平均值作为极小点的数值近似解。

机械优化设计论文

机械优化设计论文 摘要:机械优化设计的目的是以最低的成本获得最好的效益,是设计工作者一直追求的目标,从数学的观点看,工程中的优化问题,就是求解极大值或极小值问题,亦即极值问题。本文从优化设计的基本理论、优化设计与产品开发、优化设计特点及优化设计应用等方面阐述优化设计的基本方法理论。 关键词:机械优化设计产品开发 一、械优化设计的基本理论 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。 优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函数和约束条件,并使目标函数获得最优值一种现代设计方法, 目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 二、机械优化设计与产品开发 产品生产是企业的中心任务,而产品的竞争力影响着企业的生存与发展。产品的竞争力主要在于它的性能和质量,也取决于经济性,而这些因素都与设计密切相关,可以说产品的水平主要取决于设计水平。随着生产的日益增长,要求机器向着高速、高效、低消耗方向发展,并且由于商品的竞争,要求不断缩短设计周期,因而对产品的设计已不是仅考虑产品本身,还要考虑对系统和环境的影响;不仅要考虑技术领域,还要考虑经济、社会效益;不仅考虑当前,还要考虑长远发展。在这种情况下,所谓传统的设计方法已越来越显得适应不了发展的需要。由于科学技术的迅速发展,对客观世界的认识不断深入,设计工作所需的理论基础和手段有了很大进步,使产品的设计发生了很大的变化,特别是电子计算机的发展及应用,对设计工作产生了革命性的突变,为设计工作提供了实现设计自动化和精密计算的条件。因此,用理论设计代替经验设计、用精确设计代替近似设计、用优化设计代替一般设计将成为设计的必然发展趋势。 三、机械优化设计的特点 优化设计是以建立数学模型进行设计的。优化设计引用了一些新的概念和术语,如前所述的设计变量、目标函数、约束条件等。机械优化设计将机械设计的具体要求构造成数学模型,将机械设计问题转化为数学问题,构成一个完整的数学规划命题,逐步求解这个规划命题,使其最佳地满足设计要求,从而获得可行方案

最优化论文

题目:非线性最小二乘法问题的一种解法--高斯-牛顿法 学生姓名:聂倩云 学号:113113001039 学院:理学院 专业名称:应用数学

非线性最小二乘法问题的一种解法--高斯-牛顿法 目录 前言 (1) 1. 拟牛顿法及相关讨论 (1) 2.牛顿法 (1) 3.拟牛顿法 (2) 3.1DFP公式 (2) 3.2BFGS公式 (4) 3.3限域拟牛顿法 (6) 4.针对二次非凸性函数的若干变形 (6) 参考文献: (7)

非线性最小二乘法问题一种解法--高斯-牛顿法 学生:聂倩云 学号:113113001039 摘 要:非线性最小二乘法问题在工程技术、测绘等各个领域有着非常广泛的应用,我们考虑无约束非线性最小二乘问题的一种常见的解法:高斯-牛顿法。求解无约束优化问题的基本方法是牛顿法,本文从这点出发,介绍此方法步骤,探讨此方法的收敛性,讨论它的收敛速度,并给出高斯-牛顿法的一种修正:阻尼高斯牛顿法。 关键词:非线性最小二乘;高斯-牛顿法;收敛性;收敛速度 前言 非线性最小二乘问题结构特殊,不仅可以用一般的最优化问题求解的方法,还可以对一般的无约束优化问题求解方法进行改造,得到一些特殊的求解方法。而这些方法基本思想就是形成对目标函数的海森矩阵不同的近似。 1.非线性最小二乘法问题概述 非线性最小二乘法模型为 ()()[]()()()22 12 12121m in x r x r x r x r x f T m i i ===∑= 其一阶、二阶导数分别为 ()()()x r x A x g = ()()()()()()()x S x M x r x r x A x A x G m i i i T +=?+=∑=12 其中()()()()()T m x r x r x r x r ,,,21 =称为在点x 处的残向量,()x r i 为非线性函 数,且 ()()()[]x r x r x A m ??=,,1 ,其中()()() T x A x A x M =称为高斯-牛顿 矩阵,为()x G 中的线性项,()x S 为()x G 中的非线性项。 2.高斯-牛顿法 高斯-牛顿法主要思想是省略非线性项()x S 从而形成对海森矩阵的近似。

教学案的优化设计(论文)

生物学案的优化设计 沈后方(江苏省盱眙县实验中学 211700) 摘要:本文以生物教学中学案设计优化设计的背景和意义为出发点,阐述生物教学中学案的优化设计的具体做法。使学案发挥更大的作用。 关键词:生物学案优化设计 学案,是指教师依据学生的认知水平,知识经验,为指导学生进行主动的知识建构而编制的学习方案。教师用以帮助学生掌握教材内容,沟通学与教的桥梁,能够提高学生课堂学习效率。 1、生物学案的布局优化 传统的学案往往只注重内容而不注重布局,如能在布局上加以优化,会收到良好的效果。首先是页眉、页脚的设计,常规学案在页眉部分的信息包括学校、年级、编号和日期等;页脚部分一般是作为页码设置。但在设计生物学案时可以进一步挖掘此区域的功能,充分发挥此信息区的作用,在页眉可根据本章节的内容设计一些简短小常识,如“环境保护日”、“辣椒含大量维生素被称为V c之王”、等等。在页脚可以设计一段小笑话以缓解学生学习的疲劳。 2、生物学案的内容优化 学案可以在内容上更加多样化,传统的学案说白了就是教师印发给学生的习题训练。缺乏知识性、趣味性、系统性和开放性。学生做起来及其枯燥。如能在内容及其形式上加以优化,会给学生耳目一新的感觉,增强学习的趣味性。总体内容可以涵盖以下几个方面:1、教学目标;2、知识网络;3、习题训练;4、知识

拓展;5、信息反馈。 首先,目标明确。在明确的目标指引下来了解知识网络,形成知识体系。即知识网络,可以采用概念图的形式或以图表形式展示,形象生动、一目了然。 其次,习题训练。题型要多样,题量要精简。把空间留出来给知识拓展,专门开辟一块知识阅读的版块,如:记述生物名人小故事、介绍形形色色的动物和植物、当代生物科学研究前沿信息等等。 最后,还要给学生留出篇幅抒发感慨和想象的空间,或者提出一两个小小的思考题激发学生的思维。较好保证学案的效果。 3、生物学案的提示语的优化 提示语是用来提醒人们注意自己行为、语言的一些语句。脍炙人口、富有品味的提示语能让人们在潜移默化中受到启迪。同样,在教学案的各给模块中穿插一些温馨的提示语,可以增强学生的认同感,拉近师生之间的距离。 实践表明,优化后的学案设计改变了以往传统的学案的枯燥和浪费。使空间得到了高效的利用。同时,使学生有以前对学案的态度的由害怕变为了期盼。使他们在真正学到了知识同时,也享受了快乐。 主要参考文献 [1]束爱军蒋选荣.2011.优化作业纸的设计.生物学教学,36(10):30-31。

【精品毕设】现代机械优化设计课程论文

现代机械优化设计 摘要:机械优化设计是近年来发展起来的一门新的学科,起始于20世纪60年代,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。在机械应用的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量 关键词:优化设计;方法特点;发展态势 一、机械优化设计的设计思想 机械优化设计是为了适应于不断发展的生产现代化而发展起来的。它建立在数学规划理论和计算机程序设计基础上,通过有效的实验数据和科学的评价体系来从众多的设计方案中寻到尽可能完善的或最适宜的设计方案。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益。 所谓优化设计就是在规定的各种设计限制条件下,将实际设计问题首先转为最优化问题,然后运用最优化理论和方法,在电子计算机上进行自动调优计算,从满足各种设计要求及限制条件的全部可行方案中,选定出最优设计方案。就最优化的理论和方法而言,继古典的微分法和变分法之后,出现有数学规划优化法、准则优化法、混合法及利用遗传算法、人工神经网络的优化方法等。进入21世纪,工程技术人员普及应用最优化方法是必然趋势 1.设计变量 设计变量是指在设计过程中我们必须全面考虑确定的各项独立参数,一旦这些设计参数全部确定了,设计方案也就完全确定了。他们在整个设计过程中相当于一个个变量,变量的多少与数值大小直接影响着优化工作的复杂程度。也就是说,设计变量数目越多,设计空间的维数越大,优化设计工作也就越复杂,同时效益也越显著。因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 2.约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,而优化设计问题大多数是约束的优化问题。针对优化设计数学模型要素的不同情况,可将优化设计方法进行分类。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组设计变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。 3.目标函数 在优化设计过程中,每一个变量之间都存在着一定的相互关系这就是用目标函数来反映。他可以直接用来评价方案的好坏。在优化设计中,可以根据变量的多寡将优化设计分为单目标优化问题和多目标优化问题,而我们最常见的就是多目标函数优化。 一般而言,目标函数越多,设计的综合效果越好,但问题求解越复杂。在实际的设计问题中,常常会遇到在多目标函数的某些目标之间存在矛盾的情况,这就要求设计者正确处理各目标函数之间的关系。对这类多目标函数的优化问题的研究,至今还没有单目标函数那样成熟。 二、机械优化设计的主要特点 在优化设计过程中,每一种优化方法都是针对某一种问题而产生的,都有各自的特点和

基于单纯形法的最优化方法的毕业设计论文

基于单纯形法的最优化方法的毕业设计论 文 Revised on November 25, 2020

摘要: 最优化方法普遍的应用于工业、农业、商业、交通运输、国防、通信、建设、等各个方面与我们的生活息息相关;最优化方法主要用来解决最优计划、最优决策、最优设计、最优分配等最优化问题。本文主要研究的内容是通过单纯形方法对最优化问题的解决进行归纳总结,分析最优化问题所涉及的原理和方法,使用软件对最优化问题进行实践仿真测试,并将最优化问题推广应用到生活当中去。 关键词: 最优化单纯形方法仿真 Abstract Optimization method is widely used in industry, agriculture, commerce, transportation, defense, communications, construction, and other aspects of our lives; the optimization method is used to solve the optimal planning, optimal decision-making, optimal design, optimal allocation optimization problem. The main research content of this paper is summarized by the simplex method to solve the optimization problem, the principle and method of optimization analysis of the problems involved in the use of software simulation test of practical optimization problems, and promote the use of the optimization problem to life. Keywords : optimization Simplex method Simulation

最优化方法与自动控制选修课论文

最优化方法课程大作业论文最优化方法与控制工程 学生姓名:熊柳 学生学号:201422000182 专业名称:控制工程

这学期按照培养方案,我学习了最优化方法这门课程。顾名思义,从课程名字就可知道这是一门关于对一项工程或是任务设计具体方案使其尽可能达到最高效率的课程。上课后,老师逐渐讲解一些最优化方法的基本思想和算法,开始对最优化方法有了更深的认识。最优化方法其实也是数学的一个分支学科,但最优化方法不同于其他分支,更偏向于具体的工程应用,实用性很强。 通过课堂学习以及查资料,我了解到最优化方法的一些相关知识,最优化方法,也叫做运筹学方法,是近几十年形成的,它主要运用数学的方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。 最优化方法中具体的思想和算法大多数是以本科中学过的高数和线性代数中的知识为基础的,然后再接以现代的计算机编程技术来进行操作,例如C语言和Matlab,这样可以大大提高解决问题的效率和精准性,尤其对于石油院校的研究领域中的一些问题都是规模很大的工程问题,仅仅依靠人力基本无法计算,必须通过计算机来进行解决。老师开始给我们讲解一些最基础的最优化方法知识,例如:凸集和凸函数、范数等;然后介绍了最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用,例如:线性规划问题、求极值、无约束最优化问题、等式约束最优化问题、不等式约束最优化问题等。用最优化方法解决实际问题,一般可经过下列步骤: ①提出最优化问题,收集有关数据和资料; ②建立最优化问题的数学模型(最优化模型一般包括变量、约束条件和目标函数三要素),确定变量,列出目标函数和约束条件; ③分析模型,选择合适的最优化方法; ④求解,一般通过编制程序,用计算机求最优解; ⑤最优解的检验和实施。 在学习了最优化方法导论之后,发现它在我所学的专业领域有极为重要的应用。它在我所学习的专业控制工程中发展成为了一门专门的学科——最优控制。 最优控制(optimal control )是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。使一个系统的性能指标实现最优化可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。 最优控制问题,就是在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。也就是说最优控制就是要寻找容许的控制规律是动态系统从初始状态转移到某种要求的终端状态,且保证所规定的性能指

相关主题
文本预览
相关文档 最新文档