当前位置:文档之家› 机场电力系统谐波治理与节能分析

机场电力系统谐波治理与节能分析

机场电力系统谐波治理与节能分析
机场电力系统谐波治理与节能分析

机场电力系统谐波治理与节能分析

【摘要】随着新电力电子技术的发展,越来越多的非线性负载接入电网中,由此而带来的谐波问题正得到人们广泛的重视。本文介绍了谐波影响并且分析了机场电力系统谐波的主要特点,并以谐波附加损耗的理论公式为依据,使用机场电力系统谐波检测数据进行了相关的节能计算和分析,得出了谐波治理相关的节能效果数据。

【关键词】谐波;危害;附加损耗;节能

0.绪论

随着现代化机场大量采用变频调速设备、新型LED、节能荧光灯、UPS 不间断电源、电力电子设备(大型电子屏幕、计算机、办公设备和通信设备)以及可控硅调光设备(灯光站助航灯)等等,谐波等电能质量问题非常突出,严重影响机场的用电安全。

航站楼电力设备运行中产生的问题和故障,通常都是由于电网电气参数波动或瞬间干扰所引起,如:电压波动、浪涌冲击、谐波、三相不平衡、功率因数过低、缺相运行等。这些非线性负载产生的大量谐波导致电网污染,使航站楼电力品质下降,引起用电设备运行故障。为避免由于电气故障而造成航班延误所导致的重大不良影响和高额成本,进行机场电力系统谐波治理与节能分析工作是非常必要的。

1.机场电力系统谐波的主要来源

1.1照明系统(荧光灯、LED灯和金属卤化物灯等)

在商业和民用建筑中大量使用荧光灯、电子镇流器和LED 节能灯等单相谐波源负载会产生大量的三次谐波,极易引起中性线电流过大。三次和3n 次谐波会在中性线上叠加,使系统的中性线电流增加,增加了中性线电缆的发热量,严重时会发生火灾。

1.2变频调速设备(空调、泵)

三相变频类用电设备工作模式基本都是六脉动变流器整定,因此产生典型的6n±1(5、7 次)谐波电流。

1.3 UPS电源

UPS 主要由整流电路、逆变电路、控制电路、充电电路、电池组、旁路系统组成。常用的整流电路有三相全桥六脉冲整流电路和六相全桥十二脉冲整流电路等。相控整流技术的优点在于结构简单控制技术成熟,但由于交流输入功率因

基于MATLAB的电力谐波分析

目录 摘要 (2) Abstract (2) 1:绪论 (2) 1.1课题背景 (2) 1.2谐波的产生 (3) 1.3电网中谐波的危害 (5) 1.4研究谐波的重要性 (5) 2:谐波的限制标准和常用措施 (7) 2.1国外谐波的标准和规定 (8) 2.1.1谐波电压标准 (8) 2.1.2谐波电流的限制 (9) 2.2我国谐波的标准和规定 (9) 2.2.1谐波电压标准 (10) 2.2.2谐波电流的限制 (11) 2.3谐波的限制措施 (12) 3:谐波的检测与分析 (15) 3.1电力系统谐波检测的基本要求 (15) 3.2国内外电力谐波检测与分析方法研究现状 (15) 3.3谐波的分析 (18) 3.3.1电力系统电压(或电流)的傅立叶分析 (19) 3.3.2基于连续信号傅立叶级数的谐波分析 (19) 4:电力谐波基于FFT的访真 (21) 4.1快速傅立叶变换的简要和计算方法 (21) 4.1.1快速傅立叶变换的简要 (21) 4.1.2快速傅立叶变换的计算方法 (21) 4.2 FFT应用举例 (22) 5:结论 (28) 附录: (28) 参考文献: (30) 致谢: (30)

基于MATLAB的电力谐波分析 学生: 指导老师: 电气信息工程学院 摘要:电力系统的谐波问题早在20世纪20年代就引起人们的注意,到了50年代和60年代,由于高压直流输电技术的发展,发表了有关换流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分的关注。 本文首先对目前国内外电力谐波检测与分析方法进行了综述与展望,并对电力谐波的基本概念、性质和特征参数进行了详细的分析,给出了谐波抑制的措施。并得出基于连续信号傅立叶级数的各次谐波系数的计算公式,推导了该计算公式与MATLAB函数FFT计算出的谐波系数的关系。实例证明:准确测量各次谐波参数,对电力系统谐波分析和抑制具有很大意义,可确保系统安全、可靠、经济地运行。同时实验结果表明,该法对设备要求不高,易于实现。 关键字:MA TLAB电力谐波分析 Harmonic Analysis of Electric Power System Based On Matlab Student: Teacher: Electrical and Information Engineering Abstract:The harmonic problem of electric power system has caused the attention of people in1920s and 1930s.Until 1950s,owing to the development of high voltage direct current transportation electricity technology,people published a large number of theses about the electricity power system harmonic problem,which caused by the current transform device.Since 1970s,because of the speedly development of eletricity power electronics technology,the various electric power electronics devices were applied extensively in the electric power system,industry,traffic and family,but the harm which the harmonic creates was serious more and more.Many country of the world all pay attention to the harmonic problem. Summary and Prospects of the first domestic and international power harmonics detection and analysis methods, and power harmonics of the basic concepts of the nature and characteristic parameters of a detailed analysis, given a harmonic suppression measures. Obtained based on the

电气设备的节能降耗

电气设备的节能降耗 化工企业是一个高耗能的生产单位,搞好企业的的能源管理,对于加强和改善企业的生产经营有着重要的作用。现代化工企业,最主要的体现形式是动力,而电力应用又首当其冲。“十一五”以来,能源已成为世界问题的焦点之一,它直接关系到经济社会和民生甚至以及能源供求的关系,目前国内能源煤、电、油气价格的上扬,节能减排措施更加严格的落实。鉴于当前企业面临的现实,作为企业管理者应以全新的思维,以节约能源、节能减排为获取利润,注重经济和社会效益,加快企业的发展壮大。 当前化工企业的用电状况: 随着企业技术进步和发展,化工企业的许多电气设备几经换代,技术水平和效率已有很大提高。电气一次设备如电力变压器已由各种老型号(铝芯)改型到铜芯S10型并逐步过渡到S CB、SGB更加节能的干式变压器;大型电机的启动经由变阻器、自偶变压器、星三角启动过渡到现在的软启动;热别是当今交流变频调速技术,解决了交流电机的启动以及无级变速问题,且运行效率更高;二次设备从继电器、晶闸管保护到现在的微机综合保护;可以说,当前我国在化工行业的优化组合,企业竞存,优胜劣汰中,保存及新兴成长的国有大中型、民营企业,技术装备和自动化程度已有相当水准,初具现代化规模;供电系统电力效能都有较大提高。同时,许多老的化工企业及一些规 模较小、技术较弱的企业,有许多老旧设备还在运行,电力设备节电性能较差,节能降耗技术改造任务还很繁重。 能够影响设备电耗的技术因素: 电气设备是为生产工艺服务的,工艺是否先进合理,自身节省能耗,自不待言。电力作为电能由其它能源转换产生,作用于电气设备以电压电流的表现形式作功,其单位消耗的电功率为Pn=W/T(kWh),并以转化为机械能、光能、化学能的形态,产生机械动力、光照、电解或充电等。然而电器设备在对负载进行有效作功(Pf)的同时,也有一部分无效作功损耗,二者之和才是总的有功功率(Pn),这就是电器设备的效率η=Pf/Pn。另外,由于大多数电气设

电网谐波及其抑制

电网谐波及其抑制

电网谐波及其抑制 ㈠电网谐波的有关概念 ⒈电网谐波的含义及其计算 谐波(harmonic),是指对周期性非正弦交流量进行傅里叶级数(Fourier series)分析所得到的大于基波频率整数倍的各次分量,通常称为高次谐波。而基波是指其频率与工频(50Hz)相同的分量。 向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备,称为谐波源(harmonic source)。 就电力系统中的三相交流发电机发出的电压来说,可认为其波形基本上是正弦量,即电压波形中基本上无直流和谐波分量。但是由于电力系统中存在着各种各样的“谐波源”,特别是随着大型变流设备和电弧炉等的广泛应用,使得高次谐波的干扰成了当前电力系统中影响电能质量的一大“公害”,亟待采取对策。 按GB/T14549-93《电能质量·公用电网谐波》规定,第h次谐波电压含有率

(HRU h)按下公式计算: HRU h=U h / U1× 100% 式中,U h为第h次谐波电压(方均根值);U1为基波电压(方均根值)。 第h次谐波电流含有率(HRI h)按下式计算: HRI h=I h / I1× 100% 式中,I h为第h次谐波电流(方均根值);I1为基波电流(方均根值)。 谐波电压总含量(U H)按下式计算: 谐波电流总含量(I H)按下式计算: 电压总谐波畸变率(THD u)按下式计算: THD u =U H / U1× 100% 电流总谐波畸变率(THD i)按下式计算:

THD i= I H / I1× 100% ⒉谐波的产生与危害 电网谐波的产生,主要在于电力系统中存在的各种非线性元件。因此,即使电力系统中电源的电压为正弦波,但由于非线性元件的存在,结果在电网中总有谐波电流或电压存在。产生谐波的元件很多。例如荧光灯和高压汞灯等气体放电灯、感应电动机、电焊机、变压器和感应电炉等,都要产生谐波电流或电压。最为严重的是大型的晶闸管变流设备和大型电弧炉,他们产生的谐波电流最为突出,是造成电网谐波的主要因素。 谐波对电气设备的危害很大。谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器出现过热,缩短使用寿命。谐波电流通过交流电动机,不仅会使电动机的铁心损耗明显增加,而且还要使电动机转子发生振动现象,严重影响机械加工的产品质量。谐波对电容器的影响更为突出,谐波电压加在电容器两端时,由于电容器对谐波的阻抗很小,因此电容器很容易发生过负荷甚至造成

电力系统谐波治理的四种方法

谐波,这个新鲜的电力系统名词,在当今的电力行业中,已广为“传播”,几乎在电力行业工作,以及与电力行业有直接关系的人,都对这个名词不陌生,尤其是用电大户单位,谈之色变,一是“谐波”直接影响了工厂的正常工作,由于谐波的存在,工厂的负荷上不去,即便上去了,无功也特高,而传统的“无功补偿”又不能凑效。而是即便无功补偿达到了要求,但谐波含量超标,管理部门不答应,自身的电费多交了不说,还讨不了好。 那么,是否拿“谐波”的肆虐就没有办法了,不!“办法总比问题多”,上海坤友电气有限公司集多年治理“谐波”的经验,针对不同的工况,总结了几种解决问题的方法,公布如下,与各位同仁共勉。 首先,我们讨论谐波的产生原因: 近年来,电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS)、节能荧光灯系统等,这些非线性负载导致电网污染,电力品质下降,引起供、用电设备故障,甚至引发严重火灾事故等。电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。 其次,我们讨论谐波的危害: 电源污染会对用电设备造成严重危害,主要有: 增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益: 谐波电流使输电线路的电能损耗增加。当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。 干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。 影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。 引起电气自动装置误动作,甚至发生严重事故。 使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

电力谐波治理的几种方法

电力谐波治理的几种方法 目前常用的电力谐波治理的方法无外乎有三种,无源滤波、有源滤波、无功补偿。下面就谈谈这二种方法的优缺点以及市场前景及其经济效益的分析。6.1、无源谐波滤除装置无源滤波器的主要是用电抗器与电容器构成,无源滤波装置的成本较低,经济,简便,因此获得广泛应用。无源滤波器可以分为并联滤波器与串联滤波器。6.1.1、无源并联滤波器现有的谐波滤除装置大都使用无源并联滤波器,对每一种频率的谐波需要使用一组滤波器,通常需要使用多组滤波器用以滤除不同频率的谐波。多组滤波器的使用造成结构复杂,成本增高,并且由于通常的系统中含有无限多种频率的谐波成分,因此无法将谐波全部滤除。不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流,谐振在不同频率的滤波器还会互相干扰,例如7次谐波滤波器就可能会放大5次谐波。因此,如果有人将并联滤波器安装前后的谐波情况做过对比,就会发现:虽然滤波器安装以后影响系统的谐波电流减小,但是各滤波器中以及进入系统的谐波电流之和远远超过未安装滤波器之前,谐波源产生的谐波电流也超过未安装滤波器之前。从广义的角度来讲,频率不等于工频频率的成分统统都是谐波。因此,工频是单一频率,而谐波有无限多种频率,可见谐波具有无限的复杂性,使用并联滤波器的方法显然无法对付无限频率成分的谐波。6.1.2、无源串联滤波器由电感与电容串联构成的LC串联滤波器,具有一个阻抗很低的串联谐振点,如果我们构造一个串联谐振点为工频频率的串联滤波器,并将其串联在线路中,就可以滤掉所有的谐波。这就是本文介绍的串联滤波器,串联滤波器由电感和电容串联而成,并且串联连接在电源与负荷之间,因此串联滤波器的“串联”二字具有双重意思:一个意思表示电感与电容串联,另一个意思表示串联在电路中使用。在三相电路中均接入串联滤波器,由于串联带通滤波器对基波电流的阻抗很小,而对谐波电流的阻抗很大,于是只用一组滤波器就可以滤除所有频率的谐波。串联滤波器对于谐振点频率的电流具有极低的阻抗,对于偏离谐振点频率的电流,则阻抗增大,偏离的越多,阻抗越大。对于比谐振点频率高的电流成分,电感的阻抗为主,对于比谐振点频率低的电流成分,电容的阻抗为主。由于谐波成分通常比基波频率高,因此滤除谐波的工作主要由电感完成,电容的作用是抵消电感对工频基波的阻抗。由于滤除谐波的作用主要由电感完成,因此电感量越大滤除谐波的效果越好。但是电感量越大则价格越高,损耗越大,因此从成本及损耗上去考虑问题则希望电感量越小越好。当电感的基波感抗小于负荷等效基波阻抗的50%时,不能实现良好的滤波效果(负荷等效基波阻抗就是负荷相电压有效值与相电流有效值的比值)。因此电感的基波感抗必须大于负荷等效基波阻抗的50%。对于电容器的选择与电感的选择情况不同,电感的匝数可以随意设计,而电容器的耐压只有固定的若干等级,不能随意设计。比如在低压配电系统中,就只有耐压230V与400V的电力电容器可供选择。由于电容器串联在电路中,电容器中的电流即为负荷电流,当电容器的实际工作电压等于其额定电压时,电容器中流过的电流等于电容器的额定电流,电容器得到充分的利用,因此,当

供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 发布者:admin 发布时间:2006-6-27 15:48:56 来自:互联网浏览统计:20 减小字体增大字体一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。

电力谐波的检测和治理

随着我国工业化进程的迅猛发展,电网装机容量不断加大,电网中电力电子元件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。 一、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。 ②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。 二、谐波检测方法 1.模拟电路 消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏

电力系统谐波检测与分析毕业设计论文

毕业设计(论文)题目:电力系统谐波检测与分析

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

节能减排示范项目 港区电网动态无功补偿及谐波治理技术

节能减排典型示范项目——港区电网动态无功补偿及谐波治理技术 广州港是华南地区综合性主枢纽港。2007年全港货物吞吐量达到3.4亿吨,居全国沿海港口第3位,居世界十大港第五位。其中,2007年广州港集团货物吞吐量达到2.3亿吨。为响应国家节能减排号召,构建高效、节能的绿色电网体系,提高电能利用效率,合理用能,广州港集团以科学发展观为统领,积极研究探索,合理运用动态无功补偿及谐波治理技术,提高功率因数,治理电网谐波,取得了明显的效果。 广州港集团在对港区电网进行全面、系统测试的基础上,掌握了装卸设备产生谐波的状况及谐波在电网中的分布规律,科学运用动态无功补偿及谐波治理技术进行重点整治,大大提高了电网质量,以较少的投入换取较大的收益,起到了“四两拨千斤”的效果,是国内港口提高电网功率因数、治理谐波的成功范例。 该项技术的成功应用,不仅使港口用电设备处于良好的工作环境中,降低了用电设备的故障率,而且提高了港区电能利用效率,节能降耗,体现了广州港集团“实干创新,强港奉献”的企业精神和节能创新理念。 该技术的推广和应用有助于构建绿色电网、绿色港口。广州港集团解决港区电网无功补偿及高次谐波问题的科学方法,值得港口企业参考和借鉴,同时对于国内拥有自有电网的其他企业也有一定的参考价值。 广州港集团有限公司“港区电网动态无功补偿及谐波治理技术”推广材料 ——交通部节能减排专家工作组一、概况 广州港是华南地区综合性主枢纽港。广州港集团现有万吨级以上泊位46个,其下属七大装卸公司,分别为黄埔港务分公司、新港港务分公司、西基港务分公司、广州集装箱码头有限公司(GCT)、河南港务分公司、新风港务分公司、新沙港务有限公司。主要从事集装箱、石油、煤炭、粮食、化肥、钢材、矿石、汽车等货物装卸。 在腹地经济持续快速发展的推动下,广州港货物吞吐量持续增长。1999年全港货物吞吐量突破1亿吨,成为中国大陆第二个跨入世界亿吨大港的港口。2006年吞吐量达到3亿吨,港口货物吞吐量居全国沿海港口第三位,居世界十大港第五位。2007年广州港生产再创新高。全港货物吞吐量突破3.4亿吨,继续保持全国第三、世界第五位;广州港集团货物吞吐量完成2.304亿吨,比上年增长14.9%。2007年装卸生产能耗达到30456吨标煤,其装卸生产用电消耗为25743吨标煤(6372万kWh),占到港口装卸生产能耗的70%以上。

电力系统谐波及其抑制方法

电力系统谐波及其抑制方法 发表时间:2019-01-09T10:01:01.477Z 来源:《电力设备》2018年第24期作者:潘国英[导读] 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。 (佛山禅城供电局广东佛山 528000) 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。因此,谐波及其抑制技术已成为国内外广泛关注的课题。从对六脉冲整流装置进行了 Matlab仿真,并对某商业企业用电设备谐波及无功进行了现场测试,得出了实际无功损耗和谐波含有量。从而更加清楚的分析了该企业谐波分布及供电系统存在的问题。最后依据测试数据及企业实际情况提出了改造方案,放弃投资较大的有源滤波器,设计使用以无源滤波器为基础的HTEQ系列高速动态消谐无功补偿设备进行无功补偿和谐波消除,通过对方案的可行性验证,验证了该动态补偿装置具有良好的电流跟进性能和补偿性能,在有限的投入下获得最大的效益,很好的解决了企业内谐波及无功的影响。关键词:整流装置;谐波抑制;动态无功补偿;Matlab仿真 一、前言 本文以佛山东方广场翡翠城用户电房谐波产生和处理方案为例,首先简单分析了电力系统无功功率及谐波的产生原因和危害,介绍了当前电力系统谐波抑制的方法,并对各种谐波抑制方法的优点和缺点做了简要的评述。本文采用HTEQ系列高速动态消谐无功补偿设备能够对商业性质用户设备进行高速跟踪无功补偿与谐波抑制,通过对负荷配电系统和运行状况实测结果进行分析计算,确定了无功补偿和谐波治理需求,在此基础上提出了动态消谐无功补偿的技术方案。 二、正文 1、东方广场翡翠城用户电房用电概况。 1.1用电情况简介 根据日常巡视数据得知,翡翠城0.4KV配电房3#变压器,额定容量为1000kV A,主要负载为商业西餐厅用电、广场音响、LED灯等;变压器低压侧配1套低压纯电容无功补偿装置,总安装容量为300kvar,电容器型号为450-30-3,投切器件为接触器,共10条支路;补偿柜投入一路30kvar;整个补偿柜的主刀熔开关为600A。 1.2目前设备概况 存在问题:补偿柜内部器件有导线及元件烧坏而且电容器衰减比较快,无法正常投运。目前,变压器最大负荷电流150A左右,只有一家西餐厅用电较大,偶尔有广场音响及灯;当运行电流为41~125A A时,补偿功率因数为.89~0.94,且补偿柜只投1条支路。 针对导线及元件烧坏及电容器衰减比较快现象进行信息采集,了解低压用配电系统的电能质量情况。 2、测量当前电能质量 1、测试地点:#3变压器低压总开关 2、测试仪器:CA8332电能质量分析仪 3、执行标准: 电能质量公用电网谐波 GB/T 14549 电能质量电压波动和闪变 GB/T 12326 广东鹰视能效科技有限公司 4、变压器总开关出线端电能质量测试数据如下: 变压器总开关测试时其用电情况为:运行电流41~125A,电压395V,视在功率45~58kV A;有功功率56kW;无功功率12kvar;功率因数0.89~0.94;谐波电流畸变率8.6~22.7%,谐波电压畸变率1.2%;主要谐波频谱为3次和5次; 变压器总开关出线端测试数据: 图1:电流值41~125A左右图2:电流谐波总畸变率8.6~22.7% 图3:电压值395V左右图4:电压谐波总畸变率1.2%左右

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

电力系统谐波管理暂行规定

电力系统谐波管理暂行规定 SD126~84 第一章总则 第一条电力系统中的谐波主要是治金、化工、电气化铁路等换流设备及其他非线性用电设备产生的。随着硅整流及可控硅换流设备的广泛使用和各种非线性负荷的增加,大量的谐波电流注入电网,造成电压正弦波形畸变,使电能质量下降,给发供电设备及用户用电设备带来严重危害。为保证向国民经济各部门提供质量合格的50赫兹电能,必须对各种非线性用电设备注入电网的谐波电流加以限制,以保证电网和用户用电设备的安全经济运行,特制订本规定。 第二条本规定适于电力系统以及由电网供电的所有电力用户。 第三条电网原有的谐波超过本规定的电压正弦波形畸变率极限值时,应查明谐波源并采取措施,把电压正弦波形畸变率限制在规定的极限值以内。在本规定颁发前已接入电网的非线性用电设备注入电网的谐波电流超过本规定的谐波电流允许值时,应制订改造计划并限期把谐波电流限制在允许范围以内。所需投资和设备由非线性用电设备的所属单位负责。 第四条新建或扩建的非线性用电设备接入电网,必须按本规定执行。如用户的非线性用电设备接入电网,增加或改变了电网的谐波值及其分布,特别是使与电网连接点的谐波电压、电流升高,用户必须采取措施,把谐波电流限制在允许的范围内,方能接入电网运行。 第五条进口设备和技术合作项目亦应执行本规定。但如对方的国家标准或企业标准的全部或部分规定比本规定严格,则应按对方较严格的规定执行。 第六条谐波对通讯等的影响应按国内有关规定执行。 第七条用户用电设备对谐波电压的要求较本规定的电压正弦波畴变率极限更严格时,由用户自行采取限制谐波电压的措施。 第二章电压正弦波形畸变率极限值和谐波电流允许值 第八条电网中任何一点的电压正弦波形畴变率均不得超过表1规定的极限值。 表1 电网电压正弦畸形畸变率极限值(相电压)

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 1、谐波的定义 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的力量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。 2、谐波的危害 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 2.1 对供配电线路的危害 2.1.1 影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下,不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 2.1.2影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用电配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较低,可达40%;三相配电线路中,相线上的3的整数倍谐波,在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.2 对电力设备的危害 2.2.1对电力容器的危害 当电网存在谐波时,投入电容器后,其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜低复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器,允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压器呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。 2.2.2 对电力变压器的危害 谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时

电力系统中谐波分析与治理

电力系统中谐波分析及治理 摘要:谐波问题电力系统中普遍存在,首先概述了谐波的概念、产生来源,分析谐波危害,最后从改造谐波源的角度提出了几种谐波抑制方法。 关键词:谐波;危害;治理 电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年j.c.read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。 1、谐波概念及其产生来源 1.1谐波概念 谐波是指频率为基波频率整数倍的一种正弦波。由于电网有非线性元件和非线性负载的存在,使得电网的电压或电流的波形不仅仅是频率为50hz的正弦波(又称基波),还含有与基波频率(50hz)成整数倍和分数倍频率的其他正弦波。这些正弦波就称为电网的谐波。其中频率高于基波频率的谐波叫高次谐波。对谐波频率为基波频率的分数倍时,称为分数谐波或间谐波,电力系统中的谐波主要是高次谐波。

1.2产生来源 电力系统的谐波源主要有三大类。 (1)铁磁饱和型:各种铁芯设备,如变压器、电抗器等,其铁磁饱和特性呈现非线性。 (2)电子开关型:主要为各种交直流换流装置(整流器、逆变器)以及双向晶闸管可控开关设备等,在化工、冶金、矿山、电气铁道等大量工矿企业以及家用电器中广泛使用,并正在蓬勃发展;在系统内部,如直流输电中的整流阀和逆变阀等。 (3)电弧型:各种冶炼电弧炉在熔化期间以及交流电弧焊机在焊接期间,其电弧的点燃和剧烈变动形成的高度非线性,使电流不规则的波动。其非线性呈现电弧电压与电弧电流之间不规则的、随机变化的伏安特性。 2、电力系统中谐波的危害 2.1对供配电线路的危害 2.1.1 影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这

相关主题
文本预览
相关文档 最新文档