当前位置:文档之家› 高等代数(北大版)第6章习题参考答案

高等代数(北大版)第6章习题参考答案

高等代数(北大版)第6章习题参考答案
高等代数(北大版)第6章习题参考答案

第六章线性空间

1.设证明:。

证任取由得所以即证。又因故。再证第二式,任取或但因此无论哪一种情形,都有此即。但所以。

2.证明,。

证则在后一情形,于是所以,由此得。反之,若,则在前一情形,因此故得在后一情形,因而,得故

于是。

若。

在前一情形X,。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:

1)次数等于n(n1)的实系数多项式的全体,对于多项式的加法和数量乘法;

2)设A是一个n×n实数矩阵,A的实系数多项式f(A)的全体,对于矩阵的加法和数量乘法;

3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;

4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法;

5)全体实数的二元数列,对于下面定义的运算:

6)平面上全体向量,对于通常的加法和如下定义的数量乘法:

7)集合与加法同6),数量乘法定义为:

8)全体正实数r,加法与数量乘法定义为:

,;

解1)否。因两个n次多项式相加不一定是n次多项式,例如

2)令V={f(A)|f(x)为实数多项式,A是n×n实矩阵}

因为

f(x)+g(x)=h(x),kf(x)=d(x)

所以

f(A)+g(A)=h(A),kf(A)=d(A)

由于矩阵对加法和数量乘法满足线性空间定义的1~8条,故v构成线性空间。

3)矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,只需证明对称矩阵(上三角矩阵,反对称矩阵)对加法与数量乘法是否封闭即可。下面仅对反对称矩阵证明:当A,B为反对称矩阵,k为任意一实数时,有

,A+B仍是反对称矩阵。

,所以kA是反对称矩阵。

故反对称矩阵的全体构成线性空间。

4)否。例如以已知向量为对角线的任意两个向量的和不属于这个集合。

5)不难验证,对于加法,交换律,结合律满足,(0,0)是零元,任意(a,b)的负元是(-a,-b)。对于数乘:

即。

=,

=,

即,所以,所给集合构成线性空间。

6)否,因为。

7)否,因为,

所给集合不满足线性空间的定义。

8)显然所给集合对定义的加法和数量乘法都是封闭的,满足

所以,所给集合构成线性空间。

4 在线性空间中,证明:1)2)。

证1)。

2)因为。

5 证明:在实函数空间中,1,式线性相关的。

证因为,所以1,式线性相关的。

6 如果是线性空间中三个互素的多项式,但其中任意两个都不互素,那么他们线性无关。

证若有不全为零的数使,

不妨设则,这说明的公因式也是的因式,即有非常数的公因式,这与三者互素矛盾,所以线性无关。

7 在中,求向量在基下的坐标。设

1);

2)。

解1)设有线性关系,则,

可得在基下的坐标为。

2)设有线性关系,则,

可得在基下的坐标为。

8求下列线性空间的维数于一组基:1)数域P上的空间P;2)P中全体对称(反对称,上三角)矩阵作成的数域P上的空间;3)第3题8)中的空间;4)实数域上由矩阵A的全体实系数多项式组成的空间,其中A=。

解1)的基是且。

2) i)令,即其余元素均为零,则是对称矩阵所成线性空间的一组基,所以是维的。

ii)令,即其余元素均为零,则是反对称矩阵所成线性空间的一组基, 所以它是维的。

iii) 是上三角阵所成线性空间的一组基,所以它是维的。

3)任一不等于1的正实数都是线性无关的向量,例如取2,且对于任一正实数,可经2线性表出,即.,所以此线性空间是一维的,且2是它的一组基。

4)因为,,所以,

于是,而。

9.在中,求由基,到基的过渡矩阵,并求向量在所指基下的坐标。设

,,

在下的坐标;

,,

在下的坐标;

,,

在下的坐标;

解()=()=()A

这里A即为所求由基到的过渡矩阵,将上式两边右乘得,

得()=(),

于是

()=(),

所以在基下的坐标为

这里=。

令则

()=()=()A,

()=()=()B,

将()=()代入上式,得

()=()B,

这里

=,B=,

且即为所求由基到基的过渡矩阵,进而有

=()=()

=(),

所以在下的坐标为。

同,同理可得

A=B=

=

则所求由到的过渡矩阵为

B=。

再令+b+c+d,即

由上式可解得在下的坐标为下的坐标为

10.继第9题1)求一非零向量,它在基与下有相同的坐标。

解设在两基下的坐标为,则

=()=()。

又因为

()=()=()A,

所以

=A(A - E)=0。

于是只要令

解此方程组得

= (c为任意非零常数),

取c为某个非零常数,则所求为

11.证明:实数域作为它自身的线性空间与第3题8)中的空间同构。

证因为它们都是实数域上的一维线性空间,故同构。

12.设都是线性空间的子空间,且,证明:如果的维数与的维数相等,那么。

证设dim()=r,则由基的扩充定理,可找到的一组基,因,且它们的唯数相等,故,也是的一组基,所以=。

13.。

1)证明:全体与可交换的矩阵组成的一个子空间,记做C(A);

2)当A=E时,求C(A);

3)当A=时,求C(A)的维数和一组基。

证1)设与A可交换的矩阵的集合记为C(A)。若B,D属于C(A),可得

A(B+D)=AB+AD=BA+DA=(B+D)A,

故B+DC(A)。若k是一数,B,可得

A(kB)=k(AB)=k(BA)=(kB)A,

所以kBC(A)。故C(A)构成子空间。

2)当A=E时,C(A)=。

3)设与A可交换的矩阵为B=(),则B只能是对角矩阵,故维数为n,即为它的一组基。

14.设求中全体与可交换的矩阵所成的子空间的维数和一组基。

解若记

A=,

并设B=与A可交换,即AB=BA,则SB=BS。且由

SB=,

BS==,

可是,

又,

即,

该方程组的系数矩阵的秩为2,所以解空间的维数为5。取自由未知量a,,并

令b=1,其余为0,得=3,a=3;

令=1,其余为0,得=3,a=;

令=1,其余为0,得=1,a=1;

令=1,其余为0,得=0,a=;

令=1,其余为0,得=1,a=1;

则与A可交换的矩阵为

B=,

其中,a,可经b,表示,所求子空间的一组基为

, ,, , ,

且维数为5。

15.如果且,证明:L=L。

证由,知所以a可经线性表出,即可经线性表出,同理,也可经线性表出。故L=L。

16.在中,求由下面向量组生成的子空间的基与维数。设

1),。

解1)的一个极大线性无关组,因此为L的一组基,且的维数是3。

2)的一个极大线性无关组为,故是L的一组基,且维数为2。

17.在中,由齐次方程组

确定的解空间的基与维数。

解对系数矩阵作行初等变换,有

所以解空间的维数是2,它的一组基为

,。

18.求由向量生成的子空间与由向量生成的子空间的交的基与维数,设

1);

2);

3)。

解1)设所求交向量,

则有,

即,

可算得,且,

因此方程组的解空间维数为1,故交的维数也为1。任取一非零解=,得一组基,所以它们的交L是一维的,就是其一组基。

2)设所求交向量,

则有,

因方程组的系数行列式不等于0,故方程组只有零解,即从而

交的维数为0。

3)设所求交向量为,

即,

由知解空间是一维的,因此交的维数是1。令,可得,因此交向量就是一组基。19.设与分别是齐次方程组的解空间,证明:

证由于的解空间是你n-1维的,其基为而由

知其解空间是1维的,令则其基为且即为的一组基,从而又,故。

20.证明:如果那么。

证由题设知因为所以

,又因为所以

故,即证。

21.证明:每一个n维线性空间都可以表示成n个一维子空间的直和。

证设是n维线性空间V的一组基。显然都是V的一维子空间,且=V ,又因为,

故。

22.证明:和是直和的充分必要条件是。

证必要性是显然的。这是因为,所以

充分性设不是直和,那么0向量还有一个分解,

其中。在零分解式中,设最后一个不为0的向量是则,即,

因此,这与矛盾,充分性得证。

23. 再给定了空间直角坐标系的三维空间中,所有自原点引出的向量天添上零向量构成

一个三维线性空间R。

1)问所有终点都在一个平面上的向量是否为子空间?

2)设有过原点的三条直线,这三条直线上的全部向量分别成为三个子空间问能构成哪些类型的子空间,试全部列举出来;

3)就用该三维空间的例子来说明,若U,V,X,Y是子空间,满足U+V=X,XY,是否一定有。

解1)终点所在的平面是过原点的平面,那么所有这些向量构成二维子空间;但终点在不过原点的平面上的向量不构成子空间,因为对加法不封闭。

2) ;

(1)直线与重合时,是一维子空间;

(2)与不重合时,时二维子空间。

(1)重合时,构成一维子空间;

(2)在同一平面上时,构成二维子空间;

(3)不在同一平面上时,构成三维子空间。

3)令过原点的两条不同直线,分别构成一维子空间U和V,X=U+V是二维子空间,在,决定的平面上,过原点的另一条不与,相同的直线构成一维子空间Y,显然因

此,

故并不成立。

二.补充题参考解答

1.1)证明:在P[x]中,多项式

(i=1,2,…,n)是一组基,其中是互不相同的数;

2)在1)中,取是全体n次单位根,求由基1,到基的过渡矩阵。

证1)设,将代入上式,得

于是=0。同理,将分别代入,可得

所以线性无关。而P[x]是n维的,故是P[x]的一组基。

2)取为全体单位根则

...........................................................

故所求过渡矩阵为。

2.设是n维线性空间V的一组基,A是一个n×s矩阵,且,

证明:的维数等于A的秩。

证只需证的极大线性无关组所含向量的个数等于A的秩。设,

且。不失一般性,可设A的前r列是极大线性无关组,由条件得,

可证构成,的一个极大线性方程组。事实上,设,

于是得,

因为线性无关,所以,

该方程组的系数矩阵秩为故方程组只有零解,于是

线性无关。

其次可证:任意添一个向量后,向量组,一定线性相关。事实上,

设,于是,

其系数矩阵的秩为r

3. 设是一秩为n的二次型,证明:有的一个维子空间

(其中为符号差),使对任一,有=0。

证设的正惯性指数为p,负惯性指数为q,则p+q=n。于是存在可逆矩阵,C,Y=CX,使,由==。

下面仅对p

将Y=CX展开,有方程组,

任取,

则线性无关,将分别代入方程组,可解得,使得

,且线性无关。

下面证明p维子空间()即为所要求得。事实上,对任意

(),设,代入得故即证=()。

4. 设,是线性空间的两个非平凡的子空间,证明:在中存在,使

同时成立。

证因为,非平凡的子空间,故存在,如果,则命题已证。设

则一定存在,若,则命题也得证。下设,于是有及

,,因而必有。事实上,若,又

,则由是子空间,必有,这与假设矛盾,即证,同理可证

,证毕。

5.设是线性空间V的s个非平凡的子空间,证明V中至少有一向量不属于中的任何一个。证采用数学归纳法。当n=2时,由上题已证命题成立。

现归纳假设命题对s-1个非平凡的子空间也成立,即在V中至少存在一个向量不属于中任意一个,如果,则命题已证。

若,对向量,且对P中s不同的数对应的s个

向量中不可能有两个向量同时属于某个非平凡的子空间换句话说,上述S个向量中至少有一个向量不属于任意一个非平凡子空间,记为,易见也不属于。即证命题对s个非平凡的子空间也成立。即证。

高等代数北大版第章习题参考答案

第七章 线性变换 1.? 判别下面所定义的变换那些是线性的,那些不是: 1)? 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)? 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)? 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)? 在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)? 在P[x ]中,A )1()(+=x f x f ; 6)? 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)? 把复数域上看作复数域上的线性空间, A ξξ=。 8)? 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y , A (k X )=k BXC k kX B ==)()(A X ,故A 是n n P ?上的线性变换。

高等代数北大版第章习题参考答案精修订

高等代数北大版第章习 题参考答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第 七章 线性变换 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ; 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx ),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。

高等代数(北大版)第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证 ),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈, X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高等代数(北大版)第7章习题参考答案

第七章 线性变换 1.判别下面所定义的变换那些是线性的,那些不是: 1)在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5)在P[x ]中,A )1()(+=x f x f ; 6)在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)把复数域上看作复数域上的线性空间, A ξξ=。 8)在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数北大版第5章习题参考答案(供参考)(精品文档)

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ??? ??=-=+=33 212211y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 2 233 3142y y y y ++--=, 再作非退化线性替换 ??? ? ??? ==+=3 3223112121z y z y z z y (2) 则原二次型的标准形为 ()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为

??? ? ? ? ???=+-=++=333212321 121212 121z x z z z x z z z x (3) 于是相应的替换矩阵为 ?? ?????? ? ?-=? ?????? ??????? ??-=1002112 1 210 2110001021021100011011T , 且有 ??? ? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 2 3322221214422x x x x x x x ++++, 由配方法可得 ()()() 2 33222222121321442,,x x x x x x x x x x x f +++++= ()()2 322 212x x x x +++=, 于是可令 ??? ??=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2 221321,,y y x x x f +=, 且非退化线性替换为 ??? ??=-=+-=33 322321122y x y y x y y y x , 相应的替换矩阵为 ??? ? ? ??--=100210211T ,

高等代数(北大版)第章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证 ),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈, X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

最新高等代数(北大版)第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ??? ??=-=+=33 212211y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 2 233 3142y y y y ++--=, 再作非退化线性替换 ??? ? ??? ==+=3 3223112121z y z y z z y (2) 则原二次型的标准形为 ()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为

??? ? ? ? ???=+-=++=333212321 121212 121z x z z z x z z z x (3) 于是相应的替换矩阵为 ?? ?????? ? ?-=? ?????? ??????? ??-=1002112 1 210 2110001021021100011011T , 且有 ??? ? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 2 3322221214422x x x x x x x ++++, 由配方法可得 ()()() 2 33222222121321442,,x x x x x x x x x x x f +++++= ()()2 322 212x x x x +++=, 于是可令 ??? ??=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2 221321,,y y x x x f +=, 且非退化线性替换为 ??? ??=-=+-=33 322321122y x y y x y y y x , 相应的替换矩阵为 ??? ? ? ??--=100210211T ,

高等代数(北大版)第4章习题测验参考答案

第四章 矩阵 1.设1)311212123A ?? ?= ? ???,111210101B -?? ?=- ? ???2)111a b c A c b a ?? ?= ? ???,111a c B b b c a ?? ? = ? ??? 计算AB ,AB BA -。 解 1)622610812AB -?? ?= ? ? -?? ,400410434BA ?? ?= ? ???222200442AB BA -?? ? -= ? ?--?? 2)222 22222223a b c a b c ac b AB a b c ac b a b c a b c a b c ?? +++++ ?=+++++ ? ?++++? ?222222a ac c b ab c c a BA a ac c b b c ab b a c b bc c c ac a ??+++++ ? =+++++ ? ?+++++?? 33()ij AB BA a ?-=, 其中 11a b ac =-, 22212a a b c b ab c =++---, 221322a b ac a c =+-- 21a c bc =-, 2222a ac b =-, 32223a a b c ab b c =++--- 23132a c a =--, 32a c bc =-, 33a b ab =- 2.计算 2 2111)310012?? ? ? ? ?? 5322)42?? ?--?? 113)01n ?? ??? cos sin 4)sin cos n ? ?? ?-?? ??? ()15)2,3,111?? ?-- ? ?-??,()112,3,11?? ? -- ? ?-?? ()11121321 223131 32 336), ,11a a a x x y a a a y a a a ???? ??? ??? ??????? 2111111117)11111111---?? ?--- ? ?--- ? ?---??,1111111111111111n ---?? ?--- ? ?--- ? ?---??

高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =-X 1+2 X 2 + X 3 3、设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3 试证:α1,α2,α3是V的一组基,并求它的对偶基。 证:设 (α1,α2,α3)=(ε1,ε2,ε3)A 由已知,得 A= 110 011 111????????-?? 因为A≠0,所以α1,α2,α3是V的一组基。设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(Aˊ)1- =(f1,f2,f3) 011 112 111 -???? - ????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V是一个线性空间,f1,f2,…fs是V*中非零向量,试证:?α∈V,使 fi(α)≠0 (i=1,2…,s) 证:对s采用数学归纳法。 当s=1时,f1≠0,所以?α∈V,使fi(α)≠0,即当s=1时命题成立。 假设当s=k时命题成立,即?α∈V,使fi(α)=αi≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1 k+(α)≠0,则命题成立,若f 1 k+ (α)=0,则由f 1 k+ ≠0知,一定?β∈V 使f 1 k+ (β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c≠0,使 ai+cdi≠0(i=1,2…,k) 令c γαβ =+,则γ∈V,且

高等代数-北京大学第三版--北京大学精品课程

一个集合,如果在它里面存在一种或若干种代数运算, 这些运算满足一定的运算法则, 则称这样的一个体系为 定义(数域) 设K 是某些复数所组成的集合。如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、 四则运算 是封闭的,即对K 内任 两个数a 、 b ( a 可 以等于b ), 必有 b K , ab K ,且当b 0时,a/b K ,则称 K 为一个数域。 1.1典型的数域举例: 复数域C ;实数域R ;有理数域 Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = ?. 1 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素 K ,且 a 0。于是 进而 最后, m, n Z 巴K 。这就证明了 n K 。证毕。 1.1.3 集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为 A 与 B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩 定义(集合的映射) 设A 、B 为集合。如果存在法则 f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定 若a a'代都有f (a) 第一章代数学的经典课题 § 1若干准备知识 1.1.1代数系统的概念 个代数系统。 1.1.2数域的定义 定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为 A 与 B 的交集,记作A B ;把A 下的元素组成的集合成为 A 与 B 的差集,记做A B 。 的元素(记做f(a)),则称f 是A 到B 的一个映射,记为 B, f (a). 如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的 B 的 子集称为A 在f 下的像,记做 f (A),即 f (A) f(a)| a A 。 f(a'),则称f 为单射。若 b B,都存在a A ,使得f(a) b ,则称f 为满射。 1.1.4 求和号与求积号 1 ?求和号与乘积号的定义.为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数a 1,a 2, ,a n ,我们使用如下记号: 第一学期第一次课 如果f 既是单射又是满射,则称 f 为双射,或称一一对应。

高等代数(北大版)第6章习题参考答案

第六章线性空间 1?设 MuN,证明:MRN = M、MUN = N。 证任取a eM,由MuN,得awN,所以awMDN,即证又因 MflNuM,故Mp|N = M。再证第二式,任取a^M或a已N,但MuN,因此无论哪一种情形,都有aeN,此即。但N uMU N,所以MUN = N ° 2.证明 Mp|(NUD = (MriN)U(MrU), MU(NfU) = (MUN)n(MUD。 证 VxwMCl(NUD,则在后一情形,于是 xeMflN佥 所以xe(MC\N)\J(MC\L),由此得 MCl(NUD = (MnN)U(Mri 厶)。反之,若 xw(MnN)U(MfU),则XW MCIN或iwMCl L.在前一情形,x 已M、x已 N、因此X^N\JL.故得 xeMCl(NUE),在后一情形,因而 xeM,xeL, x^N\jL ,得 xwMCl(NU 厶),故(MnN)U(MClDuMri(N U 厶), 于是 Mn(NUD=(MriN)u(Mru)。 若xwMU(NDZJ ,贝ijxe M, xeNf)厶。 在前一情形 XxwMUN,且X wMU厶,因而xw(MUN)n(MUL)。 在后一情形,xwN,xwL,因而xiWUN,且XwMU厶,即Xw(MUN)n(MUL)所以(MUN)n(MUL)uMU(NUL) 故MU(Np|L) = (MUN)pl(MUL) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n>l)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A是一个nXn实数矩阵,A的实系数多项式f (A)的全体,对于矩阵的加法和数呈乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向疑的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: (?,勺2(。+ "(4+9,9+2+吧) ko (a ,勺)=(ka P込+ °: 6)平面上全体向量,对于通常的加法和如下定义的数量乘法: £。= 0 ; 7)集合与加法同6),数量乘法定义为: k。a = a ;

高等代数北大版第四章矩阵知识点总结

高等代数北大版第四章矩阵知 识点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第四章 矩阵( * * * ) 一、复习指导:矩阵这一章节可以说是一个基础章节,它不仅很重要,而且还是其他章节的基础,学好矩阵十分重要,我们要对逆矩阵,转置矩阵,对称矩阵等等的概念都要弄清楚,除此之外,还要知道矩阵的运算性质,矩阵的秩。在考试中,很有可能会出与矩阵这一章节有关的证明题,例如证明相互关联的矩阵的秩,矩阵的逆之间的关系,还有可能有与求矩阵的逆有关的题目。总的来说,这一个章节是一个关键的章节,高等代数这本书里面的知识都是融会贯通的,学好了矩阵能够为后面的章节夯实基础。 二、考点精讲: (一) 基本概念及其运算 1.基本概念 矩阵—形如????? ? ? ??mn m m n n a a a a a a a a a 212222111211称为m 行n 列的矩阵,记为n m ij a A ?=)(,行数与列数相等的矩阵称为方阵,元素全为零的矩阵称为零矩阵。 (1)若矩阵中所有元素都为零,该矩阵称为零矩阵,记为O 。 (2)对n m ij a A ?=)(,若n m =,称A 为n 阶方阵。 (3)称??? ? ? ??=11 E 为单位矩阵。 (4)对称矩阵—设n n ij a A ?=)(,若),,2,1,(n j i a a ji ij ==,称A 为对称矩阵。 (5)转置矩阵—设??????? ??=mn m m n n a a a a a a a a a A 2 122221 11211 ,记?? ? ? ? ? ? ??=mn n n m m T a a a a a a a a a A 212221212111 , 称T A 为矩阵A 的转置矩阵。 (6)同型矩阵及矩阵相等—若两个矩阵行数与列数相同,称两个矩阵为同型 矩阵,若两个矩阵为同型矩阵,且对应元素相同,称两个矩阵相等。 (7)伴随矩阵—设n n ij a A ?=)(为n 矩阵,将矩阵A 中的第i 行和j 列去掉,余下的元素按照原来的元素排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,同时称ij j i ij M A +-=)1(为元素ij a 的代数余子式,这样矩阵中的每

高等代数北大版第精选章习题参考答案

第 九章欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α,),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下,n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε,)0,,1,0(2Λ=ε,…,)1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1)),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2)),()()(),(αβαββαβαk k k k ='A ='A =, (3)),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε,)0,,1,0(2Λ=ε,…,)1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=,

因此有B A =。 4) 由定义,知 ∑ =j i j i ij y x a ,),(βα, α== β== 故柯西—布湿柯夫斯基不等式为 2.在4 R 中,求βα,之间><βα,(内积按通常定义),设: 1))2,3,1,2(=α,)1,2,2,1(-=β, 2))3,2,2,1(=α,)1,5,1,3(-=β, 3))2,1,1,1(=α,)0,1,2,3(-=β。 解1)由定义,得 012)1(32112),(=?+-+?+?=βα, 所以 2,π βα>= <。 2)因为 1813521231),(=?+?+?+?=βα, 1833222211),(=?+?+?+?=βα, 3633221133),(=?+?+?+?=βα, 22 36 1818,cos = >= <βα, 所以 4,π βα>= <。 3)同理可得 3),(=βα,17),(=αα,3),(=ββ,773,cos >= <βα, 所以 773cos ,1 ->=<βα。 3.β αβα-=) ,(d 通常为 βα,的距离,证明;

高等代数北大版习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于 A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A = 。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版)第8章习题参考答案

第八章 λ—矩阵 1. 化下列矩阵成标准形 1)??? ? ??+-λλ λλλ λ3522 2 3 2)???? ? ? ?-+--22 2211λλλλλλλλλ 3)??? ?? ??++22)1(000 λλλ λ 4)????? ? ? ? ?---00 000)1(0000 0022 2 2λλλλ λλ 5)???? ? ??---+-+--+-+--+1244323534321232322 222λλλλλλλλλλλλλλ 6)??? ????? ??-----++002213300101 02602206341032λλλλλλλλλλλλλλ 解 1)对-λ矩阵作初等变换,有 A =)(λ ???? ??+-λλλλλλ352223→ ???? ? ?-+λλλ λλλ 322253→ ??? ? ??+λλλλλλ3-10-053232 → ? ?? ? ??--λλλλ3100023= B )(λ, B )(λ即为所求。 2)对-λ矩阵作初等变换,有 A =)(λ ????? ? ?-+--22 2211λλλλλλ λλλ→ ???? ? ??--22 2101λλλλ λλ→ ??? ?? ??+--)1(000001λλλλ

→ ??? ? ? ??+λλλ 2000000 1= B )(λ, B )(λ即为所求。 3)因为??? ?? ??++22)1(000 λλλλ的行列式因子为 D 1 =1, D 2 =)1(+λλ, D 3 = 3 2 )1(+λλ, 所以 d 1 = 1, d 2 = 12 D D = )1(+λλ, d 3 = 2 3D D = 2)1(+λλ, 从而 A =)(λ????? ? ?++22)1(000 00 λλλ λ→ ??? ?? ??+λλ+λλ2)1(000)1(0001= B )(λ, B )(λ即为所求。 4)因为???? ? ? ? ? ?---00 000)1(0000 0022 2 2λλλλ λλ的行列式因子为 D 1 =1, D 2 =)1(-λλ, D 3 = 22)1(-λλ, D 4 = 44)1(-λλ, 所以 d 1 = 1,d 2 = 1 2 D D = )1(-λλ,d 3 = 2 3 D D = )1(-λλ,d 4 = 3 4 D D = 22)1(-λλ, 从而 A =)(λ????? ? ? ? ?---00 000)1(0000 0022 2 2λλλλ λλ

相关主题
文本预览
相关文档 最新文档