当前位置:文档之家› 自适应滤波器的设计与实现

自适应滤波器的设计与实现

自适应滤波器的设计与实现
自适应滤波器的设计与实现

目录

摘要 ..................................................................................................................................... I 1绪论. (1)

1.1引言 (1)

1.2课题研究意义和目的 (1)

1.3国内外研究发展状况 (2)

1.4本文研究思路与主要工作 (4)

2自适应滤波器理论基础 (4)

2.1滤波器的基本概念 (4)

2.2数字滤波器的基本概念 (5)

2.3自适应滤波器的原理 (6)

2.4自适应滤波算法种类 (8)

2.4.1最小均方(LMS)算法 (8)

2.4.2递推最小二乘法(RLS)算法 (11)

3自适应滤波器的设计 (14)

3.1无限冲激响应(IIR)滤波器 (14)

3.1.1自适应IIR滤波器的基本原理 (14)

3.1.2方程误差结构形式自适应IIR滤波器 (14)

3.1.3 IIR滤波器的一般结构 (16)

3.2有限冲激响应(FIR)滤波器 (17)

3.2.1FIR横向型滤波器的一般结构 (17)

3.2.2FIR横向性滤波器的工作原理 (17)

3.3 IIR滤波器和FIR滤波器的比较 (20)

4基于DSP实现自适应滤波器 (20)

4.1 MATLAB语言介绍 (20)

4.2 MATLAB仿真 (22)

4.2.1 MATLAB程序仿真 (22)

4.2.2 仿真结果 (23)

4.3 DSP的理论基础 (24)

4.4自适应滤波算法的DSP实现 (25)

5总结与展望 (28)

参考文献 (29)

致谢 (29)

附录自适应滤波子程序 (30)

2

摘要

自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供一种吸引人的解决方法,而且其性能通常远优于用常方法设计的固定滤波器。此外,自适应滤波器还能提供非自适应方法所不可能提供的新的信号处理能力。

本文从自适应滤波器研究的意义入手,介绍了自适应滤波器的基本理论思想,具体阐述了自适应滤波器的基本原理、算法及设计方法。自适应滤波器的算法是整个系统的核心。本文中,对两种最基本的自适应算法,即最小均方误差(LMS)算法和递归最小二乘(RLS)算法进行了详细的介绍和分析,并针对两种算法的优缺点进行了详细的比较。同时,分别对FIR结构和IIR结构自适应滤波器做了详细的介绍,比较了FIR结构和IIR结构自适应滤波器的优缺点。最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP实现了自适应滤波器。实验结果表明,该自适应滤波器滤波效果优越。

关键词:自适应滤波器;LMS算法;FIR结构滤波器;DSP

I

1绪论

1.1引言

滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。

1.2课题研究意义和目的

对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。Windrow等于1967年提出的自适应滤波系统的参数能自动的调整而达到最优状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多像维纳滤波器那样简单,而滤波器性能几乎如卡尔曼滤波器一样好。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系统具有很强的自学习、自跟踪能力和算法的简单易实现性。自适应滤波技术的核心问题是自适应算法的性能问题,提出的自适应算法主要有最小均方(LMS)算法、递归最小二乘(RLS)算法及相应的改进算法如:归一化(NLMS)算法、变步长(SVSLMS)算法、递归最小二乘方格形(RLSL)算法等。这些算法各有特点,适用于不同的场合。研究自适应算法是自适应滤波器的一个关键内容。最小均方误差(LMS,The least Mean square)算法是线性自适应滤波算法中最基本的两类算法之一,其主要思想是基于最小均方误差准则,使滤波器的输出信号与期望输出信号之间的均方误差最小。由于LMS算法简单有效、鲁棒性

1

好、易于实现,得到了广泛的应用。目前应用最多的是系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测、自适应天线阵等诸多领域。

1.3国内外研究发展状况

自适应滤波的基本理论通过几十年的发展已日趋成熟,近十几年来自适应滤波器的研究主要针对算法与硬件实现。算法研究主要是对算法速度和精度的改

进,其方法大都采用软件C、MATLAB等仿真软件对算法的建模和修正。通常,自适应滤波器的硬件实现都是用DSP通用处理器(如TI的TMS320系列)。DSP器件采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据,内置高速的硬件乘法器(MAC),增强的多级流水线。DSP具有的硬件乘法模块(MAC),专用的存储器以及适用于高速数据运行的总线结构,使DSP器件具有高速的数据运算能力。目前,用DSP器件处理数字信号已经成为电子领域的研究热点。在自适应信号处理领域,对于数据处理速度在几兆赫兹以内的,通用DSP器件也是首选。迟男等人在TMS320C32芯片上扩展EPROM和RAM,实现了30阶LMS自适应滤波器,使用的刀D转化器件为AD1674,最高采样频率为l00KHz。陆斌等人采用TMS320C30数字信号处理器与IMSA110专用滤波器并行处理的方法设计出了自适应滤波器并应用于直接序列的扩频接收系统1221。赵慧民等人在TMS320C31上实现了自适应权向量滤波器,完成了信号采样频率为80KHz的自适应滤波。在数据处理速度只要求在几兆赫兹以内的应用场合,这些用DSP实现的自适应滤波器能很好的满足系统实时的需求。在这种需求场合下,DSP具有不可媲美的性价比。

但是随着信息化的进程加快和计算机科学与技术、信号处理理论与方法等的迅速发展,需要处理的数据量越来越大,对实时性和精度的要求越来越高。以迅

速发展的移动通信技术为例,从IG时代只能传送语音的模拟通信,到2G时代的传送语音和数据的GSM、TDMA与CDMA1595,到2.5G时代传送语音、数据、图片、彩信MMS、简短视频、收发E-mail、网页浏览等的GPRS与CDMA2000lX,到目前正处于研发与测试阶段的能够传送图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务的3G通信,以及目前正在研发与憧憬中的能够传送高质量流畅的视频流与多种实时流媒体业务的4G通信。系统的功能是越来越强大,但对数据传送与处理的速率要求也是越来越高。目前广泛使用的GSM系统的数据传输速率只有9.6kbit/s,窄带CDMA传输速率也只有14.4kbit/s,但到2.5G的GPRS系统数

2

据传输速率达到了150kbit/t左右,而根据IMT2000协议,3G通信室内或静止状态下的数据传输速率将达到2Mbit/s,到了基于全IP网络的4G时代,在慢速或静止状态下数据传输速率将达到100Mbit/s。而自适应接收技术包括自适应均衡器、智能天线、自适应调制、自适应编码等,是数字通信系统中的关键技术之一。通信系统发展到3G 后,几十甚至上百兆比特每秒的数据传输速率对自适应接收技术是个极大的挑战。DSP 处理器虽然具有良好的通用性和灵活性,虽然其在硬件结构上得到了很大的改进,比如增加了多个硬件乘法器和使用多乘法器的并行指令等,但并没有摆脱传统的CPU工作模式,而且DSP处理器是通过软件指令完成DSP算法,其顺序的工作方式制约了其数据处理速率,而使用多片DSP组合电路和过多的外部接口电路将导致信号通道过长、过于复杂,成本也成倍地提高,因此DSP处理器对于3G和4G通信中几十甚至上百兆比特每秒的数据处理速率显得无能为力。

常用的数字系统目标器件除了DSP处理器外还有专用集成电路(ASIC)、专用标准电路模块(ASSP)和现场可编程门阵列(FPGA)。ASIC和ASSP是专门针对完成某种数字信号处理算法的集成电路器件,因此其在性能指标、工作速度、可靠性和成本上优于DSP处理器。其优秀的工作性能主要源于特定的算法全部由ASSP和ASIC中的硬件电路完成。ASSP是半定制集成电路,在许多DSP算法的实现方面都优于DSP(数字信号处理器),但在功能重构,以及应用性修正方面缺乏灵活性;ASIC专用集成电路使用超大规模专用集成电路ASIC的实现方法是实用化的产品唯一可行的方法,只有使用IC,才有高可靠性和可接受的价格及体积功耗等。ASIC虽然有一定的可定制性,但开发周期长,而且有一个最小定制量,在实验室研制开发阶段,开发成本非常高。现代大容量、高速度的FPGA在可重配置的数字信号处理应用领域,特别是对于任务单一、算法复杂的前端数字信号处理运算,有独特的优势。例如对于需要经常更新滤波器权系数的自适应滤波器,由于特定DSP处理器的位数是固定的,采用FPGA处理器相比DSP处理器就具有总线可调整的优势。另外,FPGA所具有的大规模并行处理能力和可编程的灵活性使得设计的系统能获得极高的处理性能,并且能够适应日益变化的标准、协议和性能需求。用FPGA实现自适应滤波器,国外起步比较早,发展也非常迅速。Hesener A.于1996年提出了用FPGA实现自适应滤波器的设想,并在FPGA上实现了处理速度可达SM的8阶8位FIR滤波器。Woolfries N.等人用FPGA实现了自适应栈滤波器,并应用于图象处理。Dawood A.等人用FPGA开发了自适应FIR滤波器并与DSP处理器方案进行了比较研究。国内有一些关于自适应算法硬件实现的研

3

究,但基本是针对自适应滤波器中的算法,如南开大学李国峰的博士论文用VHDL语言描述了正负数的运算问题和浮点数运算问题,完成了基于FIR的LMS自适应滤波器的硬件设计与逻辑综合。国防科学技术大学江和平等人讨论了自适应卡尔曼算法的简化,并完成了FPGA的设计。同济大学梁甲华等人重点讨论了编码方法在FPGA的技术问题。上海交通大学范瑜等人介绍了用VHDL语言实现并行延时LMS算法的自适应数字波束成形器的FPGA设计过程。而针对自适应格型结构采用FPGA硬件实现的文献报导很少,国内中国科学技术大学王显洁等人通过采用流水线结构和运算单元分时复用,提高了运算速度,能够满足实时性预测编码要求。1998年弗吉尼亚大学的StephenJ.Hevey在其硕士论文中利用DSP处理器和自适应格型递归滤波算法完成了对线性二次型最优控制器的设计,通过实验表明了在宽带干扰下格型结构的滤波器性能优于LMS滤波器,在窄带和谐波干扰下两者的区别不大,但所需阶数至少比LMS滤波器减少一半,可以节省大量硬件资源。

1.4本文研究思路与主要工作

本文设计要求使用DSP实现自适应滤波器,要求完成自适应滤波器的设计和调试。自适应滤波器的设计需要使用自适应算法(LMS算法),LMS算法是通过对未知系统传递函数的建模,识别该未知系统,并对该系统进行噪声滤波。

自适应滤波器,其权系数可以根据自适应算法来不断修改,使得系统中的冲激响应满足给定的性能。例如语音信号的ADPCM编码,采用线性预测自适应就可以实现误差信号与输入信号的线性无关,并由此作为依据,不断调节滤波器的权系数,最终使得误差信号趋近于0,使得该滤波器完全适应该输入信号;同样,只要输入信号出现变换,自适应滤波器根据误差信号的变化再次调整其权系数,从而跟上信号的变化。自适应滤波器设计的算法采用的是自适应算法,即LMS算法。LMS算法是通过对未知系统传递函数的建模,识别该未知系统,并对该系统进行噪声滤波。

2自适应滤波器理论基础

2.1滤波器的基本概念

凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信装备和各类控制系统中,滤波器应用极为广泛;在所有的电子部件中,使用最多,技术最复杂要算滤波器了。滤波器的优劣直接决定产品的优劣,所以,对滤波器的研究和生产历来为各国所重

4

5 视。

滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的交流

电。您可以通过基本的滤波器积木块——二阶通用滤波器传递函数,推导出最通用的滤

波器类型:低通、带通、高通、陷波和椭圆型滤波器。传递函数的参数——f0、d 、h

HP 、hBP 和hLP ,可用来构造所有类型的滤波器。转降频率f0为s 项开始占支配作

用时的频率。设计者将低于此值的频率看作是低频,而将高于此值的频率看作是高频,

并将在此值附近的频率看作是带内频率。阻尼d 用于测量滤波器如何从低频率转变至高

频率,它是滤波器趋向振荡的一个指标,实际阻尼值从0至2变化。高通系数hHP 是

对那些高于转降频率的频率起支配作用的分子的系数。带通系数hBP 是对那些在转降

频率附近的频率起支配作用的分子的系数。低通系数hLP 是对那些低于转降频率的频

率起支配作用的分子的系数。设计者只需这5个参数即可定义一个滤波器。

2.2 数字滤波器的基本概念

从输入信号中滤出噪声和干扰以提取有用信息的过程称为滤波,相应的装置称为滤

波器。如果滤波器的输入和输出均为离散信号,称该滤波器为数字滤波器。当滤波器的

输出信号为输入端的线性函数时,该滤波器称为线性滤波器,否则就称为非线性滤波器。

一个典型的数字滤波器的框图如图2-1所示。

X(n)Y(n)H(n)

图2-1 数字滤波器

设输入信号为x(n),输出信号为y(n),该数字滤波器可用以下差分方程来表示:

()∑∑-=-=---=1

01

1)()(M i N i i

i i n y b i n x a n y (2-1) 式中i a ,i b 称为滤波器系数。

当0=i b 时,上式变为:

()()∑-=-=10

M i i

i n x a n y (2-2)

6

这种滤波器称为全零点滤波器。

如果0=i a ,0≠i b 时,则称为全极点滤波器或递归滤波器。

由上式,可知数字滤波器的传递函数为:

()∑∑=--=-+=M

i i

i M i i

z b z a z H 11

11 (2-3) 其单位冲击响应函数为:

()()()z H z n h 1-= (2-4)

()()()()()∑∞

-∞=-=

?=i i n x i h n x n h n y (2-5) 如果当n<0时,有h(n)=0,这样的滤波器系统称之为因果系统。如果冲激响应函数是有

限长的,即

()()???≤≤=e l s e N

n n h n h ,00, (2-6)

则称此滤波器为有限冲激响应FIR(FiniteImpulseResponse)滤波器,否则,称之为无

限冲激响应IIR(InfiniteImpulseResponse)滤波器。

如果h(n)满足如下条件:

()()??

???<<=∑∞=C n h n n h n 00,0 则称此滤波器是因果的,并且是稳定的。

2.3 自适应滤波器的原理 所谓的自适应滤波,就是利用前一时刻以获得的滤波器参数的结果,自动的调节现

时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优

滤波。自适应滤波器实质上就是一种能调节其自身传输特性以达到最优的维纳滤波器。

自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。由于

无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用FIR 和II 种具有固

7

定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟

踪信号和噪声的变化。自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来

实现的。一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系

数的自适应算法。自适应滤波器的结构采用FIR 或IIR 结构均可,由于IIR 滤波器存在

稳定性问题,因此一般采用FIR 滤波器作为自适应滤波器的结构。图2-2示出了自适应

滤波器的一般结构。

图2-2为自适应滤波器结构的一般形式,图中x (k)输入信号,通过权系数可调的数

字滤波器后产生输出信号y (k),将输出信号y (k)与标准信号(又称期望信号)d(k)进

行比较,得到误差信号e (k)。e (k)和x (k)通过自适应算法对滤波器的权系数进行调整,

调整的目的使得误差信号e (k)最小。重复上面过程,滤波器在自己的工作过程中

逐渐了解到输入信号和噪声的统计规律,并以此为根据自动调整滤波器权系数,从而达

到最佳的滤波效果。一旦输入的统计规律发生了变化,滤波器能够自动跟踪输入信号变

化,自动调整滤波器的权系数,最终达到滤波效果,实现自适应过程。图2-3是使用自

H(Z)W(Z)

x(n)y(n)

d(n)

e(n)-

+图2-3 自适应滤波器的系统识别框图

参考可调滤波器

自适应算法+

输入信号

标准信号

+

-误差信号

Y (k )

图2-2 自适应滤波器结构的一般形式

8 适应滤波器的系统识别原理图。

自适应滤波器的结构可以采用FIR 或IIR 滤波器存在稳定性问题,因此一般采用FI

R 滤波器作为自适应滤波器的结构。自适应FIR 滤波器结构又可分为3种结构类型:横

向型结构(Transversal Structure )、对称横向型结构(Symmetric Transversal Str

ucture )以及格型结构(Lattice Struture )。本文采用自适应滤波器设计中最常用的F

IR 横向型结构。

2.4自适应滤波算法种类

2.4.1 最小均方(LMS )算法

由Widrow 和Hoff 引入的最小均方(LMS)算法,由于其简单性、运算高效性各种

运行条件下良好的性能,而被广泛应用。基于梯度的最小均方(LMS)算法是最基本的算

法,其含义相对简单明了。选定均方误差为权矢量二次函数时,性能度量曲线可以形象

地看成一个碗形曲面这样自适应处理器的任务便是不断地向最低点逼近,即可以通过计

算梯度的方法实现性能度量的最优化。而基于梯度的算法中,最简单的一种就是最小均

方算法LMS 算法,LMS 算法使用的准则是使均衡器的期望输出值和实际输出值之间

的均方误差(MSE)最小化的准则,依据输入信号在迭代过程中估计梯度矢量,并更新权

系数以达到最优的自适应迭代算法。这算法不需要计算相应的相关函数,也不需要进行

矩阵运算。自适应滤波器最普通的应用就是横向结构。滤波器的输出信号y(n)是y(n)

()()()()()∑-=-=*=1

0N i i T

i n x n w n x n w n y (2-7) T 表示转置矩阵, n 是时间指针,N 是滤波器次数。这个例子就是有限脉冲响应滤波器

的形式,为x(n)和w(n)两个矩阵卷积。

这种自适应算法使用误差信号

()()()n y n d n e -= (2-8)

为了方便起见,将上述式子表示为向量形式,则上述式子表示为:

()()()n x n w n y T *= (2-9)

误差序列可写为

()()()()()()n x n w n d n y n d n e T *-=-= (2-10)

9

其中d(n)是期望信号,y(n)是滤波器的输出。使用输入向量x(n)和e(n)来更新自适应滤

波器的最小化标准的相关系数。

显然,自适应滤波器控制机理是用误差序列e(n)按照某种准则和算法对其系数

{wi(n)},i=1,2,…,N 进行调节的,最终使自适应滤波的目标(代价)函数最小化,达

到最佳滤波状态。

本节所用的标准是最小均方误差(MSE )。

()[]n e E e 2= (2-11)

E[]表示算子期望。假如公式中的y(n)被公式(3.3)取代,公式(3.5)就可以表

示为

()[]()()()P n w n w R n w n e E e T T *-**+=22 (2-12)

()()[]

n x n x E R T *=是N N ?自相关矩阵,是输入信号的自相关矩阵。 ()()[]n x n d E P *=是1*N 互相关向量,也指出了期望信号d(n)和输入信号向量x(n)的相

互关矢量。

由式(2-12)可见,自适应滤波器的代价函数是延迟线抽头系数的二次函数。当矩阵R

和矢量P 己知时,可以由权系数矢量w 直接求其解。

最优解[]T

N o w w w w ***=-110 最小化MSE ,源自解这个公式 ()0=n w δδε

(2-13)

将式(2-12)对w 求其偏导数,并令其等于零,假设矩阵R 满秩(非奇异),

可得代价函数最小的最佳滤波系数

P R w *=-10 (2-14)

这个解称为维纳解,即最佳滤波系数值。因为均方误差(MSE)函数是滤波系数w 的二次

方程,由此形成一个多维的超抛物面,这好像一个碗状曲面又具有唯一的碗底最小点,

通常称之为自适应滤波器的误差性能曲面。当滤波器工作在平稳随机过程的环境下,这

个误差性能曲面就具有固定边缘的恒定形状。自适应滤波系数的起始值{wi(0)},i=1,

2,…,N 是任意值,位于误差性能曲面上某一点,经过自适应调节过程,使对应于滤

10

波系数变化的点移动,朝碗底最小点方向移动,最终到达碗底最小点,实现了最佳维纳

滤波。

自适应过程是在梯度矢量的负方向接连的校正滤波系数的,即在误差性能曲面的最陡下

降法方向移动和逐步校正滤波系数,最终到达均方误差为最小的碗底最小点,获得最佳

滤波或准最优工作状态。广泛使用的LMS 算法是一种选择性法适应采样和采样基础。

这个方法可以避免复杂的计算。LMS 算法是最陡下降法,在这个算法中,向量w(n+1)

通过改变对最小均方误差性能的负梯度比例自适应滤波算法及应用研究来增强。

对于LMS 算法梯度v(n)通过假设平方误差。2(n)作为公式2-13的MSE 来预测。因此,

梯度预测可以单一化表示为:

()()[]()

()()n x n e n w n e n *-==?22δδ (2-15) 在实际应用中,2u 经常用来代替u 。瞬间梯度预测产生的Widrow 一Hoff LMS 算法,

w(n)为自适应滤波器在n 时刻的滤波系数或权矢量。按照最陡下降法调节滤波系数,则

在n+1时刻的滤波系数或权矢量w(n+l)可以用下列简单递归关系来计算:

()()()()n x n e u n w n w **+=+21 (2-16)

u 是自适应步长来控制稳定性和收敛率。这种瞬时估计是无偏的,因为它的期望值E[]

等于最陡下降法的梯度矢量。

以任意初始向量w(0)来开始,向量w(n)集中在最佳解决方法

0w ,假如选择u m a x 10λ<

[]()()001

0max Nr r R Tr N i ==<∑-=λ (2-18)

Tr[.]为指示矩阵的轨迹,()()[]n x E r 20=是平均输入功率。

对于自适应信号处理应用,最重要的实际考虑是收敛速度,决定滤波器跟踪不稳定型号

的能力。总体来说,权向量要获得收敛只有当最缓慢的权集中一点。这个最慢的时间

min 1

λu t = (2-19)

11

这个指出时间连续相反的以u 的比例收敛,并且依靠输入矩阵的自相关特征值。具

有全异的特征值,规定时间是受最慢模式的限制。以梯度预测为基础的自适应导致噪声

矩阵的权向量,因此会有性能的损失。这个自适应处理的噪声导致稳态权向量随意的改

变为最适宜的权向量。稳态权向量的精度通过超额的最小均方误差来测量。这个LMS

算法超过EMS 的是

[]m i n ε**=R Tr u excessEMS (2-20)

min ε是MSE 在稳态的最小值。

公式(2-19)和(2-20)产生LMS 算法基本协定:为了在稳态获得高精度(低超自适应滤

波算法及应用研究额MSE ),需要u 的最小值,但是也会降低收敛率。后面会有进一步

关于LMS 算法特征的讨论。

对于N 维更新u*e(n)是常数,误差信号e(n)乘以u 得到u*e(n)。这个常数首先

计算,然后乘以x(n)来更新w(n)。自适应LMS 算法如同最陡下降法,利用时间n=0

的滤波系数矢量为任意的起始值w(0),然后开始LMS 算法的计算,其步骤如下:

l)由现在时刻n 的滤波器滤波系数矢量估值w(n),输入信号矢量x(n)及期望信

号d(n),计算误差信号e(n):

()()()n y n d n e -= (2-21)

2)利用递归法计算滤波系数矢量的更新估值。

3)将时间指数n 增加1,回到第一步骤,重复上述计算步骤,一直到达稳定状态为止。

由此可见,自适应LMS 算法简单,它既不需要计算输入信号的相关函数,又不要求矩

阵之逆。因而得到了广泛的应用。

2.4.2 递推最小二乘法(RLS )算法

从2.1节的分析得知,LMS 算法的收敛速度很慢,为了得到较块的收敛速度,有

必要设计包含附加参数的更复杂的算法。特别是,如果矩阵R 是N×N 的且特征值为

N λλλ,,, 21,则可以使用一种含有N 个参数的算法,其中每个参数对应一个特征值。

在快速收敛算法的推导中,我们将采用最小二乘法。因此,将直接处理接收数据,

使二次性能指数最小,而以前是使平方误差的期望值最小。这意味着,用时间平均而不

是统计平均来表示性能指数。

基于时间平均的最小平方误差被定义如下:

12

()()()n i e n i e n J n n i ,,*11-=∑=λ

(2-22)

式中,λ是接近1,但是小于1的加权因子,e*(i,n)是e(i,n)的复共轭,且误差e(i,n)为:

()()()()n w i x i d n i e T -=, n i ≤≤0 (2-23)

()()()()[]T

N i x i x i x i x 1,,1,+--= (2-24) 式中,x(i)是i 时刻的输入数据向量,w(n)是n 时刻的新的抽头增益向量。因而e(i,n)是

用n 时刻的抽头增益向量测试i 时刻的旧数据所得的误差,J(n)是在所有旧数据上用新

抽头增益所得的累计平方误差。

要完成RLS 算法就要找到均衡器的抽头增益向量w(n),使得累计平方误差J(n)最小。

为了测试新的抽头增益向量,会用到那些先前的数据。而因子λ会在计算时更依赖于新

近的数据,也就是说,J(n)会丢掉非稳定环境中的较旧的数据。如果信道是稳定的,那

么λ可以设为1。

为了获得J(n)的最小值,可使J(n)的梯度为0,即

()()0=??n J n w ,通过运算可知:

()()()n p n w n R =∧ (2-25)

式中,()n w ∧

是RLS 均衡其的最佳抽头增益向量。

()()()i x i x n R T n i n *11∑=-=λ (2-26)

()()()i x n d n P n i n *11∑=-=λ (2-27)

式(2-26)中的方阵R(n)是输入数据向量x(i)的确定相关矩阵,式(2-26)中向量P(n)是输入

向量x(i)和期望输出d(i)之间的确定互相关矩阵。要用式(2-25)计算均衡器的抽头增益向

量∧w ,就需要计算()n R 1-。

从式(2-26)中R(n)的定义可知,我们可以得到关于R(n-1)的递归公式。

()()()()n x n x n R n R T +-=1λ (2-28) 由于式(2-28)中的三项都是N×N 的方阵,我们可以使用方程倒数的引理得到()n R 1-递归

13

公式:

()()()()()()()??????+----=----n n R n x n x n R n R n R T μλλ11111111

(2-29) 式中

()()()()n x n R N x n T 11-=-μ (2-30) 根据上述递归公式,可知:

()()()()1,*1-+-=n n e n g n w n w (2-31) 式中

()()()()n n x n R n g μλ+=

-1 (2-32)

初始化:

()()()δδ,0,0001I R g w ===-是一个正常数 计算:

对于n=1,2…,计算

()()()n x n w n y T 1-= ()()()n y n d n e -=

()()()

()()()n x n R n x n x n R n g T 1111-+-=--λ ()()()()()[]111111---=---N R n x n g n R n R T λ

()()()()n e n g n w n w *1+-= λ是一个可以改变均衡器性能的抽头系数。如果信道是非时变的,那么λ可 以设为1。而通常的λ取值为0.8<λ<1。λ值对收敛速率没有影响,但是它影响

着RLS 算法的跟踪能力。λ值越小,均衡器的跟踪能力更强。但是,如果λ值太小,均衡器将会不稳定。

14

3 自适应滤波器的设计

3.1 无限冲激响应(IIR )滤波器

3.1.1 自适应IIR 滤波器的基本原理

图3-1为自适应IIR 滤波器的基本结构,其输入为x(n),输出为y(n),滤波器由可变系数IIR 滤波器和递归算法组成,递归算法通过预测误差e(n)去调系数θ(n),以使输出y(n)按某种准则逼近于期望响应d(n)。θ为描述滤波器具有零点和极点转移函数的系数参数。滤波器输出误差e(n)=d(n)-y(n)是按某种准则,如均方误差(MSE)或递归最小二乘(RLS)准则等,使e2 (n)最小化,可调整IIR 系数使输出信号y(n)逼近于期望响应d(n) 。 输入 x(n)输出

y(n)时变IIR 滤波 递归算法

期望响应d(n)

e(n) 预测误差

图3-1 自适应IIR 滤波器()

n θ

3.1.2 方程误差结构形式自适应IIR 滤波器

图3-2为方程误差自适应IIR 滤波器的结构框图,其差分方程表示式如式(3-1),可以看出,它被描述为非递归差分方程形式:

()()()()()∑∑-=-=-+-=111

0N m m M m m e m n x n b m n d n a n y (3-1) 显然,这里()n a m ,()n b m 都是待调整的系数,下标“e ”表示方程误差法以区别输

出误差方法。

15 x(n)d(n)),(11q n A -)

(0n y ),(q n A )

,(q n B )

(n e e )(n y e ∑

+++

-方程误差图3-2 方程误差结构形式

从式中可以看出,这是由两个输入单个输出组成的滤波器。两个输为样本输入x(n)和期望输入d(n),输出样本没有反馈回输入端。所以,出()n y e 是系数的线性函数,这

大大简化了梯度类算法,因为d(n),x(n)是系数的函数,则()n y e 对系数的导数是非递归

的,且易于计算。

利用延迟算子,式(3-1)可重新表述成更方便的形式:

()()()()()n x q n B n d q n A n y e ,,+= (3-2)

式中,多项式表示时变滤波器,且有:

()()∑-=-=1

1,N m m m q n a q n A ,1,,1-=N m (3-3)

()()∑-=-=1

0,M m m m q n b q n B ,1,,1,0-=M m (3-4)

值得注意的是A(n,q)中求和的下界从m=1开始,因此A(n,q)d(n)仅依赖于d(n)的延迟样本,这种形式的表示法可用于在任何瞬时发现自适应滤波器A(n,q)的零点。例如图3-2中,在每次系数更新后和系数()n a m 被复制到逆滤波器1/[1-A(n,q)]之前,有必要检测

[1-A(n,q)]的零点,以确定逆滤波器是否是一稳定系统。如果不是稳定系统,则应采取某种措施,如在逆滤波器形成之前将它的根投影到单位圆内等。

方程误差()()()n y n d n e e e -=也是滤波器系数的线性函数,因此,()n e e 的均方函数是系数的二次函数。如果数据的相关阵非奇异,仅有一个全局最小点,则在很大程度上使方程误差自适应IIR 滤波器都像一个自适应FIR 滤波器。而它们之间最主要的区别在

16

于,方程误差自适应IIR 滤波器把逆滤波器1/[1-A(n,q)]级联到B(n,q)之后,它就是一个零点-极点模型,而自适应FIR 滤波器因A(n,q)=0,是一个严格的全零点模型。

方差误差自适应IIR 滤波器与自适应FIR 滤波器具有相似的自适应算法和相似的收敛性解,收敛速度和系数的稳定性都是由Hessian 矩阵的特征值决定的。

差分方程式(3-1)还可以表示成内积的矩阵形式:

()()n n y e T e ?θ= (3-5)

上式右边的系数矢量θ和信号矢量()n e φ的长度都是M+N-1,并分别定义为:

()()()()[]T

M N n b n b a n a n 1011--= θ (3-6) ()()()()()[]T

e M n x n x N n d n d n 111+-+--= ? (3-7) 表达式(3-5)具有线性回归的形式,θ为对应于待估计的参数,e ?称为包含测量数据

的回归矢量。这样表示的结果使得可以利用数理统计中的参数估计方法来对系数θ进行优化,如用最大似然参数估计均方误差方法、最小均方误差(LMS )算法和递归最小二乘(RLS)方法等。

3.1.3 IIR 滤波器的一般结构

根据前面所介绍的IIR 滤波器的传递函数可表示为:

()()

()z B z A z H = (3-8)

假设滤波器有m 个零点,n 个极点,且滤波器参数可调,这样H(z)可写为:

()n nk k m

mk k k z b z b z a z a a z H ----++++++= 111101 (3-9)

图3-3画出了IIR 滤波器的一般结构,其输入为x ,输出为u 。

图3-3 IIR 滤波器的一般结构x ?∑=-m l l lk

z a 0+-

∑=-n l lk

z b

11k u

最新自适应滤波器的设计开题报告

长江大学 毕业设计开题报告 题目名称自适应滤波器的设计与应用学院电信学院 专业班级信工10702班 学生姓名李雪利 指导教师王圆妹老师 辅导教师王圆妹老师 开题报告日期 2010年3月19日

自适应滤波器的设计与应用 学生:李雪利,长江大学电子信息学院 指导教师:王圆妹,长江大学电子信息学院 一、题目来源 来源于其他 二、研究目的和意义 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过。而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。 在数字信号处理中,数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。在许多应用场合,由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用 FIR 和 IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器是利用前一时刻已获得的滤波器参数,自动地调节、更新现时刻的滤波器参数,以适应信号和噪声未知的统计特性,从而实现最优滤波。当在未知统计特性的环境下处理观测信号时,利用自适应滤波器可以获得令人满意的效果,其性能远超过通用方法所设计的固定参数滤波器。

三、阅读的主要参考文献及资料名称 1、《数字信号处理》刘益成(第二版)西安电子科技出版社 2、《数字信号处理》张小虹(第二版)机械工业出版社 3、自适应信号处理[M].西安:西安电子科技大学出版社,2001. 4.邹理和,数字信号处理, 国防工业出版社,1985 5.丁玉美等, 数字信号处理,西安电子科技大学出版社,1999 6.程佩青, 数字信号处理,清华大学出版社,2001 7. The MathWorks Inc, Signal Processing Toolbox For Use with MATLAB, Sept. 2000 8. vinay K.Ingle, John G.Proakis,数字信号处理及MATLAB实现,陈怀琛等译,电子工业出版社,1998.9 9、《MATLAB编程参考手册》 10、中国期刊网的相关文献 11、赫金,自适应滤波器原理第四版,西安工业出版社,2010-5-1 四、国内外现状和发展趋势与主攻方向 自适应滤波器的理论与技术是50年代末和60年代初发展起来的。它是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能。自适应滤波器在数字滤波器中试属于随机数字信号处理的范畴。对于随机数字信号的滤波处理,通常有维纳滤波,卡尔曼滤波和自适应滤波,维纳滤波的权系数是固定的,适用于平稳随机信号;卡尔曼滤波器的权系数是可变的,适用于非平稳随机信号中。但是,只有在对信号和噪声的统计特性先验

滤波器设计步骤及实现程序

数字滤波器的设计步骤及程序实现 湖南理工学院信息与通信工程学院 一、IIR 脉冲响应不变法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=pi, T /ω=Ω 3、求原型模拟滤波器的c N Ω,,其中:??? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/)()( 6、将)(s H a 化为部分分式展开形式∑-=k k a s s A s H )( 7、写出)(z H 的极点T s k k e z =,并写出)(z H 的部分分式展开形式∑--?= 11)(z z A T z H k k 8、将)(z H 化为分子分母形式,验证设计结果。 二、IIR 双线性变换法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=2, 2 tan 2ω?= ΩT 3、求原型模拟滤波器的c N Ω,,其中:?? ? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/) ()( 6、用11 112--+-?=Z Z T s 代入原型系统函数)(s H a 得1 1 112)()(--+-? ==Z Z T s a s H z H 8、将)(z H 整理成分子分母形式,验证设计结果。

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

滤波器的设计与实现

滤波器的设计与实现 一、设计简介 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或PSPICE或PROTEL或其他软件仿真。 二、设计要求 完成电路设计;学习用计算机画电路图;学会利用Matlab或PSPICE或其他软件仿真。 三、设计路线 滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率次(通常是某个频率范围)的信号通过,而其他频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC元件或RC元件构成的无缘滤波器,也可以由RC元件和有源器件构成的有源滤波器。 根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF),高通滤波器(HPF),带通滤波器(BPF),和带阻滤波器(BEF)四种。从实现方法上可分为FIR,IIR滤波器。从设计方法上可分为切比雪夫滤波器,巴特沃思滤波器。从处理信号方面可分为经典滤波器和现代滤波器。 在这里介绍两种具体的滤波器设计方法: (1)切比雪夫滤波器:是在通带或阻带上频率响应幅度等波纹

波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。这种滤波器来自切比雪夫多项式,因此得名,用以记念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(Пафнутий Львович Чебышёв)。 (2)巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 巴特沃斯滤波器的特性 巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。 无源滤波器与有源滤波器的比较 无源滤波器:这种电路主要有无源元件R、L和C组成有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。

自适应滤波器介绍及原理

关于自适应滤波的问题: 自适应滤波器有4种基本应用类型: 1) 系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2) 逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。 3) 预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤波器的输入端。取决于感兴趣的应用,自适应滤波器的输出或估计误差均可作为系统的输出。在第一种情况下,系统作为一个预测器;而在后一种情况下,系统作为预测误差滤波器。 4) 干扰消除:在一类应用中,自适应滤波器以某种意义上的最优化方式消除包含在基本信号中的未知干扰。基本信号用作自适应滤波器的期望响应,参考信号用作滤波器的输入。参考信号来自定位的某一传感器或一组传感器,并以承载新息的信号是微弱的或基本不可预测的方式,供给基本信号上。 这也就是说,得到期望输出往往不是引入自适应滤波器的目的,引入它的目的是得到未知系统模型、得到未知信道的传递函数的倒数、得到未来信号或误差和得到消除干扰的原信号。 1 关于SANC (自适应消噪)技术的问题 自适应噪声消除是利用winer 自适应滤波器,以输入信号的时延信号作为参考信号来进行滤波的,其自适应消噪的原理说明如下: 信号()x n 可分解为确定性信号分量()D x n 和随机信号分量()R x n ,即: ()()()D R x n x n x n =+ (1.1) 对于旋转机械而言,确定性信号分量()D x n 通常可表示为周期或准周期信号分量()P x n ,即: ()()()P R x n x n x n =+ 1.2 对信号()x n 两个分量()P x n 和()R x n ,有两个基本假设: (1) ()P x n 和()R x n 互不相关; (2) ()P x n 和()R x n 的自相关函数具有下述特性:()0P P x x R m ≈, N m M ≥;()0R R x x R m ≈,B m M ≥;

自适应滤波器的原理与设计

实验二 自适应滤波信号 一、实验目的: 1.利用自适应LMS 算法实现FIR 最佳维纳滤波器。 2.观察影响自适应LMS算法收敛性,收敛速度以及失调量的各种因素,领会自适应信号处理方法的优缺点。 3.通过实现AR 模型参数的自适应估计,了解自适应信号处理方法的应用。 二、实验原理及方法 自适应滤波是一种自适应最小均方误差算法(LMS ),这种算法不像维纳滤波器需要事先知道输入和输出信号的自相关和互相关矩阵,它所得到的观察值 ,滤波器等价于自动“学习”所需要的相关函数,从而调整FIR 滤波器的权系数,并最终使之收敛于最佳值,即维纳解。 )(n y 下面是自适应FIR 维纳滤波器的LMS 算法公式: (2-1) )()()(0 ^ ^ m n y n h n x M m m -=∑= (2-2) ^ )()()(n x n x n e -=M m m n y n e n h n h m m ?=-?+=+,1) ()(2)()1(^ ^ μ (2-3) 其中FIR 滤波器共有M+1个权系数,表示FIR 滤波器第m 个权系数在第n 步的估计值。 ),0)((^ M m n h m ?=因此,给定初始值)M ,0(),0(?=m h m ,每得到一个样本,可以递归得到一组新的滤波器权系数,只要步长)(n y μ满足 max 1 0λμ< < (2-4) 其中max λ为矩阵R 的最大特征值,当∞→n 时,)M ,0(),0(?=m h m 收敛于维纳解。

现在我们首先考察只有一个权系数h 的滤波器,如图2.1所示。假如信号由下式确定: )(n y )()()(y n w n s n += (2-5) )()(n hx n s = (2-6) 其中h 为标量常数,与互不相关,我们希望利用和得到 )(n x )(n w )(n y )(n x )(n s 图1 利用公式(2-1),(2-2),(2-3),我们可以得到下面的自适应估计算法: (2-7) )()()(^ ^n x n h n s = (2-8) )())()()((2)()1(^ ^ ^ n x n x n h n y n h n h -+=+μ其框图如图所示。 图2 选择的初始值为,对式2-8取数学期望可得 ^)(n h ^ )0(h (2-9) ))0(()21(])([^ ^ h h R h n h E n --+=μ其中

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

word完整版自适应滤波器原理 带图带总结word版推荐文档

第二章自适应滤波器原理 2.1 基本原理 2.1.1 自适应滤波器的发展 在解决线性滤波问题的统计方法中,通常假设已知有用信号及其附加噪声的某些统计参数(例如,均值和自相关函数) ,而且需要设计含噪数据作为其输入的线性滤波器,使得根据某种统计准则噪声对滤波器的影响最小。实现该滤波器优化问题的一个有用方法是使误差信号(定义为期望响应与滤波器实际输出之差)的均方值最小化。对于平稳输入,通常采用所谓维纳滤波器( Wiener filter) 的解决方案。该滤波器在均方误差意义上使最优的。误差信号均方值相对于滤波器可调参数的曲线通常称为误差性能曲面。该曲面的极小点即为维纳解。 维纳滤波器不适合于应对信号和/或噪声非平稳问题。在这种情况下,必须假设最优滤波器为时变形式。对于这个更加困难的问题,十分成功的一个解决方案使采用卡尔曼滤波器 (Kalman filter )。该滤波器在各种工程应用中式一个强有力的系统。 维纳滤波器的设计要求所要处理的数据统计方面的先验知识。只有当输入数据的统计特性与滤波器设计所依赖的某一先验知识匹配时,该滤波器才是最优的。当这个信息完全未知时,就不可能设计维纳滤波器,或者该设计不再是最优的。而且维纳滤波器的参数是固定的。 在这种情况下,可采用的一个直接方法是“估计和插入过程”。该过程包含两个步骤,首先是“估计”有关信号的统计参数,然后将所得到的结果“插入( plug into)”非递归公式以计算滤波器参数。对于实时运算,该过程的缺点是要求特别精心制作,而且要求价格昂贵的硬件。为了消除这个限制,可采用自适应滤波器(adaptive filter)。采用这样一种系统,意味着滤波器是自设计的,即自适应滤波器依靠递归算法进行其计算,这样使它有可能在无法获得有关信号特征完整知识的环境下,玩完满地完成滤波运算。该算法将从某些预先确定的初始条件集出发,这些初始条件代表了人们所知道的上述环境的任何一种情况。我们还发现,在平稳环境下,该运算经一些成功迭代后收敛于某种统计意义上的最优维纳解。在非平稳环境下,该算法提供了一种跟踪能力,即跟踪输入数据统计特性随时间的变化,只要这种变化时足够缓慢的。 40年代,N.维纳用最小均方原则设计最佳线性滤波器,用来处理平稳随机

FIR数字滤波器设计及软件实现

实验五:FIR数字滤波器设计及软件实现 一、实验目的: (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 二、实验容及步骤: (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 友情提示: ○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本课本;

○ 2采样频率Fs=1000Hz ,采样周期T=1/Fs ; ○ 3根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz ,阻带截至频率fs=150Hz ,换算成数字频率,通带截止频率 p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。] ○ 4实验程序框图如图2所示。 图2 实验程序框图 三、实验程序: 1、信号产生函数xtg 程序清单: %xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. function xt=xtg N=1000;Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;

自适应滤波器的设计与实现毕业论文

自适应滤波器的设计与实现毕业论文 目录 第一章前言 (1) 1.1 自适应滤波器简介 (1) 1.2 选题背景及研究意义 (1) 1.3 国外研究发展现状 (2) 第二章自适应滤波器的基础理论 (4) 2.1 滤波器概述 (4) 2.1.1 滤波器简介 (4) 2.1.2 滤波器分类 (4) 2.1.3 数字滤波器概述 (4) 2.2 自适应滤波器基本理论 (7) 2.3 自适应滤波器的结构 (9) 第三章自适应滤波器递归最小二乘算法 (11) 3.1 递归最小二乘算法 (11) 3.1.1 递归最小二乘算法简介 (11) 3.1.2 正则方程 (11) 3.1.3 加权因子和正则化 (16) 3.1.4 递归计算 (18) 3.2递归最小二乘(RLS)算法的性能分析 (22) 第四章基于MATLAB自适应滤波器仿真 (23) 4.1 正弦波去噪实验 (23) 4.2 滤波器正则化参数的确定 (28) 4.2.1 高信噪比 (28) 4.2.2 低信噪比 (31) 4.2.3 结论 (33) 4.3 输入信号不同对滤波效果的影响 (33)

4.3.1 输入信号为周期信号 (33) 4.3.2 输入信号为非周期信号 (38) 第五章结论与展望 (44) 5.1 结论 (44) 5.2 对进一步研究的展望 (44) 参考文献 (45) 致谢 (46) 附录 (46) 声明 (58)

第一章前言 1.1自适应滤波器简介 自适应滤波器属于现代滤波的畴,它是40年代发展起来的自适应信号处理领域的一个重要应用,自适应信号处理主要是研究结构可变或可调整的系统,可以通过自身与外界的接触来改善自身对信号处理的性能,通常这类系统是时变的非线性系统,可以自动适应信号传输的环境和要求,无须详细的知道信号的结构和实际知识,无须精确设计处理系统本身。 自适应系统的非线性特性主要是由系统对不同的信号环境实现自身参数的调整来确定的。自适应系统的时变特性主要是由其自适应响应或自适应学习过程来确定的,当自适应过程结束和系统不再进行时,有一类自适应系统可成为线性系统,并称为线性自适应系统,因为这类系统便于设计且易于数学处理,所以实际应用广泛。本文研究的自适应滤波器就是这类滤波器。 自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器的频率则是自动适应输入信号而变化的,所以其适用围更广。在没有任何信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。1.2选题背景及研究意义 伴随着移动通信事业的飞速发展,自适应滤波技术应用的围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器已成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。 在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。 Widrow.B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而

滤波器的设计与实现

信号与系统课程设计报告——滤波器的设计与实现

一、课程设计准备 1.在课程学习中对于滤波器的认识 滤波器主要功能是对信号进行处理,保留信号中的有用成分,去除信号中的无用成分。其按处理的信号可分为数字滤波器和模拟滤波器,按频域特性分为低通、高通、带通、带阻滤波器,按时域特性可分为有限长冲激响应(FIR)滤波器和无限长冲激响应(IIR)滤波器。 低通滤波器:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。 高通滤波器:让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器件的组合装置。 带通滤波器:是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。 2.对于使用的模拟软件的简单介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 该软件可实现的仿真的内容:

1.器件建模及仿真; 2.电路的构建及仿真; 3.系统的组成及仿真; 4.仪表仪器原理及制造仿真。 5.器件建模及仿真:可以建模及仿真的器件: 6. 模拟器件(二极管,三极管,功率管等); 7. 数字器件(74系列,COMS系列,PLD,CPLD 等); 在本次课设中,主要使用multisim的电路构建及仿真。 二、目标分析及思路过程 1.目标要求 本课程设计要求自己设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或PSPICE或PROTEL或其他软件仿真。 2.目标总体认识 对于课程设计题目,采用先画出电路图,再用仿真软件进行模拟的方式进行。在模电课的学习中,对于滤波器的电路设计有了初步认识,而在结束信号与系统的学习之后,对滤波器也有了进一步的了解,对课本上提供的范例加以剖析和应用,就更能加深对此处知识的了解。 3.局部设计思路 a.二阶有源低通滤波电路

自适应滤波器的设计(终极版)

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

FIR数字滤波器设计与实现

FIR 数字滤波器设计与实现 一.摘要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有着广泛的应 用。其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。 二.关键词:FIR 窗函数系统函数MATLAB 三.内容提要: 数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系 统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。 (一)FIR 滤波器的基本结构 在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为: n N n z n h z H ∑-==1 0)()(。从该系统函数可看出,FIR 滤波器有以下特点: 1)系统的单位冲激响应h(n)在有限个n 值处不为零; 2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统); 3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包 含有反馈的递归部分。 1.FIR 滤波器实现的基本结构有: 1) 横截型(卷积型、直接型) a.一般FIR 滤波器的横截型(直接型、卷积型)结构: 若给定差分方程为: 。则可以直接由差分方程得出FIR 滤波器结构如 下图所示: 这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。 b .线性相位FIR 滤波器的横截型结构

自适应滤波器MATLAB仿真

自适应滤波器 MATLAB仿真 摘要 : 本文介绍了自适应滤波器的工作原理,以及推导了著名的LMS( Least mean squares )算法。以一个例子演示了自适应滤波器的滤波效果。实验结果表明,该滤波器滤波效果较好。 关键词:自适应滤波器 MATLAB7.0 LMS 算法 Simulate of adaptive filter based on MATLAB7.0 Abstract: This article described the working principle of adaptive filter and deduced the well-known LMS algorithm. Take an example to demonstrate the adaptive filters filtering effects. The results show that the filter has an effective way to filter single. Key words: LMS algorithm Adaptive Filter Matlab7.0 1引言 由 Widrow B 等提出的自适应滤波理论,是在维纳滤波、卡尔曼滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能,从而广泛应用于通信、系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测和自适应天线阵等诸多领域[1]。自适应滤波器最大的优点在于不需要知道信号和噪声的统计特性的先验知识就可以实现信号的最佳滤波处理。本文通过一个具体例子和结果论证了自适应滤波器的滤波效果。 2自适应滤波原理及 LMS算法 2.1 自适应滤波原理 图 1 自适应滤波原理图 在自适应滤波器中,参数可调的数字滤波器一般为 FIR 数字滤波器, IIR 数字滤波器或格型数字滤波器。自适应滤波分 2 个过程。第一,输入信号想 x(n) 通过参数可调的数字滤波器后得输出信号 y(n) ,y(n) 与参考信号 d(n) 进行比较得误差信号 e(n) ;第二,通过一种自适应算法和 x(n) 和 e(n) 的值来调节参数可调的数字滤波器的参数,即加权系

维纳自适应滤波器设计及Matlab实现

维纳自适应滤波器设计及Matlab实现

摘要 本文从随机噪声的特性出发,分析了传统滤波和自适应滤波基本工作原理和性能,以及滤波技术的现状和发展前景。然后系统阐述了基本维纳滤波原理和自适应滤波器的基本结构模型,接着在此基础上结合最陡下降法引出LMS算法。在MSE准则下,设计了一个定长的自适应最小均方横向滤波器,并通过MATLAB 编程实现。接着用图像复原来验证该滤波器的性能,结果表明图像的质量在MSE 准则下得到了明显的改善。最后分析比较了自适应LMS滤波和频域维纳递归滤波之间的性能。本文还对MATLAB里面的自适应维纳滤波函数wiener2进行了简单分析。 关键字:退化图像维纳滤波自适应滤波最陡下降法LMS

Abstract This paper analyses the basic work theory, performance of traditional filter and adaptive filter based on the property of random noise, and introduce the status quo and the foreground of filter technology. Then we explain basic theory of wiener filter and basic structure model of adaptive filter, and combine the method of steepest descent to deduce the LMS. Afterward according to the MSE rule, we design a limited length transversal filter, and implement by MATLAB. And then we validate performance of adaptive LMS filter by restoring images, Test result show that the quality of the degrade images were improved under the rule of MSE. Finally, we compare the performance of adaptive LMS filter and iterative wiener filter. We also simply analyses the wiener2 () which is a adaptive filter in MATLAB. Keywords: degrade image;wiener filter;adaptive filter;ADF;LMS algorithm

相关主题
文本预览
相关文档 最新文档