当前位置:文档之家› 实验5FIR数字滤波器设计与软件实现汇总

实验5FIR数字滤波器设计与软件实现汇总

实验5FIR数字滤波器设计与软件实现汇总
实验5FIR数字滤波器设计与软件实现汇总

信息院14电信(师范)

实验五:FIR数字滤波器设计与软件实现

一、实验指导

1.实验目的

(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。

(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。

(3)掌握FIR滤波器的快速卷积实现原理。

(4)学会调用MATLAB函数设计与实现FIR滤波器。

2.实验内容及步骤

(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;

(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示;

图1 具有加性噪声的信号x(t)及其频谱如图

程序代码:(信号产生函数xtg程序清单)

function xt=xtg(N)

%êμ?é??D?o?x(t)2úéú,2¢??ê?D?o?μ?·ù?μì?D??ú??

%xt=xtg(N)

2úéúò???3¤?è?aN,óD?óD????μ??éùμ?μ¥?μμ÷·ùD?o?xt,2é?ù?μ?êFs=10

00Hz

%??2¨?μ?êfc=Fs/10=100Hz,μ÷???y?ò2¨?μ?êf0=fc/10=10Hz.

N=1000;Fs=1000;T=1/Fs;Tp=N*T;

t=0:T:(N-1)*T;

fc=Fs/10;f0=fc/10; %??2¨?μ?êfc=Fs/10£?μ¥?μμ÷??D?o??μ?ê?af0=F

c/10;

mt=cos(2*pi*f0*t); %2úéúμ¥?μ?y?ò2¨μ÷??D?o?mt£??μ?ê?af0

ct=cos(2*pi*fc*t); %2úéú??2¨?y?ò2¨D?o?ct£??μ?ê?afc

xt=mt.*ct; %?à3?2úéúμ¥?μμ÷??D?o?xt

nt=2*rand(1,N)-1; %2úéú???ú??éùnt

%=======éè????í¨??2¨?÷hn,ó?óú??3y??éùnt?Dμ?μí?μ3é·?,éú3é??í¨

??éù=======

fp=150; fs=200;Rp=0.1;As=70; % ??2¨?÷??±ê

fb=[fp,fs];m=[0,1]; %

????remezordoˉêy?ùDè2?êyf,m,dev

dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];

[n,fo,mo,W]=remezord(fb,m,dev,Fs); % è·?¨remezoˉêy?ùDè2?êy

hn=remez(n,fo,mo,W); %

μ÷ó?remezoˉêy??DDéè??,ó?óú??3y??éùnt?Dμ?μí?μ3é·?

yt=filter(hn,1,10*nt); %??3y???ú??éù?Dμí?μ3é·?£?éú3é??í¨

??éùyt

%===========================================================

=====

xt=xt+yt; %??éù?óD?o?

fst=fft(xt,N);k=0:N-1;f=k/Tp;

subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');

axis([0,Tp/5,min(xt),max(xt)]);title('(a) D?o??ó??éù2¨D?')

subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b)

D?o??ó??éùμ??μ?×')

axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('·ù?è')输出波形:

(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅

频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。

(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。

(3)(4)的程序:

% FIRêy×???2¨?÷éè???°èí?têμ??

clear all;close all;

%==μ÷ó?xtg2úéúD?o?xt, xt3¤?èN=1000,2¢??ê?xt?°???μ?×,=========

N=1000;xt=xtg(N);

fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % ê?è????¨??±ê

% (1) ó?′°oˉêy·¨éè????2¨?÷

wc=(fp+fs)/Fs; %àí??μíí¨??2¨?÷???1?μ?ê(1?óúpi1éò??ˉ£?

B=2*pi*(fs-fp)/Fs; %1y?é′??í?è??±ê

Nb=ceil(11*pi/B); %blackman′°μ?3¤?èN

hn=fir1(Nb-1,wc,blackman(Nb));

Hw=abs(fft(hn,1024)); % ?óéè??μ???2¨?÷?μ?êì?D?

ywt=fftfilt(hn,xt,N); %μ÷ó?oˉêyfftfilt??xt??2¨

%ò????aó?′°oˉêy·¨éè??·¨μ???í?2?·?£¨??2¨?÷?eo?oˉêy£???2¨?÷ê?3

?D?o?2¨D?)

f=[0:1023]*Fs/1024;

figure(2)

subplot(2,1,1)

plot(f,20*log10(Hw/max(Hw)));grid;title('(a)

μíí¨??2¨?÷·ù?μì?D?')

axis([0,Fs/2,-120,20]);

xlabel('f/Hz');ylabel('·ù?è')

t=[0:N-1]/Fs;Tp=N/Fs;

subplot(2,1,2)

plot(t,ywt);grid;

axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_w(t)');

title('(b) ??3y??éùoóμ?D?o?2¨D?')

% (2) ó?μè2¨??×???±??ü·¨éè????2¨?÷

fb=[fp,fs];m=[1,0]; % è·?¨remezordoˉêy?ùDè2?êyf,m,dev

dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];

[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % è·?¨remezoˉêy?ùDè2?êy

hn=remez(Ne,fo,mo,W); % μ÷ó?remezoˉêy??DDéè??

Hw=abs(fft(hn,1024)); % ?óéè??μ???2¨?÷?μ?êì?D?

yet=fftfilt(hn,xt,N); % μ÷ó?oˉêyfftfilt??xt??2¨

%ò????aó?μè2¨??éè??·¨μ???í?2?·?£¨??2¨?÷?eo?oˉêy£???2¨?÷ê?3?D

?o?2¨D?)

figure(3);subplot(2,1,1)

f=[0:1023]*Fs/1024;

plot(f,20*log10(Hw/max(Hw)));grid;title('(c)

μíí¨??2¨?÷·ù?μì?D?')

axis([0,Fs/2,-80,10]);

xlabel('f/Hz');ylabel('·ù?è')

subplot(2,1,2);plot(t,yet);grid;

axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_e(t)');

title('(d) ??3y??éùoóμ?D?o?2¨D?')

(5)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。

提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材;

○2采样频率Fs=1000Hz,采样周期T=1/Fs;

○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,

阻带截至频率fs=150Hz,换算成数字频率,通带截止频率

p 20.24

p

f

ωπ

=T=π,通

带最大衰为0.1dB,阻带截至频率

s 20.3

s

f

ωπ

=T=π,阻带最小衰为60dB。○4实验程序框图如图2所示,供读者参考。

图2 实验程序框图

4.思考题

(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤.

答:用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;

(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。

答:希望逼近的理想带通滤波器的截止频率cl cu ωω和分别为:

cl sl pl cu su pu ()/2, ()/2ωωωωωω=+=+几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕。如本实验所选的blackman 窗函数,其阻带最小衰减为74dB,而指标仅为60dB 。

(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶

数低?

答:用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等波纹特性,且通带最大衰减和阻带最小衰减可以分别控制,所以其指标均匀分布,没有资源浪费,所以其阶数低得多。

5.实验心得:

本次实验,我了解到如何使用窗函数法设计FIR滤波器,然后调用fftfilt函数对给定输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。通过运用MATLAB软件对所设计的FIR滤波器进行调试,观察其相位特性曲线,建立了线性相位相关概念。

滤波器设计步骤及实现程序

数字滤波器的设计步骤及程序实现 湖南理工学院信息与通信工程学院 一、IIR 脉冲响应不变法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=pi, T /ω=Ω 3、求原型模拟滤波器的c N Ω,,其中:??? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/)()( 6、将)(s H a 化为部分分式展开形式∑-=k k a s s A s H )( 7、写出)(z H 的极点T s k k e z =,并写出)(z H 的部分分式展开形式∑--?= 11)(z z A T z H k k 8、将)(z H 化为分子分母形式,验证设计结果。 二、IIR 双线性变换法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=2, 2 tan 2ω?= ΩT 3、求原型模拟滤波器的c N Ω,,其中:?? ? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/) ()( 6、用11 112--+-?=Z Z T s 代入原型系统函数)(s H a 得1 1 112)()(--+-? ==Z Z T s a s H z H 8、将)(z H 整理成分子分母形式,验证设计结果。

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

数字滤波器的MATLAB设计与实现.

数字滤波器的MATLAB设计与实现 数字滤波器的MATLAB设计与实现 类别:电子综合 引言 随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。 1 数字滤波器的设计1.1 数字滤波器设计的基本步骤数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。IIR滤波器的特征是,具有无限持续时间冲激响应。种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR滤波器的冲激响应只能延续一定时间,在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。随着MATLAB软件尤其是MATLAB的信号处理工作箱的不断完善,不仅数字滤波器的计算机辅助设计有了可能,而且还可以使设计达到最优化。数字滤波器设计的基本步骤如下:(1)确定指标在设计一个滤波器之前,必须首先根据工程实际的需要确定滤波器的技术指标。在很多实际应用中,数字滤波器常常被用来实现选频操作。因此,指标的形式一般在频域中给出幅度和相位响应。幅度指标主要以两种方式给出。第一种是绝对指标。它提供对幅度响应函数的要求,一般应用于FIR滤波器的设计。第二种指标是相对指标。它以分贝值的形式给出要求。在工程实际中,这种指标最受欢迎。对于相位响应指标形式,通常希望系统在通频带中人有线性相位。运用线性相位响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;③长度为N 的滤波器(阶数为N-1),计算量为N/2数量级。因此,本文中滤波器的设计就以线性相位FIR滤波器的设计为例。(2)逼近确定了技术指标后,就可以建立一个目标的数字滤波器模型。通常采用理想的数字滤波器模型。之后,利用数字滤波器的设计方法,设计出一个实际滤波器模型来逼近给定的目标。(3)性能分析和计算机仿真上两步的结果是得到以差分或系统函数或冲激响应描述的滤波器。根据这个描述就可以分析其频率特性和相位特性,以验证设计结果是否满足指标要求;或者利用计算机仿真实现设计的滤波器,再分析滤波结果来判断。 1.2 滤波器的MATLAB设计(1)MATLAB MATLAB是一套用于科学计算的可视化高性能语言与软件环境。它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个界面友好的用户环境。它的信号处理工具箱包含了各种经典的和现代的数字信号处理技术,是一个非常优秀的算法研究与辅助设计的工具。在设计数字滤波器时,通常采用MATLAB来进行辅助设计和仿真。(2)FIR滤波器的MATLAB设计下面以设计线性相位FIR滤波器为例介绍具体的设计方法。线性相位FIR滤波器通常采用窗函数法设计。窗函数法设

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

IIR数字滤波器的设计流程图讲课讲稿

目录 目录 0 前言 (1) 1.1数字滤波器简介 (1) 1.2使用数字滤波器的原因 (1) 1.3设计的原理和内容 (1) 工程概况 (2) 正文 (2) 3.1 设计的目的和意义 (2) 3.2 目标和总体方案 (2) 3.3 设计方法和内容 (3) 3.4 硬件环境 (3) 3.5软件环境 (3) 3.6IIR数字滤波器设计思路 (3) 3.7 IIR数字滤波器的设计流程图 (3) 3.8 IIR数字滤波器设计思路 (4) 3.9设计IIR数字滤波器的两种方法 (4) 3.10双线性变换法的基本原理 (5) 3.11用双线性变换法设计IIR数字滤波器的步骤 (6) 3.12程序源代码和运行结果 (6) 3.12.1低通滤波器 (6) 3.12.3带通滤波器 (10) 3.12.4带阻滤波器 (13) 3.13结论 (15) 3.13.1存在的问题 (15) 3.13.2解决方案 (16) 致谢 (16)

参考文献 (16) 前言 1.1数字滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。如果系统是一个连续系统,则滤波器称为模拟滤波器。如果系统是一个离散系统,则滤波器称为数字滤波器。 信号通过线性系统后,其输出信号就是输入信号和系统冲激响应的卷积。从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。除非为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分较大的模,因此,中这些频率成分将得到加强,而另外一些频率成分的模很小甚至为零,中这部分频率分量将被削弱或消失。因此,系统的作用相当于对输入信号的频谱进行加权。 1.2使用数字滤波器的原因 数字滤波器具有比模拟滤波器更高的精度,甚至能够实现后者在理论上也无法达到的性能。数字滤波器相比模拟滤波器有更高的信噪比。数字滤波器还具有模拟滤波器不能比拟的可靠性。根据其冲击响应函数的时域特性可将数字滤波器分为IIR(有限长冲击响应)和FIR(无限长冲击响应)。 1.3设计的原理和内容 在windows环境下进行语言信号采集,通过IIR数字滤泼器的设计,数字带滤波器就是用软件来实现上面的滤波过程,可以很好的克服模拟滤波器的缺点,数字带滤波器的参数一旦确定,就不会发生变化。IIR型有较好的通带与阻带特性,所以,在一般的设计中选用IIR 型。IIR型又可以分成Butterworth型滤波器,ChebyshevII型滤波器和椭圆型滤波器等。 IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;

数字滤波器设计与分析

吉林大学仪器科学与电气工程学院本科生实习报告 实习题目:信号分析和处理 实习时间:2012.09 专业:电气工程及其自动化 所在班级:65100615 学生姓名:王双伟 指导教师:朱凯光田宝凤林婷婷

信号实习报告 一.实验目的 加深对信号系统与信号处理理论的理解,学会信号处理的基本知识和方法,并在基本技能方面得到系统训练;熟悉MA TLAB编程环境,掌握MA TLAB编程基本技能,以及程序调试仿真方法,能够采用MATLAB语言和工具进行信号处理;掌握现代信号分析与处理技术,包括信号频谱分析和数字滤波器(FIR、IIR)设计,学会信号处理系统设计与系统功能检测的基本方法;将理论知识与实际应用结合,提高学生解决实际问题的动手能力,为信号系统与信号处理知识的应用、后续专业学习以及今后从事相关科学研究和实际工作打下坚实基础。二.实验工具 计算机,matlab软件 三.实验内容 设计FIR数字带通滤波器,对于给定函数s=sin(2πx100t)+sin(2πx200t)+sin(2πx400t),设计带通滤波器滤除100和400赫兹的频率,并画出滤波前后的时频图及滤波器的增益图。 f1=100;f2=200;f3=400; fs=2000; m=(0.3*f1)/(fs/2); M=round(8/m); N=M-1; fc=[0.15,0.3]; b=fir1(N,fc); figure(1) [h,f]=freqz(b,1,1000); plot(f*fs/(2*pi),20*log10(abs(h))) xlabel('频率/赫兹'); ylabel('增益/分贝'); title('滤波器的增益响应'); figure(2) subplot(211) t=0:1/fs:0.5; s=sin(2*pi*f1*t)+sin(2*pi*f2*t)+sin(2*pi*f3*t); plot(t,s); xlabel('时间/秒'); ylabel('幅度'); title('信号滤波前时域图');

数字滤波器设计步骤

数字信号处理 数字滤波器的设计 学院计算机与电子信息学院 专业电子信息科学与技术班级电子15-2 班姓名学号 指导教师刘利民

数字滤波器的设计 一、模拟低通滤波器的设计方法 1、B utterw orth 滤波器设计步骤: ⑴。确定阶次N ① 已知Ωc 、Ωs 和As 求Bu tt er worth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp (3dB p Ω≠-)的衰减A p 求Bu tterwort h DF 阶数N ③ 已知Ωp、Ωs和Ω=Ωp 的衰减A p 和As 求B utte rwo rth DF 阶数N /10 /1022(/)101,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 ()a H s 根据公式: 1,2,2N ()()a a H s H s -在左半平面的极点即为()a H s 的极点,因而 2,,N 2、切比雪夫低通滤波器设计步骤: ⑴.确定技术指标p Ω p α s Ω s α 归一化: /1p p p λ=ΩΩ= /s s p λ=ΩΩ ⑵.根据技术指标求出滤波器阶数N 及ε: 0.12 10 1δε=- p δα= ⑶.求出归一化系统函数 其中极点由下式求出:

或者由N 和S直接查表得()a H p 二、数字低通滤波器的设计步骤: 1、 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 2、 将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫:/s s p λ=ΩΩ 0.1210 1δ ε=- p δα=

FIR数字滤波器设计及软件实现

实验五:FIR数字滤波器设计及软件实现 一、实验目的: (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 二、实验容及步骤: (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 友情提示: ○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本课本;

○ 2采样频率Fs=1000Hz ,采样周期T=1/Fs ; ○ 3根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz ,阻带截至频率fs=150Hz ,换算成数字频率,通带截止频率 p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。] ○ 4实验程序框图如图2所示。 图2 实验程序框图 三、实验程序: 1、信号产生函数xtg 程序清单: %xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. function xt=xtg N=1000;Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

FIR数字滤波器设计与软件实现(精)讲解学习

实验二:FIR 数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1掌握用窗函数法设计 FIR 数字滤波器的原理和方法。 (2掌握用等波纹最佳逼近法设计 FIR 数字滤波器的原理和方法。 (3掌握 FIR 滤波器的快速卷积实现原理。 (4学会调用 MA TLAB 函数设计与实现 FIR 滤波器。 2. 实验内容及步骤 (1认真复习第七章中用窗函数法和等波纹最佳逼近法设计 FIR 数字滤波器的原理; (2调用信号产生函数 xtg 产生具有加性噪声的信号 xt ,并自动显示 xt 及其频谱,如图 1所示;

图 1 具有加性噪声的信号 x(t及其频谱如图 (3请设计低通滤波器,从高频噪声中提取 xt 中的单频调幅信号,要求信号幅频失真小于 0.1dB ,将噪声频谱衰减 60dB 。先观察 xt 的频谱,确定滤波器指标参数。 (4根据滤波器指标选择合适的窗函数,计算窗函数的长度 N ,调用 MATLAB 函数 fir1设计一个 FIR 低通滤波器。并编写程序,调用 MATLAB 快速卷积函数 fftfilt 实现对 xt 的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (5 重复 (3 , 滤波器指标不变, 但改用等波纹最佳逼近法, 调用MA TLAB 函数 remezord 和 remez 设计 FIR 数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○ 1MA TLAB 函数 fir1的功能及其调用格式请查阅教材; ○ 2采样频率 Fs=1000Hz,采样周期 T=1/Fs;

○ 3根据图 1(b和实验要求,可选择滤波器指标参数:通带截止频率 fp=120Hz,阻带截 至频率 fs=150Hz, 换算成数字频率, 通带截止频率 p 20.24 p f ωπ =T=π, 通带最大衰为 0.1dB , 阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为 60dB 。 3、实验程序框图如图 2所示,供读者参考。 图 2 实验程序框图 4.信号产生函数 xtg 程序清单(见教材 二、滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率 fp=120Hz,阻带截至频率 fs=150Hz。代入采样频率 Fs=1000Hz,换算成 数字频率,通带截止频率 p 20.24 p f

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

有限冲激响应数字滤波器设计实验报告

/ 实验6 有限冲激响应数字滤波器设计 一、实验目的: 1、加深对数字滤波器的常用指标理解。 2、学习数字滤波器的设计方法。 二、实验原理: 低通滤波器的常用指标: } (1)通带边缘频率; (2)阻带边缘频率; (3)通带起伏;

(4)通带峰值起伏, (5)阻带起伏,最小阻带衰减。 三、实验内容: 利用MATLAB编程,用窗函数法设计FIR数字滤波器,指标要求如下: 通带边缘频率:,通带峰值起伏:。] 阻带边缘频率:,最小阻带衰减:。 采用汉宁窗函数法的程序: wp1=*pi;wp2=*pi; ws1=*pi;ws2=*pi; width1=wp1-ws1; width2=ws2-wp2; width=min(width1,width2) N1=ceil(8*pi/width) … b1=fir1(N1,[ ],hanning(N1+1)); [h1,f]=freqz(b1,1,512); plot(f/pi,20*log10(abs(h1)),'-') grid; 图形:

采用切比雪夫窗函数法德程序: 】 wp1=*pi;wp2=*pi; ws1=*pi;ws2=*pi; width1=wp1-ws1; width2=ws2-wp2; width=min(width1,width2) N1=ceil(8*pi/width) b1=fir1(N1,[ ],chebwin(N1+1,20)); [h1,f]=freqz(b1,1,512); … plot(f/pi,20*log10(abs(h1)),'-') grid; 图形:

四.小结 FIR和IIR滤波器各自的特点: ①结构上看,IIR滤波器必须采用递归结构,极点位置必须在单位圆内,否则系统将不稳定,IIR滤波器脱离不了模拟滤波器的格局,FIR滤波器更灵活,尤其能使适应某些特殊的应用。设计选择:在对相位要求不敏感的场合,用IIR较为适合,而对图像处理等对线性要求较高,采用FIR滤波器较好。 ②性能上说,IIR滤波器传输函数的几点可位于单位圆内的任何地方,可以用较低的结束获得较高的选择性,但是是相位的非线性为代价,FIR滤波器却可以得到严格的线性相位,然而FIR滤波器传输函数的极点固定在原点,只能用较高的阶数达到的选择性。

实验五 IIR数字滤波器设计与滤波(附思考题程序)

实验五 IIR 数字滤波器设计与滤波 1.实验目的 (1)加深对信号采样的理解, (2)掌握滤波器设计的方法; (3)复习低通滤波器的设计。 2.实验原理 目前,设计IIR 数字滤波器的通用方法是先设计相应的低通滤波器,然后再通过双线性变换法和频率变换得到所需要的数字滤波器。模拟滤波器从功能上分有低通、高通、带通及带阻四种,从类型上分有巴特沃兹(Butterworth )滤波器、切比雪夫(Chebyshev )I 型滤波器、切比雪夫II 型滤波器、椭圆(Elliptic )滤波器以及贝塞尔(Bessel )滤波器等。 典型的模拟低通滤波器的指标如下:,P S ΩΩ分别为通带频率和阻带频率,,P S δδ分别为通带和阻带容限(峰波纹值)。在通带内要求1()1P a H J δ-≤Ω≤,有时指标由通带最大衰减p α和阻带最小衰减s α给出,定义如下:20lg(1)p p αδ=-- 和20lg()s s αδ=- 第二种常用指标是用参数ε和A 表示通带和阻带要求,如图所示: 二者之间的关系为:21/2[(1)1]p εδ-=--和1/s A δ=,根据这几个参数可导出另外两个参数d ,k ,分别称为判别因子和选择性因子。 21d A = - /p s k =ΩΩ

BUTTERWORTH 低通滤波器:幅度平方函数定义为221()1(/)a N c H J Ω=+ΩΩ,N 为滤波器阶数,c Ω为截止频率。当c Ω=Ω 时,有()1/a H J Ω=3DB 带宽。 BUTTERWORTH 低通滤波器系统函数有以下形式: 11111()...() N c a N N N N N k H s s a s a s a k s s --=Ω==++++∏- 由模拟滤波器设计IIR 数字滤波器,必须建立好s 平面和z 平面的映射关系。使模拟系统函数()a H s 变换成数字滤波器的系统函数()H z ,通常采用冲激相应不变法和双线性变换法。冲激相应不变法存在频谱混叠现象,双线性变换法消除了这一线象,在IIR 数字滤波器的设计中得到了更广泛的应用。 s 平面和Z 平面的映射关系为1 121()1s Z s f Z T Z ---==+,将s j =Ω和jw z e =待入数字频率和等效的模拟频率之间的映射关系:tan()2 w Ω=,由于二者不是线性关系,所以称为预畸变。 3.实验内容及其步骤 实验的步骤: (1)给定数字滤波器的幅度相应参数。 (2)用预畸变公式将数字滤波器参数变换为相应的等效模拟滤波器参数。 (3)采用模拟滤波器设计方法设计等效模拟滤波器()a H s (4)采用双线性变换公式把等效模拟滤波器映射为所期望的数字滤波器。 其中第三步中模拟滤波器设计步骤为: 首先,根据滤波器指标求选择因子k 和判别因子d 其次,确定满足技术所需的滤波器阶数N, log log d N k ≥ 再次,设3db 截止频率c Ω

FIR数字滤波器设计与软件实现

一、实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MA TLAB函数设计与实现FIR滤波器。 二、实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez 设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MA TLAB函数fir1和fftfilt的功能及其调用格式请查阅本书第7章和第?章; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率 fs=150Hz,换算成数字频率,通带截止频率 p 20.24 p f ωπ =T=π,通带最大衰为0.1dB,阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为60dB。] ○4实验程序框图如图10.5.2所示。

FIR数字滤波器设计实验_完整版

班级: 姓名: 学号: FIR 数字滤波器设计实验报告 一、实验目的 1.掌握FIR 数字滤波器的设计方法; 2.熟悉MATLAB 信号处理工具箱的使用; 3.熟悉利用MATLAB 软件进行FIR 数字滤波器设计,以及对所设计的滤波器 进行分析; 4.了解FIR 滤波器可实现严格线性相位的条件和特点; 5.熟悉FIR 数字滤波器窗函数设计法的MATLAB 设计,并了解利用窗函数法 设计FIR 滤波器的优缺点; 6.熟悉FIR 数字滤波器频率采样设计法的MATLAB 设计,并了解利用频率采 样法设计FIR 滤波器的优缺点; 7.熟悉FIR 数字滤波器切比雪夫逼近设计法的MATLAB 设计,并了解利用切 比雪夫逼近法设计FIR 滤波器的优缺点。 二、实验设备及环境 1.硬件:PC 机一台; 2.软件:MATLAB (6.0版以上)软件环境。 三、实验内容及要求 1.实验内容:基于窗函数设计法、频率采样设计法和切比雪夫逼近设计法,利用MATLAB 软件设计满足各自设计要求的FIR 数字低通滤波器,并对采用不同设计法设计的低滤波器进行比较。 2.实验要求: (1)要求利用窗函数设计法和频率采样法分别设计FIR 数字低通滤波 器,滤波器参数要求均为:0.3c w π=。其中,窗函数设计法要求分别利用矩形窗、汉宁窗和布莱克曼窗来设计数字低通滤波器,且 21N ≥,同时要求给出滤波器的幅频特性和对数幅频特性; 频率

采样法要求分别利用采样点数21N =和63N =设计数字低通滤波器,同时要求给出滤波器采样前后的幅频特性,以及脉冲响应及对数幅频特性。 (2)要求利用窗函数设计法和切比雪夫逼近法分别设计FIR 数字低通 滤波器,滤波器参数要求均为: 0.2π, 0.25dB, 0.3π, 50dB p p s s ωαωα==== 其中,窗函数设计法要求利用汉明窗来设计数字低通滤波器,且 66N ≥,同时要求给出滤波器理想脉冲响应和实际脉冲响应,汉 名窗和对数幅频特性; 切比雪夫逼近法要求采用切比雪夫Ⅰ型,同时要求给出滤波器的脉冲响应、幅频特性和误差特性。 (3)将要求(1)和(2)中设计的具有相同参数要求,但采用不同设 计方法的滤波器进行比较,并以图的形式直观显示不同设计设计方法得到的数字低通滤波器的幅频特性的区别。 四、实验步骤 1.熟悉MATLAB 运行环境,命令窗口、工作变量窗口、命令历史记录窗口,FIR 常用基本函数; 2.熟悉MATLAB 文件格式,m 文件建立、编辑、调试; 3.根据要求(1)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 4.根据要求(2)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 5.将要求(1)和(2)中设计的具有相同参数要求,但采用不同设计方法的滤波器进行比较分析; 6.记录实验结果; 7.分析实验结果; 8.书写实验报告。 五、实验预习思考题 1.FIR 滤波器有几种常用设计方法?这些方法各有什么特点?

有限脉冲响应数字滤波器设计实验报告

成绩: 《数字信号处理》作业与上机实验 (第二章) 班级: 学号: 姓名: 任课老师: 完成时间: 信息与通信工程学院 2014—2015学年第1 学期

第7章有限脉冲响应数字滤波器设计 1、教材p238: 19.设信号x(t) = s(t) + v(t),其中v(t)是干扰,s(t)与v(t)的频谱不混叠,其幅度谱如题19图所示。要求设计数字滤波器,将干扰滤除,指标是允许|s(f)|在0≤f≤15 kHz频率范围中幅度失真为±2%(δ1 = 0.02);f > 20 kHz,衰减大于40 dB(δ2=0.01);希望分别设计性价比最高的FIR和IIR两种滤波器进行滤除干扰。请选择合适的滤波器类型和设计方法进行设计,最后比较两种滤波器的幅频特性、相频特性和阶数。 题19图 (1)matlab代码: %基于双线性变换法直接设计IIR数字滤波器 Fs=80000; fp=15000;fs=20000;rs=40; wp=2*pi*fp/Fs;ws=2*pi*fs/Fs; Rp=-20*log10(1-0.02);As=40; [N1,wp1]=ellipord(wp/pi,ws/pi,Rp,As); [B,A]=ellip(N1,Rp,As,wp1); [Hk,wk1]=freqz(B,A,1000); mag=abs(Hk);pah=angle(Hk);

%窗函数法设计FIR 数字滤波器 Bt=ws-wp; alph=0.5842*(rs-21)^0.4+0.07886*(rs-21); N=ceil((rs-8)/2.285/Bt); wc=(wp+ws)/2/pi; hn=fir1(N,wc,kaiser(N+1,alph)); M=1024; Hk=fft(hn,M); k=0:M/2-1; wk=(2*pi/M)*k; %画出各种比较结果图 figure(2); plot(wk/pi,20*log10(abs(Hk(k+1))),':','linewidth',2.5); hold on plot(wk1/pi,20*log10(mag),'linewidth',2); hold off legend('FIR 滤波器','IIR 滤波器'); axis([0,1,-80,5]);xlabel('w/\pi');ylabel('幅度/dB'); title('损耗函数'); figure(3) plot(wk/pi,angle(Hk(k+1))/pi,':','linewidth',2.5); hold on plot(wk1/pi,pah/pi,'linewidth',2); hold off legend('FIR 滤波器','IIR 滤波器'); xlabel('w/\pi');ylabel('相位/\pi'); title('相频特性曲线'); (2)两种数字滤波器的损耗函数和相频特性的比较分别如图1、2所示: 图1 损耗函数比较图 图2 相频特性比较图 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1 -80-70 -60-50-40-30-20-100w/π 幅度/d B 损耗函数 FIR 滤波器IIR 滤波器 0.10.20.30.4 0.50.60.70.80.91 -1-0.8 -0.6-0.4-0.200.20.40.60.81w/π 相位/π 相频特性曲线 FIR 滤波器IIR 滤波器

实验二-IIR数字滤波器的设计

实验二 IIR 数字滤波器的设计 1、 实验目的 (1) 掌握脉冲响应不变法和双线性变换法设计IIR 数字滤波器的具体方法和原理,熟悉双线性变换法和脉冲响应不变法设计低通、带通IIR 数字滤波器的计算机编程; (2) 观察双线性变换法和脉冲响应不变法设计的数字滤波器的频域特性,了解双线性变换法和脉冲响应不变法的特点和区别; (3) 熟悉Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特性。 2、实验原理与方法 IIR 数字滤波器的设计方法可以概括为如图所示,本实验主要掌握IIR 滤波器的第一种方法,即利用模拟滤波器设计IIR 数字滤波器,这是IIR 数字滤波器设计最常用的方法。利用模拟滤波器设计,需要将模拟域的H a (s)转换为数字域H(z),最常用的转换方法为脉冲响应不变法和双线性变换法。 (1)脉冲响应不变法 用数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应h a (t),让h(n)正好等于h a (t)的采样值,即 )()(nT h n h a = 其中T 为采样间隔。如果以H a (s)及H(z)分别表示h a (t)的拉氏变换及h(n)的Z 变换,则 ∑∞-∞==-=k a e z k T j s H T z H sT )2(1|)(π 在MATLAB 中,可用函数impinvar 实现从模拟滤波器到数字滤波器的脉冲响应不变映射。 (2)双线性变换法

S 平面与z 平面之间满足下列映射关系 11112- -+-=z z T s 或 s T s T z -+=22 S 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。双线性变换不存在频率混叠问题。 在MATLAB 中,可用函数bilinear 实现从模拟滤波器到数字滤波器的双线性变换映射。 双线性变换是一种非线性变换,即2 tan 2ωT = Ω,这种非线性引起的幅频特性畸变可通过预畸变得到校正。 (3)设计步骤 IIR 数字滤波器的设计过程中,模拟滤波器的设计是关键。模拟滤波器的设计一般是采用分布设计的方式,这样设计原理非常清楚,具体步骤如前文所述。MATLAB 信号处理工具箱也提供了模拟滤波器设计的完全工具函数:butter 、cheby1、cheby2、ellip 、besself 。用户只需一次调用就可完成模拟滤波器的设计,这样虽简化了模拟滤波器的设计过程,但设计原理却被屏蔽了。 模拟滤波器设计完成之后,利用impinvar 或bilinear 函数将模拟滤波器映射为数字滤波器,即完成了所需数字滤波器的设计。 下图给出了实际低通、高通、带通和带阻滤波器的幅频特性和各截止频率的含义。另外,为了描述过渡带的形状,还引入了通带衰减和阻带衰减的概念。 图 实际滤波器的幅频特性和各截止频率的含义

相关主题
文本预览
相关文档 最新文档