当前位置:文档之家› 【电磁感应】法拉第电磁感应和楞次定律综合应用4-图像问题(拓展类)

【电磁感应】法拉第电磁感应和楞次定律综合应用4-图像问题(拓展类)

【电磁感应】法拉第电磁感应和楞次定律综合应用4-图像问题(拓展类)
【电磁感应】法拉第电磁感应和楞次定律综合应用4-图像问题(拓展类)

【电磁感应】法拉第电磁感应和楞次定律综合应用4-图像问题(拓展类)

(百度上面标题,可以搜到这个知识点的坤哥视频;或者去QQ空间2941846078,日志,直接找到这节课)

B1、如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右

侧,且其长边与长直导线平行。已知在t=0到t=t1的时间间隔内,直导线中电流i

发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先

水平向左、后水平向右。设电流i正方向与图中箭头方向相同,则i随时间t变化

的图线可能是()

B2、如图一所示,固定在水平桌面上的光滑金属框架cdeg处于方向竖直向下的匀强

磁场中,金属杆ab与金属框架接触良好。在两根导轨的端点d、e之间连接一电阻,

其他部分电阻忽略不计。现用一水平向右的外力F作用在金属杆ab上,使金属杆由

静止开始向右在框架上滑动,运动中杆ab始终垂直于框架。图二为一段时间内金属

杆受到的安培力f随时间t的变化关系,则图三中可以表示外力F随时间t变化关系的

图象是()

B3、矩形线框abcd固定放在匀强磁场中,磁场方向与线圈平面垂直,磁感应强度B

随时间t变化的图象如图甲所示。设t=0时刻,磁感应强度的方向垂直纸面向里,

则在0~4s时间内,图乙中能正确表示线框ab边所受的安培力F随时间t变化的图象

是(规定ab边所受的安培力方向向左为正)()

B4、如图甲所示,光滑平行金属导轨MN 、PQ 所在平面与水平面成 角,M 、P 两端接有阻值为R 的定值电阻。阻值为r 的金属棒ab 垂直导轨放置,其它部分电阻不计。整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向上。从t=0时刻开始棒受到一个平行于导轨向上的外力F ,由静止开始沿导轨向上运动,运动中棒始终与导轨垂直,且接触良好,通过R 的感应电流随时间t 变化的图象如图乙所示。下面分别给出了穿过回路abPM 的磁通量、磁通量的变化率、棒两端的电势差和通过棒的电荷量随时间变化的图象,正确的是( )

B5、如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨平面垂直。阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触。t=0时,将开关S 由1掷到2。Q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。下列图象正确的是( )

I

B6、闭合矩形导线框abcd固定在匀强磁场中,磁场的方向与导线框所在平面垂直,磁感应强度B随时间t变化的规律如右图所示。规定垂直纸面向里为磁场的正方向,adcba的方向为线框中感应电流的正方向,水平向右为安培力的正方向。关于线框中的电流i与ad边所受的安培力F随时间t变化的图象,下列正确的是()

《4.4法拉第电磁感应定律教案》

4.4法拉第电磁感应定律 【教学目标】 (1)知道感应电动势,及决定感应电动势大小的因素。 (2)知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、 t ??Φ。 (3)理解法拉第电磁感应定律内容、数学表达式。 (4)知道E =BLv sin θ如何推得。 【教学重点】法拉第电磁感应定律。 【教学难点】感应电流与感应电动势的产生条件的区别。 【教学方法】自主学习 合作探究 巩固延伸 【教学过程】 一、复习提问:1、在电磁感应现象中,产生感应电流的条件是什么? 2、恒定电流中学过,电路中存在持续电流的条件是什么? 3、在发生电磁感应的情况下,用什么方法可以判定感应电流的方向? 二、引入新课 1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢? 2、问题2:如图所示,在螺线管中插入一个条形磁铁,问 ①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么? ②、有感应电流,是谁充当电源? ③、上图中若电路是断开的,有无感应电流电流?有无感应电动势? 3、产生感应电动势的条件是什么?4、比较产生感应电动势的条件和产生感应电流的条件你有什么发现? 三、进行新课 (一)、探究影响感应电动势大小的因素 (1)猜测:感应电动势大小跟什么因素有关?(2)探究问题: 问题1、在实验中,电流表指针偏转原因是什么? 问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 问题3:在实验中,快速和慢速效果有什么相同和不同? 实验结论电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大,磁通量的变化越慢电动势越小。 (二)、法拉第电磁感应定律 a b G E r

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

精选2019-2020年粤教版高中物理选修1-1第一节 电磁感应现象的发现课后练习三十七

精选2019-2020年粤教版高中物理选修1-1第一节电磁感应现象的发现课后练 习三十七 第1题【单选题】 以物理为基础的科学技术的高速发展,直接推动了人类社会的进步。下列哪一个发现更直接推动了人类进入电气化时代? A、库仑定律的发现 B、欧姆定律的发现 C、感应起电现象的发现 D、电磁感应现象的发现 【答案】: 【解析】: 第2题【单选题】 奥斯特发现电流的磁效应的这个实验中,小磁针应该放在( ) A、南北放置的通电直导线的上方 B、东西放置的通电直导线的上方 C、南北放置的通电直导线同一水平面内的左侧 D、东西放置的通电直导线同一水平面内的右侧 【答案】: 【解析】: 第3题【单选题】

如图所示,铜盘在磁极间匀速旋转.借助电刷在铜盘边缘和转轴间连接负载R,负载R上通过的是( ) A、交变电流 B、逐渐增大的电流 C、直流电流 D、逐渐减小的电流 【答案】: 【解析】: 第4题【单选题】 如图为探究产生电磁感应现象条件的实验装置,下列情况下不能引起电流计指针转动的是( ) A、闭合电键瞬间 B、断开电键瞬间 C、闭合电键后拔出铁芯瞬间 D、闭合电键后保持变阻器的滑动头位置不变 【答案】:

【解析】: 第5题【单选题】 下列现象中,能表明电和磁有联系的是( ) A、摩擦起电 B、两块磁铁相互吸引或排斥 C、带电体静止不动 D、磁铁插入闭合线圈过程中,线圈中产生感应电流 【答案】: 【解析】: 第6题【单选题】 如图所示,金属棒ab置于水平放置的金属导体框架cdef上,棒ab与框架接触良好.从某一时刻开始,给这个空间施加一个斜向上的匀强磁场,并且磁场均匀增加,ab棒仍静止,在磁场均匀增加的过程 中,关于ab棒受到的摩擦力,下列说法正确的是( ) A、摩擦力大小不变,方向向右 B、摩擦力变大,方向向右 C、摩擦力变大,方向向左

高中物理-电磁感应第一节电磁感应现象教案

高中物理-电磁感应第一节电磁感应现象教案 教学目标:知识与技能1、收集有关物理学史资料,了解电磁感应现象发现过程,体会人类探索自然规律的科学方法、科学态度和科学精神2、知道磁通量,会比较“穿过不同闭合电路磁通量”的大小3、通过实验,了解感应电流的产生条件 过程与方法通过试验的观察和分析,培养学生运用所学知识,分析问题、解决问题的能力。 情感态度与价值观使学生认识:“从个性中发现共性,再从共性中理解个性,从现象认识本质以及事物有普遍联系”的辩证唯物主义观点。 教学重点:感应电流的产生条件教学难点:磁通量的理解 教具:磁铁、螺线管、电流表、学生电源、电键、滑动变阻器、小螺线管A、大螺线管B教学过程:一、划时代的发现 说明:1820 年奥斯特发现了电流磁效应,说明电流能够产生磁场,人们很自然地思考,能不能根据磁来产生电呢,为此很多科学家做出了很多的尝试,其中最著名的科学家就是法拉第,他进行了长达10 年的艰苦探索。最初,法拉第认为.很强的磁铁或很强的电流可能会在邻近的闭合导线中感应出电流。他做了多次尝试,经历了一次次失败,都没有得到预想的结果。但是,法拉第坚信:电与磁有联系,电流能产生磁场,磁场也就一定能产生电流。在这些信念的支持下,1 831 年他终于发现了电磁感应现象:把两个线圈绕在一个铁环上,一个线圈接电源,另一个线圈接“电流表”,当给一个线圈通电或断电的瞬间,在另一个线圈上出现了电流。 二、电磁感应现象问:什么是电磁感应现象?(闭合电路的一部分在磁场中做切割磁感线运动时,导体中就产生电流) 三、电磁感应的产生条件 说明:在什么条件下能够产生电磁感应?要产生感应电流的前提条件线圈当然要是闭合线圈, 那还有什么条件呢?请看下面的实验 说明:为了说明产生电磁感应的条件.要用到一个物理盘--磁通量。什么是磁通量?我们用“穿过一个闭合电路的磁感线的多少”来形象地理解:“穿过这个闭合电路的磁通量” 思考与讨论:P47、思考与讨论磁通量发生变化

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

电磁感应现象的应用

重点难点突破 一、电磁感应现象中的力学问题 1.通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本步骤是: (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度.(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向).(4)列动力学方程或平衡方程求解. 2.对电磁感应现象中的力学问题,要抓好受力情况和运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,要抓住a=0时,速度v达最大值的特点. 二、电磁感应中的能量转化问题 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式的能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本步骤是: 1.用法拉第电磁感应定律和楞次定律确定电动势的大小和方向. 2.画出等效电路,求出回路中电阻消耗电功率的表达式. 3.分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程. 三、电能求解的思路主要有三种 1.利用安培力的功求解:电磁感应中产生的电能等于克服安培力所做的功; 2.利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能; 3.利用电路特征求解:根据电路结构直接计算电路中所产生的电能. 四、线圈穿越磁场的四种基本形式 1.恒速度穿越; 2.恒力作用穿越; 3.无外力作用穿越; 4.特殊磁场穿越. 典例精析 1.恒速度穿越 【例1】如图所示,在高度差为h的平行虚线区域内有磁感应强度为B,方向水平向里的匀强磁场.正方形线框abcd的质量为m,边长为L(L>h),电阻为R,线框平面与竖直平面平行,静止于位置“Ⅰ”时,cd边与磁场下边缘有一段距离H.现用一竖直向上的恒力F提线框,线框由位置“Ⅰ”无初速度向上运动,穿过磁场区域最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ab边保持水平.当cd边刚进入磁场时,线框恰好开始匀速运动.空气阻力不计,g=10 m/s2.求: (1)线框进入磁场前距磁场下边界的距离H; (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为多少?线框产生的热量为多少? 【解析】(1)线框进入磁场做匀速运动,设速度为v1,有: E=BLv1,I=ER,F安=BIL 根据线框在磁场中的受力,有F=mg+F安

第三章电磁感应-第一节现象

第一节、电磁感应现象 教学目标: 1、收集有关物理学史资料,了解电磁感应现象发现过程,体会人类探索自然规律的科学方法、科学态度和科学精神 2、知道磁通量,会比较“穿过不同闭合电路磁通量”的大小 3、通过实验,了解感应电流的产生条件 教学过程: 一、划时代的发现 说明:1820 年奥斯特发现了电流磁效应,说明电流能够产生磁场,人们很自然地思考,能不能根据磁来产生电呢,为此很多科学家做出了很多的尝试,其中最著名的科学家就是法拉第,他进行了长达10 年的艰苦探索。最初,法拉第认为.很强的磁铁或很强的电流可能会在邻近的闭合导线中感应出电流。他做了多次尝试,经历了一次次失败,都没有得到预想的结果。但是,法拉第坚信:电与磁有联系,电流能产生磁场,磁场也就一定能产生电流。在这些信念的支持下,1 831 年他终于发现了电磁感应现象:把两个线圈绕在一个铁环上,一个线圈接电源,另一个线圈接“电流表”,当给一个线圈通电或断电的瞬间,在另一个线圈上出现了电流。 二、电磁感应现象 问:什么是电磁感应现象?(闭合电路的一部分在磁场中做切割磁感线运动时,导体中就产生电流) 三、电磁感应的产生条件 说明:在什么条件下能够产生电磁感应?要产生感应电流的前提条件线圈当然要是闭合线圈, 那还有什么条件呢?请看下面的实验 说明:为了说明产生电磁感应的条件.要用到一个物理盘--磁通量。什么是磁通量?我们可以 用“穿过一个闭合电路的磁感线的多少”来形象地理解:“穿过这个闭合电路的磁通量” 思考与讨论:P55、思考与讨论磁通量发生变化 演示实脸 实验仪器:磁铁、螺线管、电流表 实验过程:①将螺线管和电流表连接 ②N极插入线圈的过程中,观察指针有没有偏转?如何偏转? N极停在线圈中,观察指针有没有偏转?如何偏转? N极从线圈中抽出的过程中,观察指针有没有偏转?如何偏转? S极插入线圈的过程中,观察指针有没有偏转?如何偏转?

电磁感应的应用论文

电磁感应现象在生活中的应用 摘要:自法拉利历经十年发现电磁感应现象后,电磁感应便开始运用于生活中。电话筒、录音机、汽车车速表、熔炼金属等,无一不与生活息息相关,极大的方便了我们的生活,推动了社会的进步,和发展。同时,它的利用也是理论向实践的不断进步的过程,理论唯有利用于实践才更能发挥它的作用。 动圈式话筒 在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。话筒是把声音转变为电信号的装置。动圈式话筒是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。 磁带录音机 磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随

音频电流变化的磁场。磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。 ③汽车车速表 汽车驾驶室内的车速表是指示汽车行驶速度的仪表。它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。其中永久磁铁与驱动轴相连。在表壳上装有刻度为公里/小时的表盘。 永久磁铁一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。当驱动轴带动永久磁铁转动时,则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方,磁感线的数目逐渐增加,而后方则逐渐减少。由法拉第电磁感应原理知道,通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

电磁感应 案例

《电磁感应》案例 教材分析:教材从奥斯特的发现得到的启发出,发提出问题:既然电流能产生磁场那么反过来磁场能不能获得电流?仿照前人探索的路子和方法,通过探索性的实验引出电磁感应和感应电流的概念,概括总结产生感应电流的条件。再通过实验事实的出感应电流的方向与磁感线方向和导体运动方向有关的结论。教材充分体现了寓方法指导于知识探索之中的思想。 教学目标: 1、认知目标: 知道什么是电磁感应现象以及其中的能量转化; 知道感应电流产生的条件; 知道感应电流方向与什么因素有关; 2、能力目标:进一步了解探究性实验的过程,加深对控制变量法的理解 3、情意目标:培养学生的探索精神实是求实的科学态度 重点难点:电磁感应现象以及感应电流产生的条件 教具准备:灵敏电流计蹄形磁铁(较大)一个导线开关一只 教学过程: 一、电磁感应现象的教学 提出问题: 请同学们回忆,奥斯特实验所证明的结论是什么?(学生回答) 从这一实验可以看出电是可以产生磁的。我们知道自然界的事物是互相联系相互作用的,既然电可以产生磁,那么我们马上可以联想到磁能否产生电呢?学生猜想:会 猜想实验的设计: 1、师生进一步了解实验目的 2、实验器材的选取讨论: 教师可以给予以下提示:要创造出磁场环境所以要提供什么器材?要看是否产生了电流所以要提供电流的载体或者说是电流流动的路径所以要有什么器材?电流即使产生了也是看不见摸不着的最理想的是在试验中能看出电流产生的现象,可以选什么仪表来展示一下? [师生讨论结果] 实验需要的器材为:磁铁导线检验是否有电流的电流表,控制电路的开关 3、探究步骤设计讨论: 教师及时给予以下启发:奥斯特实验证明导体通电后即可产生磁场,那么是不是把导体放到磁场里就会产生电流?导体动起来会不会产生电流?磁场中导体运动的方向不同是不是都产生电流?产生的电流一样大吗? [探究实验一] 学生分组实验 如课本12-1图组装试验仪器并进行下表探究性操作

电磁感应现象及其应用生活实践中

西北农林科技大学 电磁感应现象及其应用 学院:风景园林艺术学院 班级:园林134 姓名:崔苗苗 学号:2913911465 134

电磁感应现象及其在生活中的应用 西北农林科技大学风景园林艺术学院 姓名崔苗苗班级园林134班学号 2013011465 摘要自法拉第历经十年发现电磁感应现象后,电磁感便开始应用生活中。话筒, 电磁炉,电视机,手机等生活用品,无不与人类生活息息相关,极大地方便了我们的生活,推动了社会历史的进步和发展。同时,它的应用也是理论向实践不断探索和改进的过程,理论唯有应用于实践,才更能发挥它的价值。 关键词电磁感应现象生活应用 电磁感应现象的发现不仅揭示了电与磁之间的内在联系,而且为电与磁之间的转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在生活中具有重大的意义。它的发现,标志着一场重大的工业和技术革命的到来。在电工技术,电子技术以及电磁测量等方面都有广泛的应用,人类社会从此迈入电气化时代,对推动生产力和科学技术发展发挥了重要作用。物理发现的重要性由此可见。本文主要介绍了电磁感应现象及其在人类生活中的相关应用。 一.电磁感应现象定义 闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。而闭合电路中由电磁感应现象产生的电流叫做感应电流。 二.电磁感应发现历程 电磁学是物理学的一个重要分支,初中时代的奥斯特实验为我们打开电磁学的大门,此后高中三年这一部分内容也一直是学习的重中之重。继1820奥斯特实验之后,电与磁就不再是互不联系的两种物质,电流磁效应的发现引起许多物理学家的思考。当时,很多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,而迈克尔·法拉第即为其中一位。他在1821年发现了通电导线绕磁铁转动的现象,然后经历10年坚持不懈的努力,最终于1831年取得突破性进展。 法拉第将两个线圈绕在一个铁环上,其中一个线圈接直流电源,另一个线圈接电流表。他发现,当接直流电源的线圈电路接通或断开的瞬间,接电流表的线圈中会产生瞬时电流。而在这个过程中,铁环并不是必须的。无论是否拿走铁环,再做这个实验的时候,上述现象仍然发生,只是线圈中的电流弱些。 为了透彻研究电磁感应现象,法拉第又继续做了许多的实验。终于,在1831年11月24日,他在向皇家学会提交的一个报告中,将这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、

高中物理 第2章 电磁感应与电磁场 第1节 电磁感应现象的发现教师用书 粤教版

第一节电磁感应现象的发现 课标 解读重点难点 1.了解电磁感应现象发现的历史过程,体会科学家探索自然规 律的科学态度和科学方法. 2.通过实验,知道电磁感应现象及其产生的条件. 3.了解法拉第及其对电磁学的贡献,认识发现磁生电现象对推动电磁学理论和电磁技术发展的重大意义.1.电磁感应现象.(重点) 2.电磁感应产生的条件.(重难点) 法拉第与电磁感应现象 1. (1)实验观察 ①没有电池也能产生电流:闭合电路的部分导体做切割磁感线运动时,回路中电流表的指针发生了偏转. ②磁铁与螺线管有相对运动时也能产生电流:在条形磁铁插入或拨出螺线管的瞬间,电流表的指针发生了偏转.条形磁铁在螺线管中保持不动时,电流表的指针不发生偏转.如图2-1-1所示. 图2-1-1 (2)法拉第的实验结论 只要穿过闭合电路的磁通量发生变化.闭合电路中就有电流产生.这种由于磁通量的变化而产生电流的现象叫电磁感应现象,产生的电流称感应电流. 2.思考判断 (1)发现“磁生电”现象的科学家是法拉第.(√) (2)如图2-1-2所示,条形磁铁插入或拔出线圈时,线圈中有电流产生,但当磁铁在线圈中静止不动时,线圈中无电流产生.所以上述现象不是电磁感应现象.(×)

图2-1-2 (3)三峡电站是全球最大的水电站,它的发电机组利用了电磁感应原理.(√) 3.探究交流 电磁感应的发现有何意义? 【提示】(1)电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生. (2)电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电气化时代. 感应电动势 1. (1)电动势:描述电源将其他形式的能量转换成电能的本领的物理量. (2)感应电动势:由于电磁感应现象而产生的电动势. 2.思考判断 (1)只要闭合电路内有磁通量,闭合电路中就有感应电流.(×) (2)线框不闭合,即使穿过线框的磁通量变化,线框中也没有感应电流.(√) 3.探究交流 如果穿过断开电路的磁通量发生变化,电路中有没有感应电流?有没有感应电动势? 【提示】由于电路是断开的,电路中没有感应电流,但有感应电动势. 对磁通量变化的理解 1.引起磁通量变化的原因有哪些? 2.若穿过闭合电路的磁通量大小不变,方向相反,磁通量是否发生了变化? 根据磁通量的定义式Φ=BS,引起磁通量变化的方法有

第一节 电磁感应现象

教学内容第一节电磁感应现象 授课时 间 1课时 教学目标知识与技能 1.知道电磁感应现象;通过探究知道产生感应电流的条件 2.知道感应电流的方向与磁感线方向、导体切割磁感线的运动方向有关 3.知道发电机的原理;知道什么是交流电;知道发电机发电过程是能量转化的过程 4.知道我国供生产和生活用的交流电的频率是50 Hz的意思; 过程与方法 1.通过探究磁生电的条件,进一步了解电和磁之间的相互联系,提高学生观察能力、分析概括能力和联系简单现象探索物理规律的能力 2.观察和体验发电机是怎样发电的,提高学生应用知识分析和解决问题的能力 情感态度与价值观 1.认识自然现象之间是相互联系的,进一步了解探索自然奥妙的科学方法 2.认识任何创造发明的基础是科学探索的成果,初步具有创造发明的意识 教学重点难点1.通过探索知道电磁感应现象 2.通过实验知道交流发电机的工作原理 教具 准备 灵敏电流表、蹄形磁铁、导体、开关、手摇发电机一台、小灯泡 教学过程复习,引入新课 (奥斯特实验)它揭示了一个什么现象?从学过的知识入手,让学生轻松感 受到从生活到物理。 1、磁生电(电流周围存在着磁场,即电能生磁。)该实验在当时的科学界 引起了轰动。法拉第在此基础上提出了新课题——既然电能生磁,那么磁能生 电吗? 利用磁场产生电流的现象叫做电磁感应现象;电磁感应产生的电流叫感应 电流。 电磁感应现象是英国的物理学家法拉第发现的,他经过十年坚持不懈的努 力,才发现了这一现象,这种热爱科学,坚持探索真理的可贵精神值得我们学 习。 2、探究感应电流产生的条件 什么情况下磁能生电 [演示实验]实验器材:蹄形磁体、灵敏电流表、线圈、导线 参照P124图8-1-2进行探究。让直导线在蹄形磁体的磁场中静止,观察到 电流表指针不偏转.这说明没有产生电流。 将直导线在磁场中左右运动,观察到电流表指针偏转。这表明有电流产生 让直导线在蹄形磁体中上、下运动,观察到电流表指针不偏转.这说明没有 产生电流. 将直导线在磁场中斜着运动,观察到电流表指针偏转。这表明有电流产生。 个性 修改

法拉第电磁感应定律练习题集40道

1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是()

A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零

C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫 磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率 ??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故2 2 1l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。

法拉第电磁感应定律练习题40道35066

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 :_______________班级:_______________考号:_______________ 题号 一 、选择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa 和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

4.44法拉第电磁感应定律

4.4法拉第电磁感应定律(1) 1.如图所示,闭合开关S,将条形磁铁插入闭合线圈,第一次用时0.2 s,第 二次用时0.4 s,并且两次磁铁的起始和终止位置相同,则( ) A.第一次线圈中的磁通量变化较快 B.第一次电流表G的最大偏转角较大 C.第二次电流表G的最大偏转角较大 D.若断开S,电流表G均不偏转,故两次线圈两端均无感应 电动势 2.下列几种说法中正确的是( ) A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,线圈中产生的感应电动势一定越大 C.线圈放在磁场越强的位置,线圈中产生的感应电动势一定越大 D.线圈中磁通量变化越快,线圈中产生的感应电动势一定越大 3.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则( ) A.线圈中感应电动势每秒增加2 V B.线圈中感应电动势每秒减少2 V C.线圈中感应电动势始终为2 V D.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2 V 4.一个100匝的线圈,在0.5s内穿过它的磁通量从0.01Wb增加到0.09Wb。求 线圈中的感应电动势 5.一个匝数为100、面积为10cm2的线圈垂直磁场放置, 在0.5s内穿过它的磁 场从1T增加到9T。求线圈中的感应电动势

6.如图甲所示,环形线圈的匝数n =100,它的两个端点a 和b 间接有一理想电压表,线圈内磁通量的变化规律如图乙所示,问: (1)0.2s 穿过线圈的磁通量变化了多少? (2)求0.2s 穿过线圈的磁通量变化率 (3) 求线圈中的感应电动势 7.下图中能产生感应电流的是( ) 8.某磁场磁感线如图所示,有一铜线圈自图示A 处落至B 处,在下落过程中, 自上向下看,线圈中感应电流的方向是( ) A .始终顺时针 B .始终逆时针 C .先顺时针再逆时针 D .先逆时针再顺时针 9.如图所示,虚线框内有匀强磁场,大环和小环是垂直于磁场放置的两个圆环, 分别用Φ1和Φ2表示穿过大小两环的磁通量,则有( ) A .Φ1>Φ2 B .Φ1<Φ2 C .Φ1=Φ2 D .无法确定 10.如图所示,一根条形磁铁穿过一个弹性线圈,将线圈面积 拉大,放手后穿过线圈的( ) A .磁通量减少且合磁通量向左 B .磁通量增加且合磁通量向左 C .磁通量减少且合磁通量向右 D .磁通量增加且合磁通量向右

电磁感应在生活中的应用

电磁感应在生活中的应用 摘要:电磁感应现象是放在变化磁通量中的导体,会产生电动势,一般表现为两种形式,即动生电动势与感生电动势。对这两种电动势从产生机制、能量转换等角度分别进行描述,来理解它们的统一和区别。电磁感应现象在生活中有很多的应用,对常见的几种例子分别进行阐述,对该现象有更具体的理解。 关键词:电磁感应定律电动势应用 一、电磁感应定律 不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就产生感应电动势,电路已经具备了随时输出电能的能力。如果电路闭合,将会在回路中产生感应电流。这一现象是迈克尔·法拉第于1831年发现的,因此被称之为法拉第电磁感应定律。这是自奥斯特发现了电流产生磁场之后,在电磁学中的另一伟大发现,它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了基础。 通过实验表明,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电动势和感应电流。若电路不闭合,则电路没有电流,只存在感应电动势,感应电动势与穿过这一电路相对任一参照形成闭合环路的磁通量变化率成正比,方向用楞次定律判断。即无论回路是否闭合,都会产生感应电动势: ε = -dφ/dt 感应电动势的存在不以导体存在为前提,根据复合函数求导及磁通量与磁感应强度关系,当上式中线圈匝数 n = 1 时,又可写为 ε = -d( ∫BdS) / dt = -∫( B / t) dS -∫B ( dS) / t 二、电动势 上式中,第一项表示线圈不动时磁感应强度 B随时间变化所产生的感应电动势,又称感生电动势,变压器及无线信号的接收天线是其典型应用; 第二项表示空间磁场不变,线圈面积变化产生的感应电动势,又称动生电动势,其典型应用于发电机。 1.动生电动势 回路或其一部分在磁场中的相对运动所产生的感应电动势,即变,称之为动生电动势。动生电动势的产生是由于外力的作用,驱使导体在磁场内运动,整个过程中洛伦兹力与导 体的运动方向垂直,即洛伦兹力不做功。因此,动生电动势能量的变化是外力的机械能转化为电能。 2.感生电动势 仅由磁场的变化而产生的感应电动势,即变,称之感生电动势。感生电动势时,导体或导体回路不动,而磁场变化。因此产生感生电动势的原因不可能是洛仑兹力。英国物理学家麦克斯韦指出:变化的磁场会在其周围空间激发出一种电场,称为感生电场,其电场线为闭合曲线,所以又称为涡旋电场。产生感生电动势的非静电力是感生电场力(或称为涡旋电场力)。 三、电磁感应的应用 电磁感应现象的发现为电和磁的转化铺平了道路,工程及生活应用中很多发明都是根据电磁感应原理制成的,如我们熟知的发电机、电磁炉以及将来肯定会普及的无接触式充电电池,等等。

相关主题
文本预览
相关文档 最新文档