当前位置:文档之家› 高考物理法拉第电磁感应定律推断题综合题附详细答案

高考物理法拉第电磁感应定律推断题综合题附详细答案

高考物理法拉第电磁感应定律推断题综合题附详细答案
高考物理法拉第电磁感应定律推断题综合题附详细答案

高考物理法拉第电磁感应定律推断题综合题附详细答案

一、法拉第电磁感应定律

1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求:

(1)匀强电场的电场强度 (2)流过电阻R 的电流

(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd

qR

(3)()B mgd R r t NQRS ?+=? 【解析】 【详解】 (1)由题意得:

qE =mg

解得

mg q

E =

(2)由电场强度与电势差的关系得:

U

E d

=

由欧姆定律得:

U I R

=

解得

mgd

I qR

=

(3)根据法拉第电磁感应定律得到:

E N

t

=? B

S t t

?Φ?=??

根据闭合回路的欧姆定律得到:()E I R r =+ 解得:

()

B mgd R r t NqRS

?+=?

2.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀

速向上运动;当金属杆受到平行于斜面向下大小为

2

F

的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:

(1)金属杆的质量;

(2)金属杆在磁场中匀速向上运动时速度的大小。 【答案】(1)4sin F m g α=;(2)2222344tan RE RF

v B l B l μα

=-。

【解析】 【分析】 【详解】

(1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得

sin cos F mg mg BIl αμα=++,

同理可得

sin cos 2

F

mg mg BIl αμα+=+, 由闭合电路的欧姆定律可得

E IR =,

由法拉第电磁感应定律可得

E BLv =,

联立解得

4sin F

m g α

=

(2)金属杆在磁场中匀速向上运动时速度的大小

2222

344tan RE RF

v B l B l μα

=

-。

3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

【答案】0F E Blt g m μ??=- ??? ; R =220

B l t m

【解析】 【分析】 【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ??

=-

???

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦

联立④⑤⑥⑦式得: R =220

B l t m

4.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为g 。求:

(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。 【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7

2L

t g

= 【解析】 【详解】

(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有

2

1sin 302

mgL mv ?=

, 则线框进入磁场时的速度

2sin30v g L gL =?=

线框ab 边进入磁场时产生的电动势E =BLv 线框中电流

E I R

=

ab 边受到的安培力

22B L v

F BIL R

== 线框匀速进入磁场,则有

22sin 30B L v

mg R

?= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为

22422B L v

F BI L mg R

==''=

方向沿斜面向上

(2)设线框再次做匀速运动时速度为v ',则

224sin 30B L v mg R

?=

'

解得

4gL

v

v='=根据能量守恒定律有

22

11

sin302

22

mg L mv mv Q

?'

?+=+

解得

47

32

mgL

Q=

线框ab边在上侧磁扬中运动的过程所用的时间

1

L

t

v

=

设线框ab通过ff'后开始做匀速时到gg'的距离为0x,由动量定理可知:

22

sin302

mg t BLIt mv mv

?-='-

其中

()

2

2BL L x

I

t R

-

=

联立以上两式解得

()

2

43

2

L x v

t

v g

-

=-

线框ab在下侧磁场匀速运动的过程中,有

00

3

4

x x

t

v v

=

'

=

所以线框穿过上侧磁场所用的总时间为

123

7

2

L

t t t t

g

=++=

5.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成θ=30?角,上端连接 1.5

R=Ω的电阻.质量为m=0.2kg、阻值0.5

r=Ω的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.

(1)若磁感应强度B=0.5T,将金属棒释放,求金属棒匀速下滑时电阻R两端的电压;(2)若磁感应强度的大小与时间成正比,在外力作用下ab棒保持静止,当t=2s时外力

恰好为零.求ab 棒的热功率;

(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。 【答案】(1)3V (2)0.5W (3)(1)(1)44

N F N π

π

-≤≤+ 【解析】 【分析】

本题考查的是导体棒切割磁感线的动力学问题,我们首先把导体棒的运动情况和受力情况分析清楚,然后结合相应规律即可求出相应参量。 【详解】

(1)匀速时,导体棒收到的安培力等于重力的下滑分力,可得:E

BL=mgsin θR+r

,求出电动势为E=4V ,所以金属棒匀速下滑时电阻R 两端的电压U=3V (2)设磁感应强度随时间变化的规律为B=kt ,则电路中产生的电动势为

ΔΦΔB E=n =S =kS Δt Δt ,安培力的大小为kS

F =kt L R+r

安,当t=2s 时,外力等于零,可得:kS

2k

L=mgsin θR+r

,解出k=0.5T/s ,最后可得P=I 2R=0.5W 。 (3)根据法拉第电磁感应定律可得:ΔΦΔB

E=

=S Δt Δt

,根据F =BIL 安可得,E F =BL

R+r 安,最后化简可得π

F =-sin200πt(N)4

安,所以外力F 的取值范围ππ

1-N F 1+N 44

≤≤()()

【点睛】

过程比较复杂的问题关键在于过程分析,对运动和受力进行分析。

6.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的

1

4

画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。现有一根阻值为R 2、质量为m 的金属杆,在水平拉力作用下,从图中位置ef 由静止开始做加速度为a 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。开始运动后,经时间t 1,金属杆运动到cd 时撤去拉力,此时理想电压表的示数为U ,此后全属杆恰好能到达圆弧最高处ab 。重力加速度为g 。求:

(1)金属杆从ef 运动到cd 的过程中,拉力F 随时间t 变化的表达式;

(2)金属杆从ef 运动到cd 的过程中,电阻R 1上通过的电荷量; (3)金属杆从cd 运动到ab 的过程中,电阻R1上产生的焦耳热。

【答案】(1)21222

11

()U R R t F ma R at +=+;(2)112Ut q R =;(3)22

11121()2R Q ma h mgr R R =-+ 【解析】 【分析】

利用法拉第电磁感应定律和电流公式联合求解。

根据能量守恒定律求出回路产生的总焦耳热,再求出R 1上产生的焦耳热。 【详解】

(1) 金属杆运动到cd 时,由欧姆定律可得 11

U

I R = 由闭合电路的欧姆定律可得 E 1=I 1(R 1+R 2) 金属杆的速度 v 1=at 1

由法拉第电磁感应定律可得 E 1=BLv 1 解得:1211()

U R R B R Lat +=

由开始运动经过时间t ,则 v=at 感应电流12

BLv

I R R =

+

金属杆受到的安培力 F 安 =BIL 由牛顿运动定律 F -F 安=ma

可得21222

11()U R R t

F ma R at +=+;

(2) 金属杆从 ef 运动到cd 过程中,位移2112

x at = 电阻R 1上通过的电荷量:

q I t =?

12

E

I R R =

+

E t

=

? B S ?Φ=? S xL ?=

联立解得:1

1

2Ut q R =

; (3) 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得

2

12

Q mv mgr =

-

因此电阻R 1上产生的焦耳热为

1

112

R Q Q R R =

+ 可得

2211121

()2

R Q ma h mgr R R =

-+。 【点睛】

此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径。

7.如图所示,足够长的固定平行粗糙金属双轨MN 、PQ 相距d =0.5m ,导轨平面与水平面夹角α=30°,处于方向垂直导轨平面向上、磁感应强度大小B =0.5T 的匀强磁场中。长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,棒的质量m =0.1kg ,电阻R =0.1Ω,与导轨之间的动摩擦因数3

6

μ=

,导轨上端连接电路如图所示。已知电阻R 1与灯泡电阻R 2的阻值均为0.2Ω,导轨电阻不计,取重力加速度大小g =10 m/s 2。

(1)求棒由静止刚释放瞬间下滑的加速度大小a ;

(2)假若棒由静止释放并向下加速运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实际功率P 和棒的速率v 。

【答案】(1)a =2.5 m/s 2 (2) v =0.8m/s

【解析】(1)棒由静止刚释放的瞬间速度为零,不受安培力作用 根据牛顿第二定律有mg sin α-μmg cos α=ma 代入数据得a =2.5m/s 2

(2)由“灯L 的发光亮度稳定”知棒做匀速运动,受力平衡 有mg sin α-μmg cos α=BId 代入数据得棒中的电流I =1A

由于R 1=R 2,所以此时通过小灯泡的电流21

0.5A 2

I I =

= 2

220.05W P I R ==

此时感应电动势1212R R E Bdv I R R R ??

==+

?+??

得v =0.8 m/s

【点睛】本题考查导体棒切割磁感线的过程中的最大值问题,综合了共点力的平衡、牛顿

第二定律的应用、闭合电路的电路知识、电磁感应知识等知识点的内容,要注意正确理清题目设置的情景,注意电磁感应的过程中的能量转化的关系与转化的方向。

8.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab 在水平向右的拉力F 作用下,以水平速度v 沿金属导轨向右做匀速直线运动,导体棒ab 始终与金属导轨形成闭合回路.已知导体棒ab 的长度恰好等于平行导轨间距l ,磁场的磁感应强度大小为B ,忽略摩擦阻力.

(1)求导体棒ab 运动过程中产生的感应电动势E 和感应电流I ;

(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的.如图乙(甲图中导体棒ab )所示,为了方便,可认为导体棒ab 中的自由电荷为正电荷,每个自由电荷的电荷量为q ,设导体棒ab 中总共有N 个自由电荷.

a.求自由电荷沿导体棒定向移动的速率u ;

b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率.

【答案】(1) Blv

F Bl

(2) F NqB 宏观角度 【解析】

(1)根据法拉第电磁感应定律,感应电动势E Blv = 导体棒水平向右匀速运动,受力平衡,则有F BIl F ==安

联立解得:F

I Bl

=

(2)a 如图所示:

每个自由电荷沿导体棒定向移动,都会受到水平向左的洛伦兹力1f quB = 所有自由电荷所受水平向左的洛伦兹力的合力宏观表现为安培力F 安 则有:1F Nf NquB F ===安

解得:F u NqB

=

B, 宏观角度:非静电力对导体棒ab 中所有自由电荷做功的功率等于感应电源的电功率,则有:P P EI Fv ===非电 拉力做功的功率为:P Fv =拉

因此P P =非拉, 即非静电力做功的功率等于拉力做功的功率; 微观角度:如图所示:

对于一个自由电荷q ,非静电力为沿棒方向所受洛伦兹力2f qvB = 非静电力对导体棒ab 中所有自由电荷做功的功率2P Nf u 非= 将u 和2f 代入得非静电力做功的功率P Fv =非 拉力做功的功率P Fv =拉

因此P P =非拉 即非静电力做功的功率等于拉力做功的功率.

9.如图所示,无限长金属导轨EF 、PQ 固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L =1 m ,底部接入一阻值为R =0.4 Ω的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度B =2 T .一质量为m =0.5 kg 的金属棒ab 与导轨接触良好,ab 与导轨间的动摩擦因数μ=0.2,ab 连入导轨间的电阻r =0.1 Ω,电路中其余电阻不计.现用一质量为M =2.86 kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab 相连.由静止释放M ,当M 下落高度h =2.0 m 时,ab 开始匀速运动(运动中ab 始终垂直导轨,并接触良好).不计空气阻力,sin 53°=0.8,cos 53°=0.6,取g =10 m/s 2.求:

(1)ab 棒沿斜面向上运动的最大速度v m ;

(2)ab 棒从开始运动到匀速运动的这段时间内电阻R 上产生的焦耳热Q R 和流过电阻R 的总电荷量q .

【答案】(1)3m/s . (2)26.3J ,8C

【解析】 【分析】 【详解】

(1)由题意知,由静止释放M 后,ab 棒在绳拉力T 、重力mg 、安培力F 和轨道支持力N 及摩擦力f 共同作用下做沿轨道向上做加速度逐渐减小的加速运动直至匀速运动,当达到最大速度时,由平衡条件有: T ﹣mgsin θ﹣F ﹣f =0…① N ﹣mgcos θ=0…② T =Mg …③

又由摩擦力公式得 f =μN …④ ab 所受的安培力 F =BIL …⑤ 回路中感应电流 I m

BLv R r

=

+L ⑥ 联解①②③④⑤⑥并代入数据得: 最大速度 v m =3m/s …⑦

(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及摩擦而转化的内能之和,有: Mgh ﹣mghsin θ()2

12

m

M m v =

++Q+fh …⑧ 电阻R 产生的焦耳热 Q R R

R r

=

+Q …⑨ 根据法拉第电磁感应定律和闭合电路欧姆定律有: 流过电阻R 的总电荷量 q I =△t …⑩ 电流的平均值 E

I R r

=

+L ? 感应电动势的平均值 E t

Φ

=

V L V ? 磁通量的变化量△Φ=B ?(Lh )…?

联解⑧⑨⑩???并代入数据得:Q R =26.3J ,q =8C

10.如图所示,无限长金属导轨EF 、PQ 固定在倾角为θ=30°的绝缘斜面上,轨道间距L =1m ,底部接入一阻值为R =0.06Ω的定值电阻,上端开口。垂直斜面向上的匀强磁场的磁

感应强度B 0。一质量为m =2kg 的金属棒αb 与导轨接触良好,αb 连入导轨间的电阻r =0.04Ω,电路中其余电阻不计.现用一质量为M =6kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与αb 相连.由静止释放M ,当M 下落高度h =2m 时.αb 开始匀速运动(运动中αb 始终垂直导轨,并接触良好),不计一切摩擦和空气阻力.取g =10m/s 2.求:

(1)αb 棒沿斜面向上运动的最大速度v m ;

(2)αb 棒从开始运动到匀速运动的这段时间内电阻R 上产生的焦耳热Q R 。

【答案】(1)1m/s ;(2)57.6J ; 【解析】(1)对M :T =Mg 对m :T =mg sin θ+F 安 F 安=BIL 回路中感应电流E

I R r

=+ E =BLv m 联立得:v m =1m/s

(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及摩擦而转化的内能之和,

有: 2

1sin M 2

m Mgh mgh Q m v θ=+++总()

Q 总=96J

电阻R 产生的焦耳热: R

R Q Q R r

=+总 Q R =57.6J

【点睛】本题有两个关键:一是推导安培力与速度的关系;二是推导感应电荷量q 的表达式,对于它们的结果要理解记牢,有助于分析和处理电磁感应的问题.

11.如图所示,固定于水平桌面上足够长的两平行导轨PO 、MN ,PQ 、MN 的电阻不计,间距为d =0.5m.P 、M 两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B =0.2T 的匀强磁场中.电阻均为r =0.1Ω,质量分别为m 1=300g 和m 2=500g 的两金属棒L 1、L 2平行的搁在光滑导轨上,现固定棒L 1,L 2在水平恒力F =0.8N 的作用下,由静止开始做加速运动,试求:

(1)当电压表的读数为U =0.2V 时,棒L 2的加速度多大? (2)棒L 2能达到的最大速度v m .

(3)若在棒L 2达到最大速度v m 时撤去外力F ,并同时释放棒L 1,求棒L 2达到稳定时的速度值.

(4)若固定棒L 1,当棒L 2的速度为v ,且离开棒L 1距离为S 的同时,撤去恒力F ,为保持棒

L 2做匀速运动,可以采用将B 从原值(B 0=0.2T)逐渐减小的方法,则磁感应强度B 应怎样随

时间变化(写出B 与时间t 的关系式)?

【答案】(1) 21.2/m s ;(2) 16/m s ;(3) 0t B S

B S vt

=+ 【解析】解:(1)∵L 1与L 2串联 ∴流过L 2的电流为I 2U

A r

=

= ① L 2所受安培力为:F ′=BdI=0.2N ② ∴ 22

1.2/F F a m s m -=

='

③ (2)当L 2所受安培力F 安=F 时,棒有最大速度v m ,此时电路中电流为I m . 则:F 安=BdI m ④

2m

m Bdv I r

=

⑤ F 安=F ⑥

由④⑤⑥得: 22

216/m Fr

v m s B d

=

= ⑦ (3)撤去F 后,棒L 2做减速运动,L 1做加速运动,当两棒达到共同速度v 共时,L 2有稳定速度,对此过程有:

()212m m v m m v =+共 ⑧ ∴212

10/m

m v v m s m m =

=+共 ⑨

(4)要使L 2保持匀速运动,回路中磁通量必须保持不变,设撤去恒力F 时磁感应强度为B 0,t 时刻磁感应强度为B t ,则: B 0dS =B t d (S +vt ) ⑩ ∴01B S

B S vt

=

+

12.如图所示,在水平面上固定一光滑金属导轨

HGDEF ,EF ∥GH ,DE =EF =DG =GH =EG =L .一质量为m 足够长导体棒AC 垂直EF 方向放置于在金属导轨上,导轨与导体棒单位长度的电阻均为r .整个装置处在方向竖直向下、磁感应强度为B 的匀强磁场中.现对导体棒AC 施加一水平向右的外力,使导体棒从D 位置开始以速度v 0沿EF 方向做匀速直线运动,导体棒在滑动过程中始终保持与导轨良好接触.

(1)求导体棒运动到FH 位置,即将离开导轨时,FH 两端的电势差.

(2)关于导体棒运动过程中回路产生感应电流,小明和小华两位同学进行了讨论.小明认 为导体棒在整个运动过程中是匀速的,所以回路中电流的值是恒定不变的;小华则认 为前一过程导体棒有效切割长度在增大,所以电流是增大的,后一过程导体棒有效切 割长度不变,电流才是恒定不变的.你认为这两位同学的观点正确吗?请通过推算证 明你的观点. (3)求导体棒从D 位置运动到EG 位置的过程中,导体棒上产生的焦耳热. 【答案】(1)045FH U BLv = (2)两个同学的观点都不正确 (3)220336

B L v Q '= 【解析】 【分析】 【详解】

(1)导体棒运动到FH 位置,即将离开导轨时,由于切割磁感线产生的电动势为E =BLv 0在电路中切割磁感线的那部分导体相当于电源,则此时可将电路等效为:

可以将切割磁感线的FH 棒看成电动势为E ,内阻为r 的电源, 根据题意知,外电路电阻为R =4r ,

再根据闭合电路欧姆定律得FH 间的电势差:0044

45

FH R r U E BLv BLv R r r r ===++ (2)两个同学的观点都不正确

取AC 棒在D 到EG 运动过程中的某一位置,MN 间距离设为x ,

则由题意有:DM =NM =DN =x

则此时切割磁感线的有效长度为x ,则回路中产生的感应电动势E =Bxv 0

回路的总电阻为R =3rx 据欧姆定律知电路中电流为00

33Bxv Bv E I R rx r

=

==,即此过程中电流是恒定的; 当导体棒由EG 棒至FH 的过程中,由于切割磁感线的导体长度一定,故产生的感应电动势恒定,但电路中电阻是随运动而增加的据欧姆定律可得,电路中的电流是减小的. (3)设任意时刻沿运动方向的位移为s ,如图所示:

则3

s x =

安培力与位移的关系为2200233A B v x B v s

F BIx r ===

AC 棒在DEG 上滑动时产生的电热,数值上等于克服安培力做的功,

又因为A F s ∝,所以22

03032212

A

B L v F Q L +=?=

因为导体棒从D 至EG 过程中,导体棒的电阻始终是回路中电阻的

1

3

, 所以导体棒中产生的焦耳热2203336

B L v Q

Q '==

13.如图所示,一无限长的光滑金属平行导轨置于匀强磁场B 中,磁场方向垂直导轨平面,导轨平面竖直且与地面绝缘,导轨上M 、N 间接一电阻R ,P 、Q 端接一对沿水平方向的平行金属板,导体棒ab 置于导轨上,其电阻为3R ,导轨电阻不计,棒长为L ,平行金属板间距为d .今导体棒通过定滑轮在一物块拉动下开始运动,稳定后棒的速度为v ,不计一切摩擦阻力.此时有一带电量为q 的液滴恰能在两板间做半径为r 的匀速圆周运动,且速率也为v .求: (1)速度v 的大小; (2)物块的质量m .

【答案】(1)gdr

L

222B l dLr

R g

【解析】 【详解】

(1)设平行金属板间电压为U .液滴在平行金属板间做匀速圆周运动,重力与电场力必定平衡,则有:

U

q

mg d

= 由2

v qvB m r

=

得mv r qB

=

联立解得gdrB

U v

=

则棒产生的感应电动势为: ·(3)4U gdrB B R R R v

=+= 由E BLv =棒, 得 4gdr

v vL

=

棒 (2)棒中电流为:U gdrB I R vR

=

= ab 棒匀速运动,外力与安培力平衡,则有 2

gdrLB F BIL vR ==

而外力等于物块的重力,即为 2

gdrLB mg vR

=

解得2

drLB m vR

=

14.如图所示,导线全部为裸导线,半径为r 的圆内有垂直于平面的匀强磁场,磁感应强度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上自左向右匀速滑动,电路的固定电阻为R ,其余电阻忽略不计.试求MN 从圆环的左端到右端的过程中电阻R 上的电流强度的平均值及通过的电荷量.

【答案】

2Brv R

π2

B r R

π

【解析】

试题分析:由于ΔΦ=B·ΔS =B·πr 2,完成这一变化所用的时间2t=r v

? 故2

Brv

E t π?Φ=

=? 所以电阻R 上的电流强度平均值为2E Brv

I R R

π=

= 通过R 的电荷量为2

·B r q I t R

π?==

考点:法拉第电磁感应定律;电量

15.两根足够长的固定平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨上面垂直放置两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .两导体棒均可沿导轨无摩擦地滑行,开始时cd 棒静止,棒ab 有指向cd 的速度v 0.两导体棒在运动中始终不接触.求:

(1)在运动中产生的最大焦耳热; (2)当棒ab 的速度变为

3

4

v 0时,棒cd 的加速度. 【答案】(1) 2014mv ;(2) 220

4B L v mR

,方向是水平向右

【解析】 【详解】

(1)从初始到两棒速度相等的过程中,两棒总动量守恒,则有:02mv mv = 解得:02

v v =

由能的转化和守恒得:222001211224

Q mv mv mv =

?=-

(2)设ab 棒的速度变为

03

4

v 时,cd 棒的速度为v ',则由动量守恒可知:003

4

mv m v mv =+'

解得:014

v v '=

此时回路中的电动势为: 000311

442

E BLv BLv BLv =-= 此时回路中的电流为: 024BLv E I R R

=

= 此时cd 棒所受的安培力为 :220

4B L v F BIL R == 由牛顿第二定律可得,cd 棒的加速度:220

4B L v F a m mR

==

cd 棒的加速度大小是220

4B L v mR

,方向是水平向右

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

高考物理电磁场归纳汇总(经典)

高考物理电磁场归纳汇总(经典)

————————————————————————————————作者:————————————————————————————————日期:

电场知识点总结 电荷 库仑定律 一、库仑定律:2212112==r Q Q K F F ①适用于真空中点电荷间相互作用的电力 ②K 为静电力常量229/10×9=C m N K ③计算过程中电荷量取绝对值 ④无论两电荷是否相等:2112=F F . 电场 电场强度 二、电场强度:q F E =(单位:N/C ,V/m ) ①电场力qE F =; 点电荷产生的电场2r Q k E =(Q 为产生电场的电荷); 对于匀强电场:d U E =; ②电场强度的方向: 与正电荷在该点所受电场力方向相同 (试探电荷用正电荷)与负电荷在该点所受电场力方向相反 ③电场强度是电场本身的性质,与试探电荷无关 ④电场的叠加原理:按平行四边形定则 ⑤等量同种(异种)电荷连线的中垂线上的电场分布 三、电场线 1.电场线的作用: ①.电场线上各点的切线方向表示该点的场强方向 ②.对于匀强电场和单个电荷产生的电场,电场线的方向就是场强的方向 ③电场线的疏密程度表示场强的大小 2.电场线的特点:起始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不相交,不闭合. 电势差 电势 知识点: 1.电势差B A AB AB q W U ??-== 2.电场力做功:)(B A AB AB q qU W ??-==

{(匀强电场)正功)(负功)电(qEd qEd W -= 3.电势:q W U AO AO A = =? 4. 电势能:?εq = (1)对于正电荷,电势越高,电势能越大 (2)对于负电荷,电势越低,电势能越大 5.电场力做功与电势能变化的关系:ε?-=电W (1)电场力做正功时,电势能减小 (2)电场力做负功时,电势能增加 静电平衡 等势面 知识点: 1.等势面 (1)同一等势面上移动电荷的时候,电场力不做功. (2)等势面跟电场线(电场强度方向)垂直 (3)电场线由电势高的等势面指向电势低的等势面 (4)等差等势面越密的地方,场强越大 2.处于静电平衡的导体的特点: (1)内部场强处处为零 (2)净电荷只分布在导体外表面 (3)电场线跟导体表面垂直 电场强度与电势差的关系 知识点: 1. 公式:d U E = Ed U = 说明:(1)只适用于匀强电场 (2)d 为电场中两点沿电场线方向的距离 (3)电场线(电场强度)的方向是电势降低最快的方向 2.在匀强电场中:如果CD AB //且CD AB =则有CD AB U U = 3.由于电场线与等势面垂直,而在匀强电场中,电场线相互平行,所以等势面也相互平行 一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

高考物理电磁综合压轴大题汇编

2016年高考押题 1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E;匀强磁场垂直纸面向里,磁感应强度大小为B。虚线与水平线之间的夹角为θ=45°,一带负电粒子从O 水平射入匀强磁场,已知带负电粒子电荷量为q, 点以速度v 质量为m,(粒子重力忽略不计)。 (1)带电粒子从O点开始到第1次通过虚线时所用的时间; (2)带电粒子第3次通过虚线时,粒子距O点的距离; (3)粒子从O点开始到第4次通过虚线时,所用的时间。 1.(18分)解:如图所示: (1)根据题意可得粒子运动轨迹如图所示。 2πm T =……………………………………(2分) Bq 因为θ=45°,根据几何关系,带电粒子从O运动到A为3/4圆周……(1分)则带电粒子在磁场中运动时间为:

3π2m t Bq = ………………………………………………………………………………………(1分) (2)由qvB=m 2 v r ………………………………………………………(2分) 得带电粒子在磁场中运动半径为:0 mv r Bq = ,…………………………(1分) 带电粒子从O 运动到A 为3/4圆周,解得0 OA x Bq ==…………………(1分) 带电粒子从第2次通过虚线到第31 4圆周,OA AC x x = 所以粒子距O 点的距离0 OC x Bq ==………………………………(1 分) (3)粒子从A 点进入电场,受到电场力F=qE ,则在电场中从A 到B 匀减速,再从B 到A 匀加速进入磁场。在电场中加速度大小为: qE a m = ……………………(1分) 从A 到B 的时间与从B 到A 的时间相等。00 AB v mv t a qE == ………………………(1分) 带 电粒子从A 到C : 342T m t Bq π==……………………………………………………(1分) 带电粒子从C 点再次进入电场中做类平抛运动 X=v 0t 4……………………………………………………………(1分) 2 412 Y at = …………………………………………………………(1分) 由几何关系得:Y=X ……………………………………………………………(1分) 得 42mv t qE = …………………………………………………………………………(1分)

电磁感应专题训练力学综合

专题训练电磁感应(三)力学综合 1.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导 轨向上滑动,当上滑的速度为v时,受到安培力的大小 为F.此时(BCD ) A.电阻R1消耗的热功率为Fv/3 B.电阻R2消耗的热功率为Fv/6 C.整个装置因摩擦而消耗的热功率为μmgv cosθ D.整个装置消耗的机械功率为(F+μmg cosθ)v 2.如图所示,足够长的导轨框abcd固定在竖直平面,bc段电阻为R, 其它电阻不计,ef是一电阻不计的水平放置的质量为m的导体杆, 杆的两端分别与ab、cd接触良好,又能沿框架无摩擦地下滑,整个 装置放在与框架平面垂直的匀强磁场中,当ef从静止开始下滑,经 过一段时间后,闭合开关S,则在闭合开关S后( A ) A.ef加速度的数值有可能大于重力加速度 B.如果改变开关闭合的时刻,ef先后两次获得的最大速度一定相同 (有一种是加速度减小的减速 运动,最大速度是闭合开关瞬间) C.如果ef最终做匀速运动,这时电路消耗的电功率也因开关闭合时 刻的不同而不同 D.ef两次下滑过程中,系统机械能的改变量等于电路消耗的电能与转化的能之和3.如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁 场中,一导体杆与两导轨良好接触并做往复运动,其运动 情况与弹簧振子做简谐运动的情况相同.图中O位置对 应于弹簧振子的平衡位置,P、Q两位置对应于弹簧振子 的最大位移处.若两导轨的电阻不计,则( D ) A.杆由O到P的过程中,电路中电流变大 B.杆由P到Q的过程中,电路中电流一直变大 C.杆通过O处时,电路中电流方向将发生改变 D.杆通过O处时,电路中电流最大 4.如图所示,两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨的电阻可忽略不计。斜面处在一匀强磁场中,磁场方 向垂直于斜面向上。质量为m、电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h 高度。在这过程中( AD ) A.作用在金属棒上的各个力的合力所做的功等于零 B.作用在金属棒上的各个力的合力所做的功等于mgh与电阻R上发出的焦耳热之和 C.恒力F与安培力的合力所做的功等于零 D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热 B F R a b h θ a b d c e f R S

高二物理之电磁感应综合题练习(附答案)

电磁感应三十道新题(附答案) 一.解答题(共30小题) 1.如图所示,MN和PQ是平行、光滑、间距L=0.1m、足够长且不计电阻的两根竖直固定金属杆,其最上端通过电阻R相连接,R=0.5Ω.R两端通过导线与平行板电容器连接,电容器上下两板距离d=lm.在R下方一定距离有方向相反、无缝对接的两个沿水平方向的匀强磁场区域I和Ⅱ,磁感应强度均为B=2T,其中区域I的高度差h1=3m,区域Ⅱ的高度差h2=lm.现将一阻值r=0.5Ω、长l=0.lm的金属棒a紧贴MN和PQ,从距离区域I上边缘h=5m处由静止释放;a进入区域I后即刻做匀速直线运动,在a进入区域I的同时,从紧贴电容器下板中心处由静止释放 一带正电微粒A.微粒的比荷=20C/kg,重力加速度g=10m/s2.求 (1)金属棒a的质量M; (2)在a穿越磁场的整个过程中,微粒发生的位移大小x; (不考虑电容器充、放电对电路的影响及充、放电时间) 2.如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,图(乙)为安培力与时间的关系图象.试求: (1)金属棒的最大速度; (2)金属棒的速度为3m/s时的加速度; (3)求从开始计时起2s内电阻R上产生的电热.

《法拉第电磁感应定律》教学案例

法拉第电磁感应定律教学设计 鹿城中学理化生教研组田存群 课程背景: “法拉第电磁感应定律”是高二物理选修(3-2)中的第四章第4节内容,是电磁学的核心内容。从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。 鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,使同学们利用已掌握的旧知识,来理解所要学习的新概念。力求通过明显的实验现象诱发同学们真正的主动起来,从而激发兴趣,变被动记忆为主动认识。 课程详述: 一.教学目标: 1.知道感应电动势,能区分磁通量的变化Δφ和磁通量的变化率Δφ/Δt。 通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。 2.通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律.使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用。 3.通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。 二.教学重点: 法拉第电磁感应定律的建立过程及规律理解。 三.教学难点: 1.磁通量、磁通量的变化量、磁通量的变化率三者的区别。 2.理解E=nΔφ/Δt是普遍意义的公式,而E=BLv是特殊情况下导线在切割磁感线情况下的计算公式。 四.教具:

高考物理电磁大题(含答案)

高考电磁大题(含答案) 1.(09年全国卷Ⅰ)26(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。A 是一块平行于x 轴的挡板,与x 轴的距离为,A 的中点在y 轴上,长度略小于。带点 粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。不计重力。求粒子入射速度的所有可能值。 解析:设粒子的入射速度为v,第一次射出磁场的点为' O N ,与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有 qB mv R = …⑴ 粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有 =1x θsin 2R N N O O =' …⑵ 粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1N N O ' 相等.由图可以看出a x =2……⑶ 设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()a nx x n 2121=-+……⑷ 由⑶⑷两式得a n n x 1 2 1++= ……⑸ 若粒子与挡板发生碰撞,有4 21a x x >-……⑹ 联立⑶⑷⑹得n<3………⑺ 联立⑴⑵⑸得 a n n m qB v 1 2 sin 2++?= θ………⑻ 把2 2 sin h a h += θ代入⑻中得

0,2 2=+=n mh h a qBa v o …………⑼ 1,432 21=+=n mh h a qBa v …………⑾ 2,322 22=+=n mh h a qBa v …………⑿ 2.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为1l 和2l 的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d 。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。 答案:221122212arcsin()2l d dl dl l d ++ 解析:本题考查带电粒子在有界磁场中的运动。 粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O 应在分界线上,OP 长度即为粒子运动的圆弧的半径R.由几何关系得 22 12)(d R l R -+=………① 设粒子的质量和所带正电荷分别为m 和q,由洛仑兹力公式和牛顿第二定律得 ……………② 设P '为虚线与分界线的交点,α='∠P PO ,则粒子在磁场中的运动时间为v R t α =1……③ 式中有R l 1 sin = α………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得ma qE =…………⑤ 由运动学公式有2 2 1at d = ……⑥ 22vt l =………⑦R v m qvB 2 =

高中物理20个专题 专题15:电磁感应力学综合题.pdf

高三第二轮物理专题复习学案 ——电磁感应中的力学问题 电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力. 本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力. 例1.【2003年高考江苏】如右图所示,两根平行金属导P、Q用电阻可忽略的导线相连,两导轨间的距离=0.20 m.有随时间变化的匀强磁场垂直于桌面,已知B与时间t的关系为B=kt,比例系数k020 T/s.一电阻不计的金属杆可在导轨上无摩擦地滑t=0时刻,m的电阻为r10Ω/m,导轨的P、Q端,在外力作用下,杆恒定的加速度t=6.0 s时金属 [解题思路] 以示金属杆运动的加速度,在L=at2 此时杆的速度vat 这时,杆与导轨构成的回路的面积S=L回路中的感应电动势ES+Blv 而 回路的总 R=2Lr0 回路中的感应电流, 作用于杆的安培力FBlI 解得代入数据为F1.44×10-3N 例2. (2000年高考试)如右图所示,一对平行光滑RL=0.20 m,电阻R1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,B=0.50T的匀强磁场中,磁场方向垂直轨道面向下.F沿轨道方向拉杆,使之做匀加速运动.测F与时间 t的关系如下图所示.求杆的质量m和a. 解析:导体杆在轨道上做匀加速直线运t表示时间,则有at ① 杆切割磁感线,将产生感应电动势EBLv ② 在杆、轨道和电阻的闭合回路中产生电流I=E/R 杆受到的安培力为F安=IBL ⑥ 由图线上各点代入⑥式,可解得 a=10m/s2,m=0.1kg 例3. (2003年高考新课程理综)两根平行的B=0.05T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20 m.两根质量均为m10 kg的平行金属杆甲、乙可R=0.50Ω.在t时刻,两杆都处于静止20 N的恒力F作用t=5.0s,金属杆甲的加速度为a=1.37 m/s,问此时两金属杆的? 本题综合了法拉第电磁感应定律、安 设任一时刻t,两金属杆甲、乙之间x,速度分别为l和2,经过很短的时间△t,1△t,杆乙移动距离t,回路面积改变 S=[(x一2△t)+ν1△t]l—lχ=(ν1-ν2) △t 由法拉第电磁感应定律,回路中的感应电动势 B△S/△t=Bι(νl一2) 回路中的电流 /2 R 杆甲的运动方程 F—Bi=ma 由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(时为)等于外力F的冲量. mνl+mν2 联立以 ν1=[Ft/m+2R(F一)/B22]/2 2=[Ft/m一2(F一)/B22]/2 代入数据得移l=8.15 m/s,2=1.85 m/s .如图l,ab和cd是位于水平面内的平行金属轨道,其电阻可忽略不计.af之间连接一阻值为Ref为一垂直于ab和cd的金属杆,它与ab和cd接触良好并可沿轨道方向无摩擦地滑动.ef长为,B,当施外力使杆ef以v向右匀速运动时,杆ef所受的安培力为( ). 图1 图2 2、如图所示·两条水平虚线之间有垂直于纸面向里、宽度为d、磁感应强度为B的匀强磁场.质量为m、电阻为R的正方形线圈边长为L(L

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

电磁感应中的动力学和能量问题计算题专练

电磁感应中的动力学和能量问题(计算题专练) 1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少? (2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大? (3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少? 解析(1)m1、m2运动过程中,以整体法有 m1g sin θ-μm2g=(m1+m2)a a=2 m/s2 以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a) F T=2.4 N (2)线框进入磁场恰好做匀速直线运动,以整体法有 m1g sin θ-μm2g-B2L2v R =0 v=1 m/s ab到MN前线框做匀加速运动,有 v2=2ax x=0.25 m (3)线框从开始运动到cd边恰离开磁场边界PQ时: m1g sin θ(x+d+L)-μm2g(x+d+L)=1 2 (m1+m2)v21+Q 解得:Q=0.4 J 所以Q ab=1 4 Q=0.1 J 答案(1)2.4 N (2)0.25 m (3)0.1 J 2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状 态时速率为v,此时整个电路消耗的电功率为重力功率的3 4 .已知 重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab 中的电流强度I; (2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导

电磁感应综合问题(解析版)

构建知识网络: 考情分析: 楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。 重点知识梳理: 一、感应电流 1.产生条件???? ? 闭合电路的部分导体在磁场内做切割磁感线运动 穿过闭合电路的磁通量发生变化 2.方向判断? ???? 右手定则:常用于切割类 楞次定律:常用于闭合电路磁通量变化类 3.“阻碍”的表现???? ? 阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留 阻碍原电流的变化自感现象 二、电动势大小的计算

三、电磁感应问题中安培力、电荷量、热量的计算 1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E =Blv ,I =E R ,F =BIl ,可得F =B 2l 2v /R . 2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E =ΔΦΔt ,I =E R ,q = I Δt 则q =ΔΦ/R ,若线圈匝数为n ,则q =nΔΦ/R . 3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算. 四、自感现象与涡流 自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。线圈的横截面积越大,匝数越多,它的自感系数就越大。带有铁芯的线圈其自感系数比没有铁芯的大得多。 【名师提醒】 典型例题剖析: 考点一:楞次定律和法拉第电磁感应定律 【典型例题1】 (2016·浙江高考)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( ) A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9∶1 C .a 、b 线圈中感应电流之比为3∶4

法拉第的电磁感应实验

法拉第的电磁感应实验 作者:不详日期:2006-11-2 来源:本站点击: 我们现在生活在一个电气时代里:电动机在工厂里轰鸣,电车在飞驰,电灯照亮了千家万户,电视机在播放节目,电脑在运作……由于有了电,旧时代许多令人神往的幻想已变成了现实。如今电气业给我们创造的这一切福利和文明,都起源于1831年10月17日法拉第的一次具有划时代意义和意外的电磁实验成功。由于这次成功,法拉第制造了世界上第一台电磁感应发电机;由于这次成功,人类制造出今天的发电机、电动机、水电站,以及一切电力站网。 法拉第(1791~1867)出生于英国伦敦一个铁匠家里。由于家庭贫困,他12岁时就到一家书店当学徒。由于经常接触图书,他发现书里有许多自己从不知道的事物,书籍简直是知识的海洋。从此以后他开始刻苦自学,认真读书,发奋要成为一个有学识的人。他不仅认真阅读电学、化学方面的书籍,而且用平日节约下来的一点钱买了几件实验仪器,按书中所说的做起实验来。 法拉第不仅向书本学习,还利用一切机会向当时著名的科学家学习,买票听他们的讲演,认真做记录。1810年春天,法拉第凑钱去听科学家塔特林讲解自然科学。他每晚都将所做的记录整理誊清。特别对法拉第人生具有重大转折意义的是,他于1812年时到英国皇家学院去听著名科学家戴维的化学讲演。正是从此开始,他踏上了献身科学的道路。 他大胆地给戴维先生写了封信,而且将听讲的记录全寄去了。他在信中说明了自己对科学的热爱,并且渴望能在皇家学会得到一份工作。戴维看到了他的严肃认真和对科学的热情,竟然答应了他的请求,介绍他到皇家学院当助理员,担任了戴维的实验助手。 实验室的工作为法拉第提供了优越的条件。他可以自由地利用图书馆,获得各种资料,从而可以发展各方面的知识。作为戴维的助手和随从,法拉第又获得了到欧洲大陆进行科学考察的机会。尽管在旅行中受到戴维夫人的凌辱,以及其他不公正的待遇,但法拉第借这次机会却增长了知识,结交了朋友,了解了当时各国的科学状况。

高考物理电磁交变电流知识点总结

2019年高考物理电磁交变电流知识点总结物理的学习不是呆板的,而是灵活的,如果一味地埋头苦学而不知道去思考总结,那么结果往往是付出与收获不成正比。以下是电磁学和交变电流方面的重要结论。 1.若一条直线上有三个点电荷,因相互作用而平衡,其电性及电荷量的定性分布为“两同夹一异,两大夹一小”。 2.匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。在任意方向上电势差与距离成正比。 3.正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。 4.电容器充电后和电源断开,仅改变板间的距离时,场强不变。 5.两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。 6.带电粒子在磁场中仅受洛伦兹力时做圆周运动的周期与粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关。 7.带电粒子在有界磁场中做圆周运动 (1)速度偏转角等于扫过的圆心角。 (2)几个出射方向 ①粒子从某一直线边界射入磁场后又从该边界飞出时,

速度与边界的夹角相等。 ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出——对称性。 ③刚好穿出磁场边界的条件是带电粒子在磁场中的轨 迹与边界相切。 (3)运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。 8.速度选择器模型:带电粒子以速度v射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足v=E/B时,带电粒子做匀速直线运动(被选择)与带电粒子的带电量大小、正负无关,但改变v、B、E中的任意一个量时,粒子将发生偏转。 9.回旋加速器 (1)为了使粒子在加速器中不断被加速,加速电场的周期必须等于回旋周期。 (2)粒子做匀速圆周运动的最大半径等于D形盒的半径。 (3)在粒子的质量、电量确定的情况下,粒子所能达到的最大动能只与D形盒的半径和磁感应强度有关,与加速器的电压无关(电压只决定了回旋次数)。 (4)将带电粒子:在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加

第二轮物理-专题四-电磁感应与力学综合

专题四电磁感应与力学综合 一、选择题(本题共10小题每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一 个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.弹簧上端固定,下端挂一只条形磁铁,使磁铁上下做简谐运动,若在振动过程中把线圈靠近磁铁,如图4—29所示,观察磁铁的振幅,将会发现( ) A.S闭合时振幅逐渐减小,S断开时振幅不变 B.S闭合时振幅逐渐增大,S断开时振幅不变 C.S闭合或断开时,振幅的变化相同 D.S闭合或断开时,振幅不会改变 2.平面上的光滑平行导轨MN,PQ上放着光滑导体棒ab,cd,两棒用细线系住,匀强磁场的面方向如图4—30(甲)所示,而磁感应强度B随时间.t的变化图线如图4—30(乙)所示,不计ab,cd 间电流的相互作用,则细线中的张力( ) A.0到t0时间内没有张力C.t0到t时间内没有张力 C.0到t0时间内张力变大D.t0到t时间内张力变大 3.如图4—31所示,一块薄的长方形铝板水平放置在桌面上,铝板右端拼 接一根等厚的条形磁铁,一闭合铝环以初速度v从板的左端沿中线向右 滚动,下列说法正确的是 ①铝环的滚动动能越来越小; ②铝环的滚动动能保持不变; ③铝环的运动方向偏向条形磁铁的N极或S极; ④铝环的运动方向将不发生改变. A.①③B.②④C.①④D.②③ 4.如图4—32所示,有界匀强磁场垂直于纸面,分布在虚线所示的矩形abcd 内,用超导材料制成的矩形线圈1和固定导线圈2处在同一平面内,超导 线圈1正在向右平动,离开磁场靠近线圈2,线圈2中产生的感应电流的方 向如图所示,依据这些条件 A.可以确定超导线圈1中产生的感应电流的方向 B.可以确定abcd范围内有界磁场的方向 C.可以确定超导线圈1受到线圈2对它的安培力‘‘合力方向 D.无法做出以上判断,因为不知道超导线圈1的运动情况 5.如图4—33所示,两根足够长的固定平行金属光滑导轨位于同一水平 面,导轨上横放着两根相同的导体棒ab,cd与导轨构成矩形回路.导

完整版电磁感应综合典型例题

电磁感应综合典型例题 【例11电阻为R的矩形线框abed,边长ab=L, ad=h,质量为m 自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁 场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线 框中产生的焦耳热是 _________ ?(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热?所以,线框通过磁场过程中产生的焦耳热为 Q=W=mg- 2h=2mgh 【解答1 2mgh

【说明】本题也可以直接从焦耳热公式Q=l2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感 线产生的感应电流的大小为 cd边进入磁场时的电流从d到c, cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上, 大小恒为 据匀速下落的条件,有 因线框通过磁场的时间,也就是线框中产生电流的时间,所以据 焦耳定律,联立(I )、(2)、(3)三式,即得线框中产生的焦耳热 为

Q=2mgh 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程 考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1 Q的矩形线圈,从离匀强磁场上边缘高h i=5m处由静止自由下落.进 入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运 动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

相关主题
文本预览
相关文档 最新文档