当前位置:文档之家› Brain Anatomy in Turner Syndrome Evidence for Impaired Social and Spatial–Numerical Networ

Brain Anatomy in Turner Syndrome Evidence for Impaired Social and Spatial–Numerical Networ

Brain Anatomy in Turner Syndrome Evidence for Impaired Social and Spatial–Numerical Networ
Brain Anatomy in Turner Syndrome Evidence for Impaired Social and Spatial–Numerical Networ

Brain Anatomy in Turner Syndrome: Evidence for Impaired Social and Spatial–Numerical Networks N. Molko1, A. Cachia2,3, D. Riviere1,2, J.F. Mangin2,

M.Bruandet1, D. LeBihan2, L. Cohen1,4 and S. Dehaene1

1INSERM U 562, Service Hospitalier Frédéric Joliot, CEA/DSV, IFR 49, Orsay, France, 2Unité de Neuro-Activation Fonctionnelle, Service Hospitalier Frédéric Joliot, CEA/DSV, IFR 49, Orsay, France, 3INSERM ERM 0205, IFR 49, Service Hospitalier Frédéric Joliot, CEA/DSV, IFR 49, Orsay, France and 4Service de Neurologie 1, H?pital Pitié-Salpétrière, Paris, France

Analysis of brain structure in T urner syndrome (T S) provides the opportunity to identify the consequences of the loss of one X chromo-some on brain anatomy and to characterize the neural bases under-lying the specific cognitive profile of T S subjects which includes deficits in spatial–numerical processing and social cognition. Four-teen subjects with TS and fourteen controls were investigated using voxel-based analysis of high resolution anatomical and diffusion tensor images and using sulcal morphometry. T he analysis of anatomical images provided evidence for macroscopical changes in cortical regions involved in social cognition such as the left superior temporal sulcus and orbito-frontal cortex and in a region involved in spatial and numerical cognition such as the right intraparietal sulcus. Diffusion tensor images showed a displacement of the grey–white matter interface of the left and right superior temporal sulcus and revealed bilateral microstuctural anomalies in the temporal white matter. The analysis of fiber orientation suggests specific alterations of fiber tracts connecting posterior to anterior temporal regions. Last, sulcal morphometry confirmed the anomalies of the left and right superior temporal sulci and of the right intraparietal sulcus. Our results thus provide converging evidence of regionally specific struc-tural changes in T S that are highly consistent with the hallmark symptoms associated with TS.

Keywords:developmental dyscalculia, diffusion tensor imaging, MRI, social cognition, sulcal morphometry, Turner syndrome, voxel-based morphometry

Introduction

Turner syndrome (TS) is a genetic condition resulting from a partial or complete absence of one of the two X chromosomes in a phenotypic female (Turner, 1938). TS occurs in approxi-mately one in 2000 liveborn females and affects an estimated 3% of all females conceived (Saenger, 1996; Ranke and Saenger, 2001). TS is associated with a well-documented phys-ical phenotype including a short stature, ovarian failure and abnormal pubertal development and a variety of other features (webbed neck, renal dysgenesis, cardiac malformation) (Ranke and Saenger, 2001; Saenger, 1996). In contrast to this well-documented physical phenotype, the consequences of the loss of one X chromosome on brain development and brain func-tion are far less understood. Behavioral studies suggest that the cognitive profile of TS is characterized by a discrepancy between poor non-verbal abilities and normal to strong verbal ability, in the absence of general mental retardation (Temple and Carney, 1996; Ross et al., 2000; Temple and Sherwood, 2002). While the severity of the cognitive profile in TS varies widely, some hallmark symptoms include deficits in visuo-spatial and number processing, working memory and execu-tive function, and social cognition (Ross et al., 2000). Whether the psychosocial problems associated with TS result from the numerous daily life difficulties or reflect a specific impairment is still unclear. Recent studies showed impairment of affect recognition and gaze direction monitoring in TS, suggesting that these social difficulties may originate from a genuine cognitive deficit in reading socially relevant information from subtle visual cues (Elgar et al., 2002; Lawrence et al., 2003). All these converging data tentatively evoke the possible impairment of multiple neural systems distributed across distinct cerebral regions. However, no brain abnormalities are obvious on visual inspection as expected in such develop-mental disorders where cognitive dysfunctions are more likely related to subtle neuronal and myelination changes. Neverthe-less, previous volumetric MRI studies in TS showed a bilateral decrease of grey matter volumes in the parietal lobes and in parieto-occipital regions associated with a decreased volume of the subcortical gray matter and the hippocampus on both sides (Murphy et al., 1993; Reiss et al., 1993, 1995; Brown et al., 2002). More recently, an increased volume of amygdala and of orbito-frontal cortex have been found in TS using voxel-based morphometry (Good et al., 2003). F unctional neuroimaging studies using positron emission tomography (PET) in TS have found a decrease of glucose metabolism in parietal and occip-ital regions and in the temporal cortex and insula (Clark et al., 1990; Murphy et al., 1997). A putative loss of occipito-parietal connections has been advanced to explain the parietal hypometabolism (Clark et al., 1990; Murphy et al., 1997).

In the present paper, we used high resolution anatomical and diffusion tensor images, two different MRI techniques providing complementary multi-scale information on tissue density, microstructural organization and sulcal geometry. We first performed a whole brain analysis using statistical para-metric mapping (SPM) to characterize local tissue changes (Ashburner and F riston, 2000; Good et al., 2001). Sulcal morphometry in regions found abnormal in the voxel-based analysis was then investigated in two candidate regions that may underlie the cognitive impairments of TS, the intraparietal sulcus (IPS) and superior temporal sulcus (STS) (Dehaene et al., 1998, 1999; Allison et al., 2000). Using voxel-based morphom-etry, high resolution T1-weighted images have been shown to be sensitive to subtle macroscopic changes in developmental disorders (Isaacs et al., 2001; Sowell et al., 2001; Watkins et al., 2002) and even to correlations between brain morphology and specific cognitive abilities (Maguire et al., 2000; Golestani et al., 2002; Sluming et al., 2002). Relative to the macroscopical information provided by T1-weighted images, diffusion tensor imaging (DTI) is a complementary MRI technique which is sensitive to microstructural features of the cerebral tissue based on the measurement of water diffusion (Klingberg et al., 2000; Rose et al., 2000; Le Bihan et al., 2001). Through their diffusion-driven displacements, water molecules interact

Cerebral Cortex Advance Access published March 28, 2004

? Oxford University Press 2004; all rights reserved Cerebral Cortex DOI: 10.1093/cercor/bhh042

with many tissue components such as cell membranes, fibers and macromolecules, allowing DTI to provide quantitative information on tissue structure at microscopic level (typically 10–30 μm) (Le Bihan et al., 2001). In particular, within cerebral white matter, the coherent orientation of axons constrains water molecules to move preferentially along the main direc-tion of neural fibers, introducing a measurable diffusion aniso-tropy revealing the local orientation of fibers (Pierpaoli et al., 1996; Conturo et al., 1999; Poupon et al., 2000). In develop-mental and psychiatric disorders, analysis of brain structure using DTI has been shown useful in dyslexia and schizo-phrenia, revealing microstructural anomalies in tissue that appears normal on conventional MRI (Klingberg et al., 2000; Wolkin et al., 2003).

In the present study, we report the detailed analyses from these complementary MRI methods in 14 TS subjects and 14 controls.

Materials and Methods

Subjects

Fourteen subjects with TS (mean age: 24.5 ± 6.0 years, age range: 18–36 years) were recruited from the national TS association (AGAT association) and the endocrinology department of Saint-Vincent-de Paul hospital. All had the main physical features of the TS phenotype, 10 were of the 45,X karyotype, four showed a mosaic [mosaic pattern: 45,X/46,XX for three subjects, 45,X/46,Xi(Xq) for one subject]. All but one TS subjects were taking sex steroids (oestrogen and proges-terone). All TS subjects were either students or employed and lived an independent life without any social help. All but one completed their high school education. The same imaging protocol was also run on 14 control subjects matched on age, sex and laterality (mean age: 24.3 ±3.4 years, age range: 18–29 years). The mean number of study years after high school differed significantly between TS subjects and controls (respectively, 1.5 ± 0.3 and 4.4 ± 0.75 years, P = 0.002). All subjects gave informed consent to participate in the study, which was approved by the regional ethical committee. Arithmetic and reading achievement were also assessed using the Warrington’s graded arith-metic test and a timed reading test, as a pre-test for an fMRI study during exact and approximate calculations. Warrington’s graded arith-metic test, which is a test of arithmetic computations (10 additions and 10 substraction) of increasing difficulty showed that the TS subjects were impaired in number processing [mean percentage of correct responses for TS subjects and controls: 41.1 ± 4.5% and 60.1 ±4.2%, respectively; t(26) = 2.85, P = 0.008] (Jackson and Warrington, 1986). The timed reading test of 10 words and 10 pseudo-words showed that, although TS subjects were slower in reading both types of stimuli [words: 841 versus 646 ms, t(26) = 2.57, P = 0.016; pseudo-words, 1092 versus 860 ms, t(22) = 2.68, p = 0.013], both groups performed close to ceiling in reading either words or pseudo-words (>92% correct).

Magnetic Resonance Imaging Protocol

All scans were acquired using a 1.5 T Signa horizon Echospeed MRI system (General Electric Medical Systems, Milwaukee, WI). H igh-resolution anatomical images were acquired in the axial plane using a spoiled gradient echo sequence (124 slices 1.2 mm thick, T R = 10.3 ms, T E = 2.1 ms, T I = 600 ms) and 24 × 24 cm field of view (resolution of 0.937 × 0.937 × 1.2 mm). Diffusion-weighted images were acquired with echo-planar imaging in the axial plane covering the whole brain (48 slices, 2.8 mm thick, T E = 84.4 ms, T R 2.5 s) and 24 × 24 cm field of view (resolution 128 × 128). For each slice location, a T2-weighted image with no diffusion sensitization, followed by five b values (incrementing linearly to a maximum value of 1000 s/mm2) were obtained in six directions. In order to improve the signal-to-noise ratio, this sequence was repeated twice, providing 62 images per slice location. Before performing the tensor estimation,an unwarping algorithm was applied to the diffusion-weighted dataset to correct for distortion related to eddy currents induced by the large diffusion-sensitizing gradients (Poupon et al., 2000). Thereafter, the diffusion tensor was calculated on a pixel-by-pixel basis as described previously (Pierpaoli and Basser, 1996). DTI images of one TS subject were not used because of excessive head movements during acquisi-tion.

Voxel-based Morphometry

To characterize the local differences of cerebral tissue density between TS subjects and controls, we used a standard voxel-based morphometry approach (Ashburner and Friston, 2000; Good et al., 2001). As previously described, anatomical images were processed using three different steps: creation of customized templates, normal-ization and smoothing (Ashburner and Friston, 2000; Good et al., 2001). In the present study, we chose to investigate each hemisphere separately and excluded the cerebellum. This approach offers two advantages (Riviere et al., 2002). First, it allows one to optimize the normalization on a customized template dedicated to each hemi-sphere and, secondly, it provides a precise analysis of medial struc-tures without a partial volume effect of the controlateral homologue region after image smoothing. Similarly, the split of the cerebellum from each hemisphere avoids a partial volume effect of cerebellum structures on the inferior occipito-temporal region. For the first step, anatomical images of controls were normalized to Talairach space using a linear transform and the template of the Montreal Neurological Institute (MNI). After correction for standard intensity inhomogen-eities of MR images, these normalized anatomical images were segmented using an automatic procedure that separates the grey and white matter from each hemisphere and from the cerebellum (Riviere et al., 2002). The grey matter templates were created by averaging and then smoothing the normalized grey matter images of each hemi-sphere. The second step consisted in the normalization of the grey matter images in the native space onto grey matter templates. A new segmentation procedure was then applied to all the anatomical images in the native space and the resulting grey matter images were normal-ized to the corresponding grey matter template using a linear trans-form and then smoothed using a 5 mm FWH M (full width half maximum) isotropic Gaussian kernel. A similar procedure was applied to the white matter images. Lastly, we compared the smoothed grey and white matter images of each hemisphere between TS and controls on a voxel-by-voxel basis using a one-way analysis of variance (ANOVA; SPM99 software). We used a voxelwise significance threshold of 0.01 and a cluster extent threshold of P < 0.05 corrected for multiple comparisons across the whole brain volume. An uncor-rected P-value of <0.005 was used for regions that were the exact controlateral homologs of any of the regions already identified, or for regions that were predicted a priori, i.e. the superior temporal sulcus and the intraparietal sulcus. In addition, similar analyses were performed with education level as a covariate in order to control for general educational differences.

Voxel based-Diffusion

Two complementary diffusion parameters were computed from the diffusion tensor: the mean diffusivity (a measure of water diffusion averaged across all directions) and the fractional anisotropy (an index of directional selectivity of water diffusion). Images of mean diffu-sivity and fractional anisotropy were coregistered to the anatomical images using the mutual information algorithm of SPM99. The diffu-sion images were then normalized to Talairach space using the linear transform calculated on the anatomical images and smoothed (FWHM: 5 mm). We compared the diffusion parameters between TS and controls on a voxel-by-voxel basis using a one-way ANOVA. We used the same thresholds as in voxel-based morphometry.

Sulcal Morphometry

To investigate further the cerebral changes identified using voxel-based analysis, we studied the sulcal morphometry of the superior temporal sulcus and of the intraparietal sulcus, two candidate regions that may underlie the cognitive impairment of TS. The superior temporal sulcus has been shown to play a crucial role in monitoring

Page 2 of 11Brain Anatomy in Turner Syndrome?Molko et al.

gaze direction and in affect recognition and the intraparietal sulcus is a critical region for numerical and visuo-spatial processing. The central sulcus served as a reference sulcus for which no anomaly was expected a priori. We used an automatic sulcus extraction and identification procedure as described by Riviere et al. (2002). Sulci were extracted from high resolution anatomical images through a procedure that converts the anatomical images to abstract representa-tions of the cortical folding pattern. Thereafter, an automatic recogni-tion algorithm, using a congregation of neural networks trained on a manually labelled database, was applied for the main sulci of the cere-bral cortex, except for occipital lobe sulci. As previously reported, a mean recognition rate of 76% is obtained using this method (Riviere et al., 2002). Errors are mainly due to ambiguous sulci configurations. For each subject, the automatic recognition was visually verified and, if necessary, corrected. We compared the length and the maximal depth of the STS, IPS and CS between TS subjects and controls using Student’s t-test. Values of P < 0.05 were considered statistically signif-icant. Those results should be considered exploratory, given that we did not perform a Bonferoni correction for the number of compari-sons performed (2 parameters × 3 sulci × 2 hemispheres = 12 compar-isons total).Results

Voxel-based Morphometry

The results of grey matter density analyses are summarized in Table 1 and are illustrated in F igure 1. Significant clusters of reduced grey matter in TS subjects compared to controls were found at symmetrical loci in anterior cingulate cortex, orbito-frontal cortex, insula, post-cental and supramarginal gyrus, and lingual gyrus. With respect to our a priori hypothesis, a decrease in the grey matter was found in the bottom of the left superior temporal sulcus and the right intraparietal sulcus. The peak difference in the grey-matter density of the right intrapa-rietal was at Talairach coordinates (TC) –43, –30, 37 (Z = 4,02). This cluster did not survive to the correction for multiple comparisons, but this anomaly was confirmed in the sulcal morphometric analysis described below. In the opposite contrast, increase in grey-matter in TS subjects compared to controls was found symmetrically in the temporal pole, the

Table 1

Brain regions where grey matter density was significantly different between TS subjects and normal controls

Anatomical region P-value cluster-level Number of voxels (1 voxel = 1 mm3)Z-score voxel-level Talairach coordinates (x, y, z)

Less grey matter in TS than in controls

Right hemisphere

Right anterior cingulate cortex BA 320.0111413 4.9314, 48, –3

Right lingual gyrus BA 18<0.0012560 4.7810, –70, –9

Right insula BA 450.0031693 4.5830, 16, –8

Right postcentral gyrus BA 20.121287 4.2049, –25, 63

Right intraparietal sulcus BA 400.398621 4.0243, –30, 37

Right orbito-frontal cortex BA 110.0021859 4.0019, 60, –19

Right supramarginal gyrus BA 400.0011961 3.9471, –17, 26

Left hemisphere

Left postcentral and supramarginal gyri BA 1, 2, 400.0061530 4.94–51, –23, 62

Left anterior cingulate cortex BA 320.121912 4.63–10, 51, –10

Left lingual gyrus BA 18<0.0012824 4.58–7, –74, –12

Left orbito-frontal cortex BA 110.133892 4.40–20, 61, –16

Left superior temporal sulcus BA 22, 210.011431 4.09-49, –19, –11

More grey matter in TS than in controls

Right hemisphere

Right temporal pole BA 38<0.0013624 5.2057, 16, –11

Right postcentral and supramarginal gyri BA 1, 400.0012055 4.5150, –17, 52

Right caudate and accubens nuclei<0.0013954 4.3519, –5, 24

Right orbito-frontal cortex BA 11<0.0012407 3.9216, 52, –13

Right lingual gyrus BA 180.0211277 3.793, –79, 1

Right fusiform gyrus BA 200.0141375 3.7549, –30, –34

Right orbito-frontal cortex BA 110.0121402 3.5412, 26, –31

Left hemisphere

Left lingual gyrus BA 180.0121390 4.56–10, –82, –10

Left orbito-frontal cortex BA 110.0031668 4.24–16, –47, –16

Left temporal pole BA 38<0.0012452 4.03–51, 19, –19

Left accubens nucleus0.0151336 3.99–21, 18, –2

Left caudate nucleus0.0161324 3.90–17, –5, 21

Left orbito-frontal cortex BA 110.0461109 3.79–8, –24, –31

Cerebral Cortex Page 3 of 11

Page 4 of 11Brain Anatomy in Turner Syndrome ?Molko et al.

caudate nucleus and the orbito-frontal cortex and in the right lingual gyrus. The orbito-frontal and lingual clusters bordered the internal face of the orbito-frontal and lingual clusters observed in the opposite contrast. These clusters therefore seem to correspond to tissue displacement related to global atrophy of the orbito-frontal and internal occipito-temporal regions, as illustrated by the average grey matter images of controls and TS subjects (F ig. 1). An increase in grey matter was also observed in the left and right amydalae (TC –22, –3,–27, 709 voxels, Z = 3.17 and TC 28, –3, –28, 506 voxels, Z =3.07, respectively), but these clusters did not reach statistical significance for multiple comparisons. Similar results were obtained after using the level of education as a co-variate of no interest. The results of white matter density analyses are summarized in Table 2 and showed predominant white matter differences in close proximity to the grey matter differences described above. The close match between grey and white matter results is a classical finding in voxel-based morphometry studies and may reflect an edge effect, related to a displace-ment of the statistical boundary between grey and white matter (Good et al., 2001; Golestani et al., 2002).

Voxel-based Diffusion

An increase in mean diffusivity was observed in TS subjects compared to controls in the left and right occipito-temporal region, the left lingual gyrus, the right fusiform gyrus and the left and right cerebellum (Table 3 and Fig. 2). No significant cluster was observed in the opposite contrast for regions of decrease in mean diffusivity in TS group compared to controls.

Increase in anisotropy in TS group compared to controls was found bilaterally in depth of the superior temporal sulcus, in the right semi-ovale centrum and in the right external capsule (Table 3 and F ig. 3). Two symmetrical clusters of decreased anisotropy were observed in the temporal white matter in regions with increased mean diffusivity (Table 3 and F ig. 2).However, no clusters of decreased anisotropy survived at corrected P -value.

Analyses of Fiber Orientation within the Temporal Lobe From DTI, the main diffusion direction within each voxel can

be used to infer fiber orientation in the region of abnormal

Figure 1.Brain regions showing differences in grey matter density in TS subjects compared to controls. Top row: coronal views illustrating areas with a decrease in grey matter in TS subjects compared to controls. Middle row: areas with an increase in grey matter in TS subjects. Bottom row: axial views of mean grey matter images of the 14 controls (left and middle) and the 14 TS subjects (right) showing the anatomical abnormalities in the orbito-frontal and occipito-temporal cortex of TS subjects (red arrows).

white matter in TS. In Figure 2, fiber orientation in one control is represented using a color code for the orientation of the main temporal fiber tracts. The orientation of fibers within the two temporal clusters of increased mean diffusivity has a clear antero-posterior direction (shown in green in

F

ig. 2), suggesting microstructural alterations of sagittally oriented

Table 2

Brain regions where white matter density was significantly different between TS subjects and normal controls

Anatomical region P-value cluster-level Number of voxels (1 voxel = 1 mm3Z-score voxel-level Talairach coordinates (x, y, z)

Less white matter in TS than in controls

Right hemisphere

Adjacent to the head of right caudate nucleus0.0661127 4.4319, 19, –8

Adjacent to right post central sulcus0.0421237 4.2750, –19, 49

Adjacent to the body of right caudate nucleus0.014416 4.1926, –7, 27

Adjacent to right supramarginal gyrus0.0241376 3.7058, –26, –25

Left hemisphere

Adjacent to the left superior temporal sulcus0.0181449 4.87–45, –17, –6

Adjacent to left lingual gyrus0.0012222 4.85–9, –82, –9

Adjacent to the head of left caudate nucleus0.001642 4.28–21, 17, –2

Left occipito-parietal region0.0081658 4.61–20, 86, 24

Adjacent to left body of right caudate nucleus0.0221390 3.26–18, –5, –19

More white matter in TS than in controls

Right hemisphere

Right external capsule0.0022042 5.5031, 17, –7

Adjacent to right intraparietal sulcus0.0351280 3.6242, –30, 37

Body of corpus callosum0.038332 3.5511, 6, 24

Adjacent to right anterior cingulate cortex0.319748 3.8114, 50, 0

Left hemisphere

Adjacent to left anterior cingulate cortex0.151936 4.97–8, 62, 3

Adjacent to superior temporal gyrus0.014505 4.33–49, –19, –11

Body of corpus callosum0.0441224 3.22–11, 2, 26

Table 3

Brain regions where mean diffusivity and fractional anisotropy were significantly different between TS subjects and normal controls

Anatomical region P-value cluster-level Number of voxels (1 voxel = 9 mm3Z-score voxel-level Talairach coordinates (x, y, z) Increase in mean diffusivity in TS relative to controls

Right fusiform gyrus BA 190.006129 4.4442, –66, –9

Left and right cerebellum, left lingulal gyrus BA 18<0.001406 4.23–9, –93, –36

Right temporo-occipital region0.03298 3.6239, –42, 15

Left temporo-occipital region0.001167 3.45–48, –15, –27

3.36–36, –48, 3

Left cerebellum, fourth ventricle0.003145 3.33–6, –66, –51

Decrease in mean diffusivity in TS relative to controls: none

Increase in fractional anisotropy in TS relative to controls

Right semi-ovale centrum0.019109 4.5730, –3, 33

Right superior temporal sulcus, right middle temporal gyrus0.57347 4.4348, 0, –24

Left superior temporal sulcus, left middle temporal gyrus,

left temporo-occipito-parietal region

<0.001199 4.25–51, –18, –12

Right external capsule0.04792 3.8239, 3, –15

Decrease in fractional anisotropy in TS relative to controls

Right inferior occipito-temporal white matter0.77826 3.8739, –45, –6

Left inferior occipito-temporal white matter0.18849 3.46–36, –45, 0

Cerebral Cortex Page 5 of 11

Page 6 of 11Brain Anatomy in Turner Syndrome ?Molko et al.

white matter tracts. The other clusters of abnormal diffusion do not have a clear preferential orientation.

Sulcal Morphometry

Sulcal morphometry was investigated for the superior temporal sulcus and the intraparietal sulcus, two sulci for which we have a priori hypotheses based on the cognitive profile of TS. The central sulcus was used as a reference sulcus for which no impairment was expected (Fig. 4). For the central sulcus, both length and maximal depth did not differ between TS subjects and controls. However, the maximal depth of the left and right superior temporal sulci was significantly smaller in TS subjects than in controls (mean ± standard error: left side, TS = 25.2 ±

0.8 mm, controls = 27.7 ± 0.7, P = 0.03; right side, TS = 28.4 ±0.4, controls = 31.5 ± 0.8, P = 0.003). Sulcal length was unaf-fected. For the right intraparietal sulcus, we observed a signifi-cant decrease in maximal depth (TS = 28.1 ± 0.83, controls =30.7 ± 0.6, P = 0.005). There was also a trend for length reduc-tion (TS = 516 ± 34, controls = 606 ± 26, P = 0.057). No differ-ence in either length and depth was observed for the left intraparietal sulcus.

Discussion

Our study provides converging evidence of regionally specific structural changes in TS at both macroscopical and microscop-

ical levels using two independent neuroimaging methods,

Figure 2.Brain regions with an increase in mean diffusivity in TS subjects compared to controls (A ). Note the bilateral and symmetric diffusion changes in the temporal white matter in areas where no macroscopical abnormality was observed on anatomical images. Sagittal views showing temporal clusters with diffusion changes in TS group and analyses of fiber tracts orientation in one control at the same level (B ). R ight: in this R GB encoded plot, red voxels correspond to left-right direction of diffusion, blue voxels to a superior–inferior orientation and green voxels to an antero-posterior orientation. The increase in mean diffusivity and the decrease in anisotropy affect electively antero-posterior pathways, suggesting a disconnection between anterior and posterior regions within the temporal lobe.

Cerebral Cortex Page 7 of 11

high-resolution anatomical T 1-weighted imaging and diffusion tensor imaging. The voxel-based analysis of anatomical images provided evidence for macroscopical changes in several cor-tical regions: bilateral orbito-frontal and anterior cingulate regions, temporal poles and lingual gyri, the left superior tem-poral sulcus and the right intraparietal sulcus. Further below,we will consider the extent to which those abnormalities can

be related to TS subjects’ deficits in two main domains, social

Figure 3.Converging results showing the abnormalities of the left superior temporal sulcus in TS subjects. Abnormalities in a similar region of the left superior temporal sulcus are found on both anatomical images (A ) (yellow clusters)and on fractional anisotropy images (B ) (red clusters). Increase in mean diffusivity (C ) (blue clusters) in the temporal white matter of TS subjects suggests microstrutucral changes of projections pathways. The differences in the left superior temporal sulcus are clearly illustrated by the visual examination of the mean image of grey matter of 14 TS subjects (D ) compared to those of the mean image of the 14 controls (E ) (red arrows). Fractional anisotropy changes (F ) (red) are

observed along the superior temporal sulcus (green) at the grey–white matter interface.

Figure 4.Histograms of length and maximal depth of the central sulcus (CS), the superior temporal sulcus (STS) and the intraparietal sulcus (IPS). A significant decrease in maximal depth is found in the left and right superior temporal sulci and in the right intraparietal sulcus in TS subjects compared to controls (*P < 0.05, **P < 0.005). A trend towards a decrease in length of the right intraparietal is also observed.

abilities and visuo-spatial/numerical processing. The analysis of diffusion anisotropy images indicated the presence of white matter in TS subjects at coordinates that correspond to the grey matter located at bottom of the left superior temporal sulcus in controls, confirming a displacement of the grey–white matter interface in this sulcus (F ig. 3). A smaller but symmetrical anomaly was present in the right superior temporal sulcus. Dif-fusion images also revealed a symmetrical and bilateral increase in mean diffusivity and decrease in anisotropy in the temporal white matter that seemed macroscopically normal on anatom-ical images (Fig. 2). The analysis of fibers orientation showed that areas with diffusion changes contain fiber tracts with a posterior to anterior orientation, suggesting microstructural changes of sagittally oriented pathways in the temporal lobes. This finding is consistent with anatomical studies showing that, within these temporo-occipital regions, axons are run-ning oriented sagittally in the inferior longitudinal fasciculus (Dejerine, 1895; Crosby et al., 1962). This fasciculus contains mainly long association fibers connecting the temporal pole to the occipital pole, but also carries some shorter cortico-cortical fibers (Gloor, 1997). These microstructural anomalies plausibly alter the connections between anterior and posterior regions of the temporal lobes. This appears particularly relevant in the context of bilateral macroscopical anomalies of grey matter dis-tribution in the lingual gyrus, in the superior temporal regions and temporal poles. F inally, analyses of sulcal morphometry confirmed the anomalies found in the left and right superior temporal sulcus and in the right intraparietal sulcus and further clarified voxel-based analyses by showing an abnormal depth of these sulci.

Methodological Issues

Before proposing a functional interpretation of our results, it is important to keep in mind the limitations, but also the comple-mentarity, of our methods. The first limitation of this study concerns its design and is mainly due to the low prevalence and the difference in education level of TS subjects. We acknowledge that, although similar to other studies in TS or utilizing DTI, the number of subjects included in this study is rather small and thus was not designed to represent an unbi-ased sample of TS. The inclusion of mosaic genotypes is also a potential confound, but the presence of soma normal cell lines in mosaic genotypes would argue against the possibility of finding group differences. Moreover, the identification of mosaicism depends directly on the method of ascertainment and tissue-specific karyotyping can give divergent results (Saenger, 1996; Ranke and Saenger, 2001). Some authors have also argued that mosaicism with a normal cell line in fetal membranes may be necessary for adequate placental function and fetal survival (Saenger, 1996; Ranke and Saenger, 2001). The expected difference in education level between the two groups raises the issue of the contribution to our results of the general cognitive functioning of the TS subjects. However, the anatomical differences that we found in TS do not coincide with regions that were reported to correlate with IQ (Duncan et al., 2000; Thompson et al., 2002) and the use of education level as a covariate did not influence our results.

A second limitation of this study concerns the sensitivity of MR based techniques. Voxel-based morphometry of T1 images detects macroscopic changes in the distribution of grey matter. Such changes are generally interpreted as reflecting an abnormal organization of brain tissue. However, they may potentially be due to a local deformation of brain shape secondary to more global changes in skeletal anatomy, which may have little or no impact on brain function. This could be important given that the physical phenotype of TS patients includes skeletal anomalies that may also influence the skull. Some effort was made to control for such global factors by first normalizing the global brain shape onto a common template prior to statistical analysis. Conversely, anomalies in internal regions such as the anterior cingulate, superior temporal and intraparietal sulcus are unlikely to be modulated by major changes in brain shape and are more likely to reflect genuine structural disorganization, especially when they are confirmed by direct measurement of sulcal depth. There are also no clear predictions on the direction of the expected grey matter changes in developmental disorders and, similarly to previous voxel-based morphometry studies in developmental disorders such as autism or fetal alcohol syndrome, our results revealed that the grey matter density in TS can decrease or increase in different brain regions. The interpretation of such results is crucially dependant on cross-validation using complementary methods such as diffusion tensor imaging and sulcal morphom-etry. Relative to the information provided by anatomical images, diffusion images, which reflect the Brownian motion of water molecules at a scale of ~10 μm, provide access to inde-pendent information on the microstructure of brain tissue. Once the images of patients and controls are correctly aligned, so that measurement is effected within regions of white matter that appear normal on anatomical images, diffusion reflects the fine-grained organization of fiber tracts. In the present work, increases in mean diffusivity were found in the white matter that appeared normal on anatomical images, particularly in the white matter underneath the temporal lobes, suggesting a microstructural disorganization of a major antero-posterior fiber tract. Few changes in anisotropy were observed in these regions. Significant anisotropy changes observed elsewhere in the brain seemed to reflect displacement of the boundary between grey and white matter in patients compared to controls.

Deficits in Social Cognition

Numerous psychological studies have reported psychosocial difficulties in TS. Compared to controls, subjects with TS have fewer friends, engage in fewer social activity and show affec-tive immaturity and attentional deficits (McCauley et al., 1986a,b, 1995; Mazzocco et al., 1998; Ross et al., 2000). These social difficulties might be dismissed as secondary to the daily life difficulties associated with TS phenotype (e.g small size), but they might also indicate a specific deficit in social cogni-tion. Autistic features have been described in TS subjects and a 500-fold increased risk of autism is associated with TS (Skuse et al., 1997; Creswell and Skuse, 2000). As in autistic children, TS patients showed deficits both in face recognition and in affect recognition on facial expressions (Elgar et al., 2002; Lawrence et al., 2003). Converging evidence suggests that social percep-tion from visual cues involves specific brain regions and, in particular, the superior temporal sulcus in both hemispheres (Allison et al., 2000; Frith, 2001). Neuroimaging studies using PET and fMRI have pinpointed activations of the left and right superior temporal sulci during the detection of eye gaze and the perception of biological motion such as lip-reading (Allison et al., 2000). In monkeys, single cell recordings revealed neurons in the superior temporal sulcus that respond

Page 8 of 11Brain Anatomy in Turner Syndrome?Molko et al.

according to gaze direction. F urthermore, lesions of the superior temporal sulcus in monkeys lead to impaired judge-ments of gaze directions (Perrett et al., 1985). Taken together, such data suggest that the bilateral superior temporal sulcus anomalies that we have observed in TS subjects constitute the cerebral bases of deficits in social perception from visual cues. Besides the crucial role of superior temporal sulcus in the social perception, single cells recordings in monkeys and neuroimaging studies in humans have also suggested that social cognition involves an extended bilateral network including the amygdala, temporal pole, orbito-frontal cortex and anterior cingulate (Happe et al., 1996; Baron-Cohen et al., 1999; Allison et al., 2000; F rith, 2001). It is remarkable that all of these regions were found anomalous in our anatomical analyses and this fits particularly well with the hypothesis of an impairment of ‘the social brain’ in TS. Moreover, the diffusion changes within the temporal lobes suggest microstructural changes of the long distance antero-posterior temporal projections, which may plausibly disconnect the different components of this network and, in particular, the temporal pole and the superior temporal region. Lastly, this conclusion entails an implication of X-linked genes in the development of the cerebral networks for social cognition. This fits with the greater vulnerability of males to developmental disorders of language and social cognition, such as autism (Creswell and Skuse, 2000) and with a previous report suggesting a role of an imprinted X-linked locus in social cognition (Skuse et al., 1997). A recent MRI study in TS using regional measurements did not find any influence of genomic imprinting on cerebral lobes volumes (Brown et al., 2002). However, the present fine-grained methods may be better adapted to reveal such subtle differ-ences. In the present study, we did not ascertain whether the remaining X chromosome was maternal or paternal. F uture studies focusing on the brain regions found abnormal in this study are needed to investigate the possible influence of genomic imprinting on the development of cerebral networks involved in social cognition.

Deficits in Spatial–Numerical Processing

Visuo-spatial deficits in TS include difficulties in judgement of line orientation, mental rotation in space and right–left disori-entation in extrapersonal space (Alexander and Money, 1966; Rovet and Netley, 1980; Pennington et al., 1985; Temple and Carney, 1995; Ross et al., 2002). TS subjects also experience difficulties in mathematics, particularly in arithmetical tasks such as subtraction, operations with large numbers, subitizing and cognitive estimation (Pennington et al., 1985; Rovet et al., 1994; Mazzocco, 1998; Temple and Marriot, 1998; Butterworth et al., 1999; Ross et al., 2002; Bruandet et al., 2004). These defi-cits in TS are consistent across a wide range of ages and are not reversible with estrogen substitution (Ross et al., 2002). In particular, several tests confirmed that the TS subjects included in this study were impaired in arithmetic (Molko et al., 2003). For instance, they performed significantly worse than controls on Warrington’s graded arithmetic test, a graded difficulty test of arithmetic computations. Neuropsychological and func-tional neuroimaging studies in normal subjects and in patients with cerebral lesions have provided compelling evidence for the crucial role of the intraparietal sulcus in visuo-spatial and numerical processing (Cohen and Dehaene, 1994; Dehaene and Cohen, 1997; Dehaene et al., 1998; Lee, 2000; Stanescu-Cosson et al., 2000). Functional imaging in normal subjects has revealed that numerical quantity manipulation relies on a reproducible cerebral network that systematically involves the left and right intraparietal sulci, with increasing activation as the task puts greater emphasis on quantity processing (Dehaene et al., 1999; Pinel et al., 2001). Anatomical MRI studies in developmental dyscalculia have shown a clear impairment of the left parietal cortex, (Levy et al., 1999; Isaacs et al., 2001). In particular, using voxel-based morphometry, a decrease in the grey matter density has been found in the left intraparietal sulcus (TC: –39, –39, 45) in premature children with dyscalculia (Isaacs et al., 2001). In the present study, a decrease in grey matter subjects was found at a symmetrical location in the right intraparietal sulcus of TS subjects (TC: 43,–30, 37). Morphometric analysis of the right intraparietal sulcus revealed that this sulcus was shallower and tended to be shorter in TS. The finding of a morphological difference in the right intraparietal sulcus is consistent with the results of our fMRI study during calculation tasks in the same TS subjects. We found that, while TS activated the classical parieto-frontal network during calculation tasks, a decreased activation in the right intraparietal sulcus was observed when the tasks put greater emphasis on exact calculation with large numbers (Molko et al., 2003). This decreased activation in the right intraparietal sulcus during calculation tasks is closely located to the region found abnormal using voxel-based morphometry (TC: 48, –36, 48). Our results suggest that reduced grey matter in the right intraparietal sulcus may be responsible for the visuo-spatial and number processing deficits in TS. More broadly, this result and the previous report in children with developmental dyscalculia associated with prematurity suggest that the intraparietal sulcus may play a crucial role in develop-mental dyscalculia, although the possibility of a distinct role of the left and right intraparietal sulci remains to be clarified. Executive Function Deficits

Reduced performance on tests classically associated with frontal lobe function such as the n-back task, the tower of Hanoi task, the Wisconsin card sorting test and verbal fluency has been repeatedly reported in TS (Waber, 1979; Bender et al., 1993; Temple et al., 1996; Romans et al., 1998; Haberecht et al., 2001). Our results do not provide evidence for anatom-ical changes in the lateral prefrontal cortex. Although we cannot exclude that a subtle deficit might be identified with higher resolution images, our result is consistent with previous volumetric MRI studies (Murphy et al., 1993; Reiss et al., 1993, 1995; Brown et al., 2002). However, the anatomical changes found in the right parietal lobe and in the left and right cingu-late cortex may be plausibly related to the executive impair-ment in TS and may cause functional rather than anatomical changes in prefrontal regions. Two recent fMRI studies in TS during frontal tasks have shown bilateral abnormal prefrontal activations. Decreased activations have been found bilaterally in the dorso-lateral prefrontal cortex and also in the supra-marginal gyrus during n-back tasks (Haberecht et al., 2001) and increased activations in the superior and middle frontal gyri have been also reported during a go–no-go task (Tamm et al., 2003). F inally, one should stress that the neuropsychological tasks used in TS studies such as the tower of Hanoi task, the Wisconsin card sorting test, or verbal fluency, do not isolate an individual cognitive process and do not target a precise anatomical region. A more detailed analysis of executive dysfunction in TS is needed to disentangle the relative contri-

Cerebral Cortex Page 9 of 11

butions of spatial and verbal working memory, attention and inhibition.

In conclusion, our MRI study used two independent MRI techniques to provide converging evidence of regionally specific structural changes in TS. The multifocal and bilateral cerebral abnormalities found in TS are highly consistent with the hallmark symptoms associated with TS. In particular, our results showed bilateral macroscopic anomalies in the main components of a distributed network implicated in social cognition and microstructural alterations in the putative temporal connections of this network. A more focal anomaly was also found in the right intraparietal sulcus, which has been implicated in visuo-spatial and numerical processing. The observation that a genetic X-linked disease can impair social and spatial–numerical cognition strengthens the hypothesis that those functions are laid down by genetic and neurobio-logical systems in the course of both phylogenetic evolution and child development (Brothers, 1990; Dehaene et al., 1998; Allison et al., 2000). Although it is currently hard to separate direct genetic effects on brain development from indirect effects of hormonal depletion in TS, the correlation of genetic anomalies with functional and anatomical imaging methods provides a powerful method to narrow down the search for genes involved in brain cognition and in cognitive develop-ment (Watkins et al., 2002).

Notes

We are indebted to the members of the French Turner syndrome asso-ciation (AGAT association) for their continued cooperation with our research programme. We also wish to thank Professor Jean-Claude Carel from Saint-Vincent-de-Paul hospital and INSERM U342 for his help in the recruitment. This work was supported by INSERM, CEA and a centennial fellowship of the McDonell Foundation to S.D.

Address correspondence to Nicolas Molko, INSERM U 562, Service Hospitalier F rédéric Joliot, CEA/DSV, 4 Place du general Leclerc 91401 Orsay cedex, France. Email: molko@wanadoo.fr. References

Alexander D, Money J (1966) Turner syndrome and Gerstmann’s syndrome: neuropsychological comparison. Neuropsychologia 4:265–273.

Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267–278. Ashburner J, F riston KJ (2000) Voxel-based morphometry — the methods. Neuroimage 11:805–821.

Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A, Williams SC (1999) Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11:1891–1898. Bender BG, Linden MG, Robinson A (1993) Neuropsychological impairment in 42 adolescents with sex chromosome abnormali-ties. Am J Med Genet 48:169–173.

Brothers L (1990) The social brain: a project for integrating primate behaviour and neurophysiology in a new domain. Concepts Neurosci 1:27–51.

Brown WE, Kesler SR, Eliez S, Warsofsky IS, Haberecht M, Patwardhan A, et al. (2002)Brain development in Turner syndrome: a magnetic resonance imaging study. Psychiatry Res 116:187–196.

Bruandet M, Molko N, Cohen L, Dehaene S (2004) A cognitive charac-terisation of dyscalculia in Turner syndrome. Neuropsychologia 42:288–298.

Butterworth B, Grana A, Piazza M, Price CJ, Skuse D (1999) Language and the origins of number skills. Brain Lang 96:486–488.

Clark C, Klonoff H, Hayden M (1990) Regional cerebral glucose metab-olism in Turner syndrome. Can J Neurol Sci 17:140–144.

Cohen L, Dehaene S (1994) Amnesia for arithmetic facts: a single case study. Brain Lang 47:214–232.Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al.

(1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427.

Creswell C, Skuse D (2000) Autism in association with Turner syndrome: implications for male vulnerability to pervasive devel-opmental disorders. Neurocase 5:511–518.

Crosby EC, Humphrey T, Lauer EW (1962) Anatomy of the nervous system. New York: Macmillian.

Dehaene S, Cohen L (1997) Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33:219–250.

Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representa-tions of numbers in the animal and human brain. Trends Neurosci 21:355–361.

Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence.

Science 284:970–974.

Dejerine J (1895) Anatomie des centres nerveux, Vol 1. Paris: Rueff. Duncan J, Seitz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, et al. (2000)

A neural basis for general intelligence. Science 289:457–460. Elgar K, Campbell R, Skuse D (2002) Are you looking at me? Accuracy in processing line-of-sight in Turner syndrome. Proc R Soc Lond

B Biol Sci 269:2415–2422.

F rith U (2001) Mind blindness and the brain in autism. Neuron

32:969–979.

Gloor P (1997) The temporal lobe and the limbic system. New York: Oxford University Press.

Golestani N, Paus T, Zatorre RJ (2002) Anatomical correlates of learning novel speech sounds. Neuron 35:997–1010.

Good CD, Johnsrude IS, Ashburner J, Henson RN, F riston KJ, Frack-owiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36.

Good CD, Lawrence K, Thomas NC, Price C, Ashburner J, Friston K, et al. (2003) Dosage-sensitive X-linked locus influences the develop-ment of amygdala and orbito-frontal cortex, and fear recognition in humans. Brain 126:1–16.

Haberecht MF, Menon V, Warsofsky IS, White CD, Dyer-Friedman J, Glover GH, et al. (2001) F unctional neuroanatomy of visuo-spatial working memory in Turner syndrome. Hum Brain Mapp 14:96–107.

Happe F, Ehlers S, Fletcher P, Frith U, Johansson M, Gillberg C, et al.

(1996) ‘Theory of mind’ in the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport 8:197–201.

Isaacs EB, Edmonds CJ, Lucas A, Gadian DG (2001) Calculation diffi-culties in children of very low birthweight: a neural correlate.

Brain 124:1701–1707.

Jackson, M and Warrington, EK (1986) Arithmetic skills in patients with unilateral cerebral lesions. Cortex 22:611–620.

Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, et al. (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500.

Lawrence K, Kuntsi J, Coleman M, Campbell R, Skuse D (2003) Face and emotion recognition deficits in Turner syndrome: a possible role for X-linked genes in amygdala development. Neuro-psychology 17:39–49.

Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al.

(2001) Diffusion tensor imaging: concepts and applications. J Magn Resonon Imaging 13:534–546.

Lee KM (2000) Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Ann Neurol 48:657–661.

Levy LM, Reis IL, Grafman J (1999) Metabolic abnormalities detected by 1H-MRS in dyscalculia and dysgraphia. Neurology 53:639–641. McCauley E, Ito J, Kay T (1986a) Psychosocial functioning in girls with Turner’s syndrome and short stature: social skills, behavior prob-lems, and self-concept. J Am Acad Child Psychiatry 25:105–112. McCauley E, Sybert VP, Ehrhardt AA (1986b) Psychosocial adjustment of adult women with Turner syndrome. Clin Genet 29:284–290.

Page 10 of 11Brain Anatomy in Turner Syndrome?Molko et al.

McCauley E, Ross JL, Kushner H, Cutler G Jr (1995) Self-esteem and behavior in girls with Turner syndrome. J Dev Behav Pediatr 16:82–88.

Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97:4398–4403.

Mazzocco MM (1998) A process approach to describing mathematics difficulties in girls with Turner syndrome. Pediatrics 102:492–496. Mazzocco MM, Baumgardner T, Freund LS, Reiss AL (1998) Social func-tioning among girls with fragile X or Turner syndrome and their sisters. J Autism Dev Disord 28:509–517.

Molko N, Cachia A, Riviere D, Mangin JF, Bruandet M, Le Bihan D, Cohen L, Dehaene S (2003) Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia. Neuron 40: 847–858.

Murphy DG, DeCarli C, Daly E, Haxby JV, Allen G, White BJ, et al.

(1993) X-chromosome effects on female brain: a magnetic resonance imaging study of Turner’s syndrome. Lancet 342:1197–1200.

Murphy DG, Mentis MJ, Pietrini P, Grady C, Daly E, Haxby JV, et al.

(1997) A PET study of Turner’s syndrome: effects of sex steroids and the X chromosome on brain. Biol Psychiatry 41:285–298. Pennington BF, Heaton RK, Karzmark P, Pendleton MG, Lehman R, Shucard DW (1985) The neuropsychological phenotype in Turner syndrome. Cortex 21:391–404.

Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS, Milner AD, et al.

(1985) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci 223:293–317. Pierpaoli, C and Basser, PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906.

Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648.

Pinel P, Dehaene S, Riviere D, LeBihan D (2001) Modulation of parietal activation by semantic distance in a number comparison task.

Neuroimage 14:1013–1026.

Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D, et al.

(2000) Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12:184–195. Ranke MB, Saenger P (2001) Turner’s syndrome. Lancet 358:309–314. Reiss AL, Freund L, Plotnick L, Baumgardner T, Green K, Sozer AC, et al. (1993) The effects of X monosomy on brain development: monozygotic twins discordant for Turner’s syndrome. Ann Neurol 34:95–107.

Reiss AL, Mazzocco MM, Greenlaw R, F reund LS, Ross JL (1995) Neurodevelopmental effects of X monosomy: a volumetric imaging study. Ann Neurol 38:731–738.

Riviere D, Mangin JF, Papadopoulos-Orfanos D, Martinez J, Frouin V, Regis J (2002) Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med Image Anal 6:77–92.

Romans SM, Stefanatos G, Roeltgen DP, Kushner H, Ross JL (1998) Transition to young adulthood in Ullrich–Turner syndrome: neurodevelopmental changes. Am J Med Genet 79:140–147.

Rose SE, Chen F, Chalk JB, Zelaya FO, Strugnell WE, Benson M, et al.

(2000) Loss of connectivity in Alzheimer’s disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatryry 69:528–530.Ross J, Zinn A, McCauley E (2000) Neurodevelopmental and psychoso-cial aspects of Turner syndrome. Ment Retard Dev Disabil Res Rev 6:135–141.

Ross JL, Stefanatos GA, Kushner H, Zinn A, Bondy C, Roeltgen D (2002) Persistent cognitive deficits in adult women with Turner syndrome. Neurology 58:218–225.

Rovet J, Netley C (1980) The mental rotation task performance of Turner syndrome subjects. Behav Genet 10:437–443.

Rovet J, Szekely C, Hockenberry MN (1994) Specific arithmetic calculation deficits in children with Turner syndrome. J Clin Exp Neuropsychol 16:820–839.

Saenger P (1996) Turner’s syndrome. N Engl J Med 335:1749–1754. Skuse DH, James RS, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper G, et al. (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387:705–708. Sluming V, Barrick T, Howard M, Cezayirli E, Mayes A, Roberts N (2002) Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians.

Neuroimage 17:1613–1622.

Sowell ER, Thompson PM, Mattson SN, Tessner KD, Jernigan TL, Riley EP, et al. (2001) Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol.

Neuroreport 12:515–523.

Stanescu-Cosson R, Pinel P, van De Moortele PF, Le Bihan D, Cohen L, Dehaene S (2000) Understanding dissociations in dyscalculia: a brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain 123:2240–2255.

Tamm L, Menon V, Reiss AL (2003) Abnormal prefrontal cortex func-tion during response inhibition in turner syndrome: functional magnetic resonance imaging evidence. Biol Psychiatry 53:107–111. Temple CM, Carney RA (1995) Patterns of spatial functioning in Turner’s syndrome. Cortex 31:109–118.

Temple CM, Carney R (1996) Reading skills in children with Turner’s syndrome: an analysis of hyperplexia. Cortex 32:335–345. Temple CM, Marriot AJ (1998) Arithmetical ability and disability in Turner ‘s syndrome: a cognitive neuropsychological analysis. Dev Neuropsychol 14:47–67.

Temple CM, Sherwood S (2002) Representation and retrieval of arith-metical facts: developmental difficulties. Q J Exp Psychol A 55:733–752.

Temple CM, Carney R, Mullarkey S (1996) F rontal lobe function and executive skills in children with Turner’s syndrome. Dev Neuropsychol 12:343–363.

Thompson PM, Cannon TD, Narr KL, Van Erp T, Poutanen VP, Huttunen M, et al. (2002) Genetic influences on brain structure.

Nat Neurosci 4:1153–1154.

Turner H (1938) A syndrome of infantilism, congenital webbed neck and cubitus valgus. Endocrinology 28:566–574.

Waber DP (1979) Neuropsychological aspects of Turner’s syndrome.

Dev Med Child Neurol 21:58–70.

Watkins KE, Vargha-Khadem F, Ashburner J, Passingham RE, Connelly A, Friston KJ, et al. (2002) MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain 125:465–478.

Wolkin A, Choi SJ, Szilagyi S, Sanfilipo M, Rotrosen JP, Lim KO (2003) Inferior frontal white matter anisotropy and negative symptoms of schizophrenia: a diffusion tensor imaging study. Am J Psychiatry 160:572–574.

Cerebral Cortex Page 11 of 11

电脑网络维护合同书

电脑网络维护合同 甲方:潍坊启明科技网络服务中心(签章) 乙方:_________________(签章) 2012年__9__月___1___日 电脑网络维护合同书 甲方:潍坊启明科技网络服务中心 乙方: 双方经友好协商达成一致共识,签订此电脑维护合同,具体事项如下:硬件: 一、维护范围及内容: (1)电脑硬件故障维修(电脑主机〈CPU、硬盘、内存、主板、显卡〉、显示器)。 (2)电脑软件故障维修(包括系统安装、系统还原、系统更新、定期检查、常用软件安装)。 (3)局域网故障维修(对现有公司内部局域网络维护、测试、保证内部网络通讯正常)。 (4)指导、协助备份重要数据。(甲方不对乙方数据丢失负责)。

二、维修方式: (1)突发故障的上门维护:在接到乙方的电话或其它通知后,甲方 必须最迟在第三个工作日进行上门维护。 (2)每季度一次定期探访维修系统,对用户的系统进行优化配置,调试好应用软件及相关硬件设备,使系统达到更高使用效率。 三、收费: 1、甲方向乙方提供电脑定期维护,维护期限__年,从2012 年__9_月__1_日至__2013_年___9月__1_日,乙方所需维护电 脑台数是___台,甲方按电脑每年__100_元/台计费;电脑维护 费共:——;针式打印机,喷墨打印机,打印复印扫描一体机 共———台,每年100元/每台,服务期限为___年,共计维修 费用为人民币_______元整;共计所有综合整体费用每年___ 元,大写:————————— 双方签约后,乙方将该合约总金额以现金方式或银行转帐方式一次性支付给甲方。 四、双方责任: (1)甲方在维护期限的工作时间内必须尽职尽责为乙方提供电脑维护项目里的服务内容,乙方要求服务的联系方式为电 话联系或网上留言,乙方发出维护请求后,甲方必须最迟 在第三个工作日内响应服务,如有特殊意外,双方调解处 理。

考研真题及答案解析

徐之明权威解析2013年考研政治试题马原客观题答案解析 一、单项选择题马原部分 1.有一副对联,上联是“桔子洲,洲旁舟,舟行洲不行”,下联是“天心阁,阁中鸽,鸽飞阁不飞”。这形象地说明了运动和静止是相互联系的。静止是() A.运动的普遍状态 B.运动的内在原因 C.运动的衡量尺度 D.运动的存在方式 【答案】C 【思路剖析】本题属于案例型考题,即通过一个具体的事例,去探究其中所包含的哲理。题干所引对联的作者,是毛泽东和周恩来。1960年5月,毛泽东、周恩来一行视察长沙,工作之余,到江边散步。遥望橘子洲头,百舸争流,万帆竞发,毛泽东逸兴遄飞,口占一上联:“橘子洲,洲旁舟,舟行洲不行”,此联动静相对,意境悠远,三个断句,两处“顶针”,“洲”和“舟”又是谐音,应对难度极大。毛泽东对身边的周恩来说:“恩来,我一时江郎才尽,请你来个锦上添花如何?”周恩来才思敏捷,了解长沙,应声对道:“天心阁,阁中鸽,鸽飞阁不飞。”天心阁系长沙市内一景,与橘子洲相对。整个对联工整流畅、浑然一体,留下一段佳句和佳话。从考试答题的角度论,最关键的是抓住题干中的最后一句:“这形象地说明了运动和静止是相互联系的。静止是()。“.运动的普遍状态”是胡编的干扰项,学术上没有这个说法。故A.项错误。“.运动的内在原因”是矛盾,故B项为错误。物质的存在方式是运动;没有“运动的存在方式”这个说法。C. 项“静止是运动的衡量尺度”是正确的说法。该说法的出处是马克思、恩格斯的话:“运动应当从它的反面即从静止找到它的量度”。所包含的深层哲理是在对立中认识同一。 【必背考点】《马原》第2章之“运动和静止”。 【应试对策】本题的难度,主要不是来自考查的内容,而是来自于干扰项的设定。“运动”、“普遍”、“内在原因”、“存在方式”等,都是我们学习哲学中经常碰到的基本概念。如果没有理解作为支撑,并且采取临时抱佛脚的突击记忆方式,比较难做出正确的决断。 2.一位机械工程专家讲过这样一件事:“文革”中,他在某地劳动,有一天公社派他去割羊草。他没养过羊,怎么认得羊草呢?但终于一个办法出来了。他把羊牵出去,看羊吃什么就割什么。不到半天就割回了羊草。这位专家之所以这样做是因为他认识到,“羊吃草”与“割羊草”两者之间存在着() A.因果联系 B.必然联系 C.主观联系 D.本质联系 【答案】B 【思路剖析】本题是案例型考题。通过一个生活中的故事,考查所其中所包含的哲理。题干中的“羊吃草”是指羊的行为;“割羊草”是指人的行为。连起来看,

马原知识点整理

1、什么是马克思主义?(P2-P3) (1)马克思主义是由马克思、恩格斯创立的,为他们的后继者所发展的,以批判资本主义、建设社会主义和实现共产主义为目标的科学理论体系,是关于无产阶级和人类解放的科学。它包括马克思主义哲学、马克思主义政治经济学和科学社会主义三个有机统一基本组成部分。 (2)①从创造者、继承者的认识成果讲,马克思主义是由马克思、恩格斯创立,由其后各个时代、各个民族的马克思主义者不断丰富和发展的观点和学说的体系;它既包括有马克思、恩格斯创立和列宁等发展了的马克思主义,也包括中国共产党人将其与中国具体实际相结合,不断推进马克思主义中国化的理论成果。 ②从阶级属性讲,马克思主义是无产阶级争取自身解放和整个人类解放的科学理论,是关于无产阶级斗争的性质、目的和解放条件的学说; ③从研究对象和主要内容讲,马克思主义是无产阶级的科学世界观和方法论,是关于自然、社会和人类思维发展一般规律的学说,是关于资本主义发展及其转变为社会主义以及社会主义和共产主义发展规律的学说。 2、思考并归纳意识能动作用及其表现、主观能动性与客观规律性的辩证关系。(P29-P33) (1)意识的能动作用及其表现:①辩证唯物主义在坚持物质决定意识,意识依赖于物质的同时,又承认意识对物质有能动作用。②意识的能动作用是人的意识所特有的积极反映世界和改造世界的能力和活动。表现为如下四个方面:第一,意识具有目的性和计划性。人反映世界时会表现出主体选择性。第二,意识活动具有非凡创造性。人能在思维中建构一个现实中没有的理想世界。第三,意识具有指导实践改造客观世界的作用,可变客观为现实。第四,意识具有指导、控制人的行为和生理活动的作用。 (2)主观能动性与客观规律性的辩证关系:首先,发挥人的主观能动性必须以承认规律的客观性为前提。必须尊重客观规律,认识和改造自然界,要尊重自然界的规律;认识和改造社会,要尊重社会规律。其次,只有正确发挥主观能动性,才能正确认识和利用客观规律。在尊重客观规律的基础上,要充分发挥主观能动性。否认人的主观能动性,必然导致对人的价值性的否定,导致对历史发展动力的否定。 3、当前中国一再强调走中国特色社会主义道路,试结合有关矛盾原理谈谈看法。(P42-P43) (1)矛盾的普遍性与矛盾的特殊性是辩证统一的关系的基本原理。矛盾的普遍性即矛盾的共性,矛盾的特殊性即矛盾的个性。矛盾的共性是无条件的、绝对的,矛盾的个性是有条件的、相对的。任何现实存在的事物的矛盾都是共性和个性的有机统一,共性寓于个性之中,没有离开个性的共性,也没有离开共性的个性。矛盾的共性和个性、绝对和相对的道理,是关于事物矛盾问题的精髓,是正确理解矛盾学说的关键。 (2)矛盾的普遍性和特殊性辩证关系的原理是马克思主义的普遍真理同各国的具体实际相结合的哲学基础,也是建设中国特色社会主义的哲学基础。21世纪,掌握矛盾普遍性和特殊性辩证关系的原理,把马克思主义同我国的实际和时代特征结合起来,努力推进中国特色社会主义的实践创新、理论创新和制度创新,是我们面临的重大课题。 (3)中国特色社会主义,既坚持了科学社会主义基本原则,又根据时代条

2017考研政治肖秀荣马原分析题审题答题技巧

必看!)马原分析题审题答题技巧 2015年11月18日21:37 阅读116万+ 这篇文章中给大家介绍一下马原分析题的审题答题技巧以及复习方法。此前还有8套卷使用方法、分析题复习方法、形势与政策复习方法等文章,还没有看过的同学可以往前翻微博。 【复习方法】 马原分析题的难度就在于提问不明确考哪个原理,要从众多原理中自己去匹配,这个思维模式是要培养的,因为一旦原理选错,写得再好也没用,而其他学科分析题多少还是能够围绕材料中来写的。从练习角度讲,有两个资料是一定要好好研究的,一个是真题,一个是8套卷。首先是做真题,学习审题答题技巧(后面有实例),而且从中也可以看到哪些原理是容易命题、经常命题的。比如矛盾的普遍性特殊性,在08、09、11、12年连续命题,是同学们必须掌握的原理,在头脑里搭建的框架图中也必须明确这个原理的位置。 之前我已经多次强调,做马原分析题,头脑中必须有一个哲学框架,最怕的就是到考场上,看完材料完全不知道从哪里下手,连唯物论、辩证法、认识论、唯物史观中的哪一快都搞不清楚。或者是明明看到材料应该是讲的认识与实践的关系,但是这一块有哪些原理脑子里一片空白,这就是框架没有建立起来,头绪没有整理清楚。我建议同学们自己画一个框架图,或者直接参考我在《知识点提要》中给出的12页哲学逻辑图,自己把过去10年的马原分析题认真研究之后,标出各个原理所在的位置,你会发现很多原理都是重复在考的,在复习框架图的时候就要尤其注意这些原理的应用。 比如说关于认识与实践,在《提要》逻辑图的第7页,需要掌握实践和认识活动中的主体客体(2013年),实践对认识的决定作用(4点,其中①在08、01年考查,③在01年考查,④在13年考查),认识对实践的指导作用、认识的本质(2013年)。同时,还要关联到其他一些知识点,比如认识与实践的统一(见《提要》逻辑图第8页),需要把握认识世界与改造世界的关系(2013年)、理论创新与实践创新(2012年)。再进一步扩展,达到认识世界和改造世界的目的,是在认识和掌握客观规律的基础上,那么又涉及到客观规律性与主观能动性的关系(2002年)。实际上,在真题的标准答案里,我们经常会看到把这些知识点串在一起的情况,比如“认识世界是为了改造世界”、“采取科学的方法,不断创新”、“按规律办事”、“要发挥主观能动性,勇于创新”,这些也是同学们要通过研究真题,从真题的标准答案中学习的。把这种常见的“套话”记住,在结合材料组织语言的时候就不怕没有素材可用,可以让回答更加“丰满”。

考研政治材料马原分析题十大重要考点

考研政治材料马原分析题十大重要考点教材考点1 意识观 意识产生的条件;意识的本质:客观内容和主观形式的统一。 教材考点2 运动观 物质和运动的关系;时间和空间的特性。 教材考点3 实践观、人与自然 实践的特征;人与自然的关系;自然界和人类社会的分化和统一 教材考点4 联系与发展 联系的特征;发展的实质;判断新事物的标准。 教材考点5 对立统一规律 矛盾的同一性和斗争性关系原理;矛盾的普遍性和特殊性关系原理。 教材考点6 质量互变规律 量变和质变的关系 教材考点7 实践和认识 实践和认识的关系;认识的本质 教材考点8 真理的特征 真理的客观性、绝对性和相对性、具体性。 教材考点9 社会发展动力

社会基本矛盾;阶级斗争;革命;改革;科学技术。 教材考点10 剩余价值论 资本有机构成;资本主义生产过程的二重性;提高剩余价值的两种基本方法 唯物辩证法的方法论 【解题思路】 1.运动与静止辩证关系原理的实践意义; 2.事物质与量的辩证统一关系及其方法论意义; 3.度是质与量的统一,“度”的方法论意义; 4.事物普遍联系原理的方法论意义; 5.辩证否定观的方法论意义; 6.矛盾同一性与斗争性辩证关系的方法论意义; 7.矛盾普遍性和特殊性辩证关系的方法论意义; 8.矛盾不平衡性原理的方法论意义; 9.形而上学与唯物辩证法的根本对立; 10.矛盾分析方法的实践意义。 【答案要点】

1.马克思主义方法论一方面要求我们用运动、变化、发展的观点观 察和处理一切问题,想问题、办事情时一切以时间、地点、条件为转移,使我们的思想和行动跟上发展着的客观实际,防止思想僵化、实践滞后和行动保守,对事物的静态分析必须与动态考察相结合;另一方面,又要正确理解相对静止对事物存在发展的积极意义,相对静止是事物存在发展的基本条件。在实践中高度重视稳定、和谐的保障作用,把变革和稳定结合起来,既要勇于变革以推动事物的发展,又要注意稳定局面以巩固变革的成果,正确处理改革、发展、稳定的关系,建设和谐社会。 在运动和静止的关系问题上必须坚决反对两种错误:一种是夸大运动否认静止,把物质运动看成是瞬息万变的、没有任何稳定性过程的相对主义诡辩论的错误(“人一次也不能踏进同一条河流”);一种是夸大静止否认运动,把物质的存在或者世界的发展看成是绝对不变过程的形而L学不变论的错误(“刻舟求剑”、“天不变道亦不变”)。 2.事物质与量的辩证统--0 (1)量是事物存在和发展的规模、程度、速度以及它的构成成分在空间上排列组合等可以用数量表示的规走性。量和事物是不可分离的,但量和事物的存在不是直接同一的,在一定范围内量的增减不影响事物的存在。认识量的方法论意义:一是认识事物量的定量分析是认识的深化和精确化。区分质的定性分析是认识量的前提,考察量是认识质的深化。只有精确地认识量,才能更深刻地把握质。二是只有正确了解了事物的量,才能正确估计事物在实践中的地位和作用,因为同质的事物由于数量不同,在实践中的地位和作用往往不同。做任何事情,既要有质的要求,又要有量的要求,做到心中有数。 (2)事物发展的过程,经由景变和质变两种状态。任何事物都是质与量的统一体。马克思主义哲学方法论指出,实践中要坚持定性分析与定量分析相统一,办事情、想问题要做到心中有数,要有量的要求,更要“好 字优先”,质量第一,抓质量、讲效益,不能做心中无数的“马大哈”,“失之毫厘,谬以千里”,细节决定成败,粗枝大叶做不好工作;不能不讲质量,以量取胜,片面追求数量增长,更不能“滥竽充数”,假冒伪劣,以次充好。 3.度是质与量的统一,是事物保持自己质的存在的数量界线,即事物的范围、幅度和限度。它的极限叫关节点,超出了关节点,事物就形成了新的质量统一。认识度才能确切地把握事物的质,不致混淆不同的Ⅲ物;认识度才能为实践活动提供正确的准则即适度原则,中

徐之明-马原强化篇

马原强化篇 第3章认识世界和改造世界 一、单项选择题下列每题给出的四个选项中,只有一个选项是符合题目要求的。 1.牛顿的经典物理学是科学史上的重要科学成果,直到今天仍然在帮助人们认识世界。 但是,随着科学的进步,现代出现了许多新的科学问题和领域,牛顿物理学在很多方面不能解释新的科学现象了,于是诞生了如相对论和量子力学等这样的新的科学理论。这些科学发展史的事实说明(本题难度系数为0.65)() A.科学真理具有相对性 B.科学真理是绝对的 C.人的认识能力是有限的 D.科学真理是人类永远无法认识的 2.同一句格言,年轻人的理解没有饱经风霜的老人理解丰富。这说明(本题难度系数为 0.7)() A.感性经验支撑下的理论认识更丰富深刻 B.理性指导下的感性认识丰富 C.理性认识依赖于感性认识 D.感性认识依赖于理性认识 3.有思想家指出:“忧心忡忡的穷人甚至对最美丽的风景都没有什么感觉;贩卖矿物的商人只看矿物的商业价值,他没有矿物学的感觉”。这说明(本题难度系数为0.65)()A.认识来源于人的感觉 B.认识是人的主观想象 C.人的认识具有主观能动性 D.人的地位身份决定认识水平 4.古希腊的怀疑论者们强调说对同一事物,不同的人感觉是不同的。如同一盆水,有人感觉说温,而有人感觉说凉。这说明(本题难度系数为0.65)() A世界的真实状况是人们无法知道的 B认识结果是由主体决定的 C认识具有主体差异性 D认识具有客观性 5.马克思有句名言说:“搬运夫和哲学家之间的原始差别要比家犬和猎犬之间的差别小得多。他们之间的鸿沟是分工造成的。”这说明(本题难度系数为0.7)() A.人的认识和能力差别主要来源于后天的实践 B.人与人之间不存在先天差异 C.人的地位是由其出身决定的 D.人的差别主要取决于后天的主观努力程度 6.人们要判断某种认识是不是真理,要看它(本题难度系数为0.65)() A.能不能满足人的需要 B.能不能被多数人接受 C.能不能付诸实践 D.能不能在实践中最终取得预期的结果 7.列宁指出:“只要再多走一小步,哪怕是向同一方向迈的一小步,真理便会变成谬误。” 这句话表明了(本题难度系数为0.7)() A.真理和谬误是认识的两个阶段 B.真理和谬误没有确定的区别 C.真理是有条件的 D.真理的标准是双重的

(完整版)马原主要知识点归纳

绪论知识点 1.马克思主义的根本特征?马克思主义的精髓? 实践基础上的科学性的革命性的统一,是马克思主义的根本特征。马克思主义的立场,观点和方法,是马克思主义的精髓。 2、马克思主义的三大组成部分及其直接理论来源? 组成部分:1.马克思主义哲学;2.马克思政治经济学;3.科学社会主义。来源:1德国古典哲学;2.英国古典政治经济学;3.法国,英国空想社会主义哲学。 3、马克思一生的两大发现? 唯物史观;剩余价值论 第一章知识点 1.什么是哲学?哲学的基本问题及其内容? 哲学是系统化,理论化的世界观,又是方法论。 哲学的基本问题是思维和存在的关系问题。 内容:其一,意识和物质、思维和存在,究竟谁是世界的本源;根据对该基本问题的不同回答,哲学可划分为唯物主义和唯心主义两个对立的派系;其二思维能否认识或正确认识存在的问题;根据对该基本问题的不同回答,哲学又分为可知论和不可知论。 2.唯物主义的三种历史形态和唯心主义的两种形式? 唯物主义的三种历史形态:古代朴素唯物主义、近代形而上学唯物主义、现代唯物主义即辩证唯物主义和历史唯物主义。唯心主义的两种

基本形态:客观唯心主义和主观唯心主义。 3、马克思主义物质观、运动观、时空观?实事求是、解放思想、与时俱进的哲学理论依据?唯物主义运动观和唯心主义运动的区别?(1)物质的唯一特性是客观实在性,它存在于人的意识之外,所以我们必须从存在客观事实出发,也可以为人的意识所反映。世界是物质的。 (3)唯物主义运动观和唯心主义运动共同点是多层运用发展都是运动观;区别:A运动变化主题不同,唯物主义运动观主体是物质,唯心主义运动主体是精神与意识;B运动变化根源不同:唯物主义运动观在于物质,唯心主义运动根源在于观念,意识。 4.运动和静止的关系?为什么人不能两次踏入同一条河流? A运动是绝对的,静止是相对的;运动和静止相互依赖,相互渗透,相互包含,“动中有静,静中有动”。 B物质运动时间和空间的客观实在性是绝对的,物质运动时间和空间的具体特性是相对的。 5.实践及其特点、形式?A实践是人类能动地改造客观世界的物质活动B实践具有物质性、自觉能动性和社会历史性等基本特征C实践的基本形式包括物质生产实践、社会政治实践和科学文化实践等。 6.唯物辩证法的总特征和根本方法? 联系和发展是唯物辩证法的总特征,矛盾分析法是根本方法 7.为什么说对立统一规律是唯物辩证法的实质和核心?因为对立统一规律揭示了事物普遍联系的根本内容和永恒发展的内在动力,从根

理想CR1630一体机维修资料

理想CR1630一体机维修资料 (1)操作程序 在执行测试功能程序,维修技术员能检测每一个电器元件的状态。1.进入测试功能 同时按下?和?两键打开电源开关。如果进入测试功能,机器的印刷数量显示板上显示系统ROM版本。2.检测部件操作,可用操作见选择测试编号。{例}选择测试号NO。36(传感器状态)按START见开始测试,在按START停止测试。3.操作记忆开关(测试功能200—218) 进入测试功能并选择记忆开关号并按START键。{例}选择记忆开关号201选择201并按START 用?或?键选择设定直。{例}选择E为设定植,按?键使E在第一格内闪烁。按STOP 以便重新选择设定。按ALL RESET见1秒钟。注意:测试功能号98使所有记忆开关选择复为‘0’。(2)测试项目及操作 1.传感器/开关测试 有两种不同方式的叫声告知目前状态。检测到 0.1秒间隔的叫声位检测到 0.5秒间隔的叫声序号检测元件检测内容 01 纸检测传感器检测反射光02 上限开关光路被阻挡03 下限开关光路被阻挡06 纸传感光路被阻挡08 位置A传感器光路被阻挡09 夹板A位置传感器光路被阻挡 10 夹板B位置传感器光路被阻挡12 切刀开关开关不被按下14 版纸传感器检测反射光 15 版纸位置传感器检测反射光17 油墨盒传感器光路被阻挡18 滚筒装入传感器光路被阻挡19 出纸传感器检测反射光21 ADF到为传感器光路被阻挡22 垂直中心传感器光路被阻挡23 版纸用完传感器光路被阻挡24 版纸张紧板传感器光路被阻挡25 废版纸压缩传感器光路被阻挡26 废版纸满传感器光路被阻挡27 卸版单元装置开关开关被按下 28 卸版传感器光路被阻挡29 制版单元传感器开关被按下34 原稿位置传感器光路被阻挡36 原稿输入传感器检测反射光37 油墨传感器检测油墨38 油墨溢出传感器检测油墨 41 原稿到位传感器当可选件安装时 2.电机/电磁铁测试 用START见作开/关控制 序号检测元件 56 进搞电磁铁57 写入步进电机向后200步58 写入步见电机向前200步59 主电机10转/分钟60 主电机15转/分钟61 主电机30转/分钟62 可变速主电机运转(用印刷速度键控制)63 分离和负压风扇64 写入步进电机向前400步65 写入步进电机向前300步66 装载离合器67 进纸离合器68 压力电磁铁 69 70 夹板复位71 卸版电机73 夹板电机74 扫描电机向前运转(用缩小键来控制)77 打印头控制信号79 扫描器发光二极管阵列亮84 进纸步进电机向后转89 版纸张紧板电磁铁 3.内存清除及记数停止等按START键,面版显示正常状态 序号清除项目 90 部分内存清除主板中RAM包含的确定内容,如卡纸,出错等将被初始化。油墨定时器记忆开关及用户功能保留。(在开电同时按ALL RESET键,将做同样操作)92 禁止版纸及印张记数,及磁卡记数信号。版纸记数及印张记数信号无输出,用于维修人员试印而无记数关机后该状态既解除。93 清除内存记数清除内存中的版纸及印张记数不清除油墨定时,卡纸,出错信息,记忆开关及用户功能。97 用户功能数据清除 所有包含在主版中的RAM内容,包括由测试功能200---217设定的记忆开关设定值都被清零。 98 内存清除仅清除用测试功能200---217设定的记忆开关设定植。

马原知识点梳理整理版

2018年马原知识点梳理 第一章马克思主义是关于无产阶级和人类解放的科学 一、马克思主义的创立和发展 (一)含义:马克思主义包括三个部分: 1、马克思主义哲学 2、马克思主义政治经济学 3、科学社会主义 (二)马克思主义基本原理 (三)马克思主的产生 马克思主义的产生有其深刻的经济社会根源、思想渊源和实践基础 1、资本主义经济的发展为马克思主义的产生提供了经济、社会历史条件。 2、无产阶级反对资产阶级的斗争日益激化,强烈需要科学理论的指导。 3、马克思和恩格斯的革命实践及其对人类文明成果的继承与创新。 (四)马克思主义的发展 1、马克思和恩格斯根据实践的发展对自己创立的理论不断充实和完善。 2、列宁等马克思主义者在领导俄国革命过程中对马克思主义的发展。 3、中国共产党从成立之日就把马克思列宁主义确立为自己的指导思想,并在长期奋斗中坚持把马克思主义基本原理同中国具体实际相结合,发展了马克思主义,先后产生了毛泽东思想和中国特色社会主义理论体系。 (五)其他记忆点: 1、马克思创立了唯物史观和剩余价值学说,把社会主义由空想成为科学。 2、马克思写的《关于费尔巴哈的提纲》和马克思、恩格斯的《德意志意识形态》标志着马克思主义的基本形成;《哲学的贫困》和《共产党宣言》的发表,标志着马克思主义的公开问世。 二、马克思主义的鲜明特征 (一)马克思主义科学性和革命性的统一 马克思主义的强大生命力的根源在于它的以实践为基础的科学性与革命性的统一。这种实践基础上科学性与革命性的统一,是马克思主义基本的和鲜明的特征。 (二)马克思主义的哲学基础、政治立场、理论品质和社会理想 1、马克思主义的哲学基础 辩证唯物主义与历史唯物主义是马克思主义根本的世界观和方法论。 2、马克思主义的政治立场 马克思主义政党的一切理论和奋斗都致力于实现以劳动人民为主体的广大人民的根本利益,这是马克思主义鲜明的政治立场。 (1)这是由马克思主义理论的本性决定的。鲜明的阶级性和实践性是马克思主义的根本特性。 (2)这是由无产阶级的历史使命决定的。 (3)是否始终站在广大人民的立场上,是唯物史观和唯心史观的分水岭,也是判断马克思主义政党的试金石。 3、马克思主义的理论品质 坚持一切从实际出发,理论联系实际,实事求是,在实践中检验真理和发展真理,是马克思主义重要的理论品质。这种与时俱进的理论品质是马克思主义始终保持蓬勃生命力的关键所在。 (1)这种品质是马克思主义理论本质的反映。马克思主义理论的本质属性,在于其彻底

1390日常维修

一、打印机故障诊断基本方法 1、故障信息提示法 2、直观发现法 3、机器测试诊断法 4、遵循先易后难原则逐个排除法 5、替换法 二、如何提高打印速度及节省墨水量 选择经济模式颜色为灰度打印及高速打印,可以节省更多的墨水,但打印质量却不尽人意,一般在打印样张或打印文本时采用。 尽量节省墨水,巧妙地给墨盒加墨,当某一种颜色用完之后,如有单色图片可以打印,或填充缺色颜色墨水,继续打印。 不要立即更换墨盒,在打印机墨水灯亮之后,还可以打印文本20-30页,打印图片1-3张。 三、打印速度、分辨率与打印效果有何关系

分辨率(Dpi点/英寸)是表示每英寸长度上打印点数的参数值,在打印中相同的机型,DPI设定值越大则打印效果越好,打印速度越慢,墨水用量越大;DPI设定值越小则打印效果越差,打印速度越快,墨水用量越小。在不同打印机设置选择不一样,有些打印机是直接选择打印介质,因为它们是内置参数已确定了。 四、如何更换墨盒 1、自然使用完的墨盒打印机会有红灯或显示器会有互换指示,直接按下相应故障灯的换墨键或在文件属性的应用工具中更换即可; 2、CANON、HP等部分打印机,把上盖打开就可以直接更换墨盒。 3、有专用的更换墨盒键的打印机则按下专用换墨键即可; 4、三个键的打印机则按住进纸键三秒。 5、四个键的打印机则按黑墨键和彩色键分别更换; 6、四个键以上的则要按清除键和黑墨键或彩墨键分别一起进行互换; 7、请具体按照打印机上说明的步骤行互换; 8、不能强行用手推动墨盒装置的小车来更换;

9、维修拆装时用小尺子拨动小车的白杆再移动小车。 10、可利用电脑中“打印首选项”的换墨程序进行换墨。 五、打印头不出墨(俗称堵头)的原因及处理方法 真堵原因: 1、打印间隔时间太长,造成打印头干涸(建议每星期开机打印一张全色文档)。 2、封条未撕开,空气不进入/将黄色封条撕开重装墨盒。 3、经长时间多次清洗打印头测试断线位置一致的/用注射器清喷头/用清洁墨盒清洗喷头。 4、打印头磨损或老化-----需要更换打印头。 5、EPSON机型清洗喷头方法: 轻度堵头:直接用右击打印机,选择“打印首选项-清洗打印头3-5次。

最新《马原》大学期末考试必背知识点汇总

马原必背知识点 最新《马原》大学期末考试必背知识点汇总 第一章马克思主义是关于无产阶级和人类解放的科学 1、《共产党宣言》的发表,标志着马克思主义的公开问世 2、马克思主义产生的社会根源(或经济、社会历史条件)是资本主义经济的发展 3、马克思、恩格斯完成了从唯心主义同唯物义、从革命民主主义向共产主义的转变,为创 立马克思主义奠定思想前提 4、在马克思主义创立过程中,第一次比较系统地阐述了历史唯物主义基本原理的著作是《德意志意识形态》 5、在马克思主义的经典著作中,被誉为“工人阶级的圣经”的著作是《资本论》 6、马克思主义经济理论的基石是剩余价值理论 7、世界上第一个无产阶级政党是共产主义者同盟 8、马克思主义理论区别于其他理论的显著特征是实践性 第二章世界的物质性及发展规律 9、唯物主义与唯心主义的对立和斗争中交织着辩证法与形而上学的对立和斗争 10、全部哲学,特别是近代哲学的重大的基本问题,是思维和存在的关系问题;唯物主义和唯心主义这两个专门的哲学术语有着特定的含义和确定的标准,不能随意乱用,也不能另立标准,否则会造成混乱。这里所说的特定含义和确定标准是指对世界本原究竟是物质还是精 神的回答;存在和思维是否具有同一性,是哲学基本问题的第二方面的内容,对这个问题的不同回答,是划分可知论和不可知论的标准, 11、唯物主义一元论同唯心主义一元论对立的根本点在于世界本原问题 12、物质的唯一特性是客观实在性,“客观实在”是指存在于人的意识之外,不以人的意志为 转移 13、相信“意念移物” ,甚至相信可以用意念来直接改变物质结构,就是信奉主张精神主宰 客观物质世界的主观唯心论 14、“心诚则灵,心不诚则不灵”的说法是夸大了意识能动作用的唯心主义观点 15、哲学物质概念与自然科学关于具体的物质形态和物质结构的概念之间共性与个性的关系 (不是整体和部分的关系、系统与要素的关系) 16、列宁对辩证唯物主义物质范畴的定义是通过物质与意识的关系界定的

联想一体机M7020、M7030内部机密维修资料

?广场 ?lwf0822 ? ?退出 关注此空间 连云港博亿办公个人博客空间 发烧音响 2011-01-25 11:19 联想-M7020(兄弟DCP-7010)出现“unable to print”的问题探讨机器报错 联想-M7020(兄弟DCP-7010)出现“unable to print”的问题探讨机器报错,出现提示:“unable to printSEE TROBLE SHOOTING AND ROUTINE MAILTENANCE CHAPTER IN USER,S GUIDE”,机器不能打印、复印,只能扫描,无法正常工作。试将其他正常机器上的粉盒、鼓投入故障机器,重新打开电源不再告警提示,故障完全消除。可见,问题出在鼓或粉盒上。但究竟是粉盒问题还是鼓件问题,用替换法做进一步验证。用正常机器上的鼓替换故障机器的鼓,而故障机器上的粉盒仍不变,结果故障提示依旧。此时用故障机原来的鼓件配上正常机器上的粉盒,故障提示消失。显然得出结论粉盒有问题。购买一个新粉盒固然能解决问题,但粉盒价格不菲!能不能考虑修复粉盒呢?该粉盒不含任何计数芯片,完全是一个机械构件,因此一旦找出故障原因也就有机械修复的可能!进一步分析,能正常使用的粉盒是原装粉盒从未充过墨粉,印数充其量也就3千以下,而报错的粉盒已经多次充粉,印数已达2万7千份。看来故障跟充粉及使用期限过长有关。既然曾经多次充粉都能正常使用,估计跟充粉的关系不大。机械构件使用过长后就有可能造成运动部件磨损老化或运动部件缺少润滑而阻力增大。进一步拆下齿轮部件发现齿轮及粉棍轴套内均遭墨粉污染,齿轮轴内润滑脂也遭墨粉污染而变得粘稠。将齿轮和粉棍拆下来,轴及轴套部位擦拭清洁干净后重新涂抹润滑脂(或以少量机油替代),装好后投入机器,开机后故障排除 原文出自: 办公中国(https://www.doczj.com/doc/d713825566.html,/) 详细文章参考: https://www.doczj.com/doc/d713825566.html,/thread-101928-1-1.html ------------------------------------------

徐涛背诵大作战1—14天汇总

DAY1 【马原】人与自然的辩证关系 一、使用场景 在分析题的材料当中,如果提到了比如说:自然灾害、人类的一些行为在改善环境、生态文明这样的一些说法的话。答题的时候,往往是要我们回答人与自然的辨证关系。 二、必背得分句 ●人与自然的两个前提,两个基础和两个方面: (对应《背诵笔记》P12) (1)自然界是人类社会形成的前提,是构成人类社会客观现实性的自然基础。 (2)实践是使物质世界分化为自然界与人类社会的历史前提,又是使自然界与人类社会统一起来的现实基础。(两个前提和两个基础) (3)自然规律的存在制约着人类的实践活动。 (4)人可以在认识自然规律、尊重自然规律的基础上,发挥自身的主观能动性,合理地改造自然,同时改造自己。(两个方面:自然会对人怎么样;人又可以对自然怎么样。) 图片巧记 三、拓展延伸句 上述四点是我们必须要背熟的文字,考到必写,写了就得分。 下面是给你扩展用的,当你写的不多的时候,记住下面这些文字可以帮你们写的更多,我们也可以一起背一下。 只有通过劳动实践才可能协调人与自然的关系,实现它们的和谐统一。 如果人类不保持自身与自然的和谐统一,那就会危及自身的生存发展。所以,当今世界出现的生态、环境、人口、资源等全球危机问题,并不单纯是自然系统内平衡关系的严重破缺,实际也是人与自然关系的严重失衡。

恩格斯早就提出了自然界“对人进行报复”以及“人类同自然的和解”问题。实践的规律与人类不断自觉遵循物质世界的规律是一致的。正确的实践观点是理解人与自然关系、人与自然统一的关键。 四、小结 关于人与自然的辩证关系,相信有这些文字,考到这类题目我们肯定是能拿分的,但是在考场上还需要大家灵活处理,把它扩充为更多更详实的答案就可以了。 DAY2 【马原】意识的能动作用 一、使用场景 在做答马哲论述题的时候,如果题干材料中的主人公出现了以下两种情况,我们都用这个原理去进行做答: 1.人们遇到了一些困难时,开动脑子去思考解决困难的办法。一律用这个原理。 他为什么会思考呢、寻找解决问题的办法呢?就是因为他有意识,且意识有能动性,意识的能动性可以帮助我们去解决困难。 2.当人们利用自己的创意、设计去改变生活的时候。也要用这个原理。 因为我们有意识,而意识有能动性。 总结:只要是开动脑子去琢磨、思考、寻找、设计、想象等等的情况,一律都用这个原理进行作答。 下面这些文字必须要背熟,并且写上去。

理想GR速印机维修代码

理想GR速印机维修代码 第一部份:自检功能(用来检测每个电器部件是否正常) [开始测试操作](同时按下“线条稿/照片”和“制版/印刷”按键,打开电源。)用两种不同的叫声区别当前测试元器件状态是否正常(检测到: 0.1秒间隔的叫声) (未检测到: 0.5秒间隔的叫声)1)[传感器/开关测试]. 2 纸尺寸传感器. 反射光检测 3 限传感器. 光路被挡 4 进纸压力开关.开关打开 5 版纸装载键.被按下 6 纸传感器.光路被挡 7 纸检测传感器.光路被挡 8 A位传感受器.光路被挡 9 0角度传感器.磁力检测 10 180角度传感器.磁力检测 11 C位传感器.光路被挡 12 进纸台下降键.被按下 13 夹板安全开关.开关被按下 14 卸版爪传感器.光路被挡 15 版纸位置传感器.反射光检测 16 滚筒原始位置键.被按下 18 滚筒装置开关.开关被按下 19 接纸传感器.光路被挡 20 接纸传感器2.光路被挡 21 扫描台(上盖)装置开.开关被按下 22 垂直位置传感器.光路被挡 23 版纸用完传感器.无反射光 24 进纸离合器传感器.光路被挡 25 进纸检测传感器.光路被挡 26 跳翼开关1.开关被按下 27 跳翼开关2.开关被按下 28 卸版传感器.光路被挡 29 版纸装载单元开关.开关被按下 30 前门传感器.磁性开关接上 31 热打印头原始位置开.开关被按下 32 热打印头压力开关.开关被按下 33 废版盒装置开头.开关被按下 34 ADF原稿检测传感器.光路打开 35 原稿对位传感器.光路打开 36 进稿传感器.光路被挡 37 油墨传感器.检测油墨 38 油墨溢出传感器.检测油墨 39 主电机安全开关.开关被按下

徐之明马原详解

徐之明马原 马原24 单选:1-4 多选:17-21 分析:34 哲学-原理 政经-运用 科社-结果 第一章 本章为前言,三大内容:马克思主义产生、发展、属性 易考记忆形选择题 逻辑图很重要,把书读薄 第二章、第三章、第五章重点 内容:内容理论性强,考核目标一能力为主,难度最大 方法:弄懂概念,多做练习 二、 (一)、资本主义生产方式是发展为马克思主义的产生提供了经济、社会历史条件和客观基础。 (二)、马克思主义不是凭空产生的,对文明成果的继承与创新,是马克思主义产生的重要条件。其中,德国古典哲学、英国古典政治经济学和法国、英国的空想社会主义是马克思主义的直接的思想渊源。 命题模式:整体与局部 辩证法思想是黑格尔哲学体系的“合理内核” (三)无产阶级反对资产阶级的斗争、马克思恩格斯的革命实践,是马克思主义产生的实践基础。 19世纪30-40年代所发生的法国里昂工人起义、英国宪章运动以及德国西里西亚纺织工人的起义,标志着现代物产阶级作为独立的政治力量已经登上了历史舞台。 无产阶级是马克思主义的阶级基础(阶级性),无产阶级反对资产阶级的斗争,构成为马克思主义产生的现实需要。 (四)19世纪40-60年代,马克思恩格斯批判地继承了前人的成果,创立了唯物史观和剩余价值学说(两大发现),使社会主义从空想发展到科学,实现了人类思想史上的伟大革命。 1848年2月《共产党宣言》的发展,是主义产生的标志。马克思主义哲学、马克思主义政治经济学和科学社会主义,是马克思主义理论体系不可分割的三个主要组成部分。 第二节 马克思主义从产生到发展所表现出的强大生命力的(根源),在于它以实践为基础的(科学性)和(革命性)的统一。 马克思主义发展始终保持蓬勃生命力的(关键),是与时俱进的理论品质。一、马克思主义最根本的世界观和方法论 辩证唯物主义与历史唯物主义(马克思主义哲学)是马克思主义最根本的世界观和方法论。

理想一体机维修代码GRFR系列

理想一体机维修代码GR\FR系列 理想GR一体机测试代码 第一部份:自检功能(用来检测每个电器部件是否正常) 开始测试操作](同时按下“线条稿/照片”和“制版/印刷”按键,打开电源。) 用两种不同的叫声区别当前测试元器件状态是否正常(检测到: 0.1秒间隔的叫声)1)[传感器/开关测试]. 2 纸尺寸传感器. 反射光检测 3 限传感器. 光路被挡 4 进纸压力开关.开关打开 5 版纸装载键.被按下 6 纸传感器.光路被挡 7 纸检测传感器.光路被挡 8 A位传感受器.光路被挡 9 0角度传感器.磁力检测 10 180角度传感器.磁力检测 11 C位传感器.光路被挡 12 进纸台下降键.被按下 13 夹板安全开关.开关被按下 14 卸版爪传感器.光路被挡 15 版纸位置传感器.反射光检测 16 滚筒原始位置键.被按下 18 滚筒装置开关.开关被按下 19 接纸传感器.光路被挡 20 接纸传感器2.光路被挡 21 扫描台(上盖)装置开.开关被按下 22 垂直位置传感器.光路被挡 23 版纸用完传感器.无反射光 24 进纸离合器传感器.光路被挡 25 进纸检测传感器.光路被挡 26 跳翼开关1.开关被按下 27 跳翼开关2.开关被按下 28 卸版传感器.光路被挡 29 版纸装载单元开关.开关被按下 30 前门传感器.磁性开关接上 31 热打印头原始位置开.开关被按下 32 热打印头压力开关.开关被按下 33 废版盒装置开头.开关被按下 34 ADF原稿检测传感器.光路打开 35 原稿对位传感器.光路打开 36 进稿传感器.光路被挡

37 油墨传感器.检测油墨 38 油墨溢出传感器.检测油墨 39 主电机安全开关.开关被按下 40 进纸安全开关.开关放开 41 进纸盒开关1.磁性检测 42 进纸盒开关2.磁性检测 43 进纸盒开关3.磁性检测 44 进纸盒开关4.磁性检测 45 出稿传感器.光路被挡 46 ADF开关.开关被按下 47 版纸检测开关.反射光检测 48 版纸用完传感器.反射光检测 49 扫描器原始位置传感.光路被挡 50 ADF扫描自动匀色传.光路被挡 51 稿台盖传感器.光路被挡 52 稿台原稿检测传感器.反射光检测 53 压力控制传感器.光路被挡 54 废版检测传感器.光路被挡 55 油墨筒开关1.开关被按下 56 油墨筒开关2.开关被按下 57 油墨筒开关3.开关被按下 58 电池检测信号.电池 59 接口板检测信号.选配件接口板接上 2)[电机/电磁铁测试] 60 滚筒15转/分钟 61 滚筒30转/分钟 62 滚筒变速运转 63 分离风扇 65 写入步进电机CW(输入) 66 装载步进电机 67 进纸电磁离合器 68 压力电磁铁 69 负压风扇 70 卸版风扇 71 卸版电磁铁和卸版输送电机 72 装载风扇 73 夹板电磁铁 74 锁定电磁铁(滚筒) 75 拾稿电磁铁 77 热打印电力控制 78 进稿电机 79 图像扫描LED列阵点亮 80 翼电机(GR1700除外) 90 部分内存清除.系统电路板上RAM的部分信息,如卡纸和故障信息被初始化. 91 制版宽度检查. 92 使印刷、制版和磁卡计数器不工作.同时"T17 CALL SERVECE"或E17也不显示.允许维修技术

华中师大心理学(707)考研经验教训分享

追梦路上有过迷茫 ——华中师大心理学考研记(初试篇) 写着写着发现稍有点偏题,却也是我的本心写照。 先自我介绍 楼主求学路上磕磕绊绊,大四也准备过考研,后来因为实习就放弃了,毕业后一直对读研念念不忘,15年暑假开始全职跨考心理学研究生。初试三百五十多,今天上午终于看到拟录取名单有我的名字,也算初战告捷吧。 其次,对我即将就读的华中师大心理学做个介绍吧! 华师最为大家熟悉的可能就是咨询方向的江光荣老师了,华师咨询室设计很人性化、非常优美,江老师的理论与实践水平都很高。管理方向大牛是马红宇老师,还有一个特聘教授洪建中老师。发展方向的周宗奎老师、教育方向的刘华山老师、社会方向的佐斌老师、人格方向的郭永玉老师、脑认知方向的周治金老师在各自领域都是执牛耳的人物之一。 华师心理学的最大特色是对网络心理学的研究,周宗奎院长领导建立的青少年网络心理与行为教育部重点实验室几乎整合了华师心理学院所有师资,研究方向包括网络认知学习与教学、网络社会行为、网络与青少年心理健康、青少年网络文化与内容安全等。听说华师心理学院每年都会有很多师兄师姐去游戏开发公司、网络产品开发公司任职。是不是很羡慕?那就选择华师吧!爱在华师,今后三年就要在华师学习了,想想就有点小激动。下面对我的考研做个总结,也算是对学弟学妹的一份经验之谈吧。 一、择校 一定要充分搜集资料——各种——包括学校的优势和劣势、导师的研究情况、往年的报录比、各科最低分数线(注意!对绝大部分同学,国家线意义不大)等等等等。这些在学院官方网站大部分都能找到。除此之外,可以多问你有意学校的学长学姐,这个就可以发挥论坛和群的强大功能了。 择校时要考虑的几点: 1.读研的目的。 为了就业?做研究?提高学历?。。。。。。就业选城市和学校,研究选学校与专业,为了学历那就无所谓了。 2.本身实力。 自己可能的努力程度?这是最重要的。好像除了这一点外也没其他的了。自己好好掂量,是否愿意放弃之前去的一系列荣誉?是否能禁得住同学、工作、娱乐的诱惑?家里和学校是否支持。。。。。。说白了,考研就是一场努力了就会有收获的抗战。 3.目标院校相关情况。 学校的实力,该校该学科的实力,该学科各方向的研究情况。特别重要的是报考难度如何。除非抱着非某名校或名师不去的心态,还是要多考虑录取成功率。 4.选择学校一定要有层次,多选几个备胎。 我当时理想的是几所985,根据实际情况选择了华中师大(211),选了母校(一个地方重本)作为备胎。这样复习的时候不会太心慌或太放松,要记住适中的目标动机最有利

【马原】重要知识点整理

马克思主义基本原理 第一章 1、哲学的基本问题 其一,意识和物质、思维和存在,究竟谁是世界的本原,即物质和精神何者是第一性、何者是第二性问题;其二。“我们关于我们周围世界的思想对这个世界本身的关系是怎样的?我们的思维能不能认识现实世界?我们能不能在我们关于现实世界的表象和概念中正确地反映现实?”即思维能否认识或正确认识存在的问题。 2、社会的物质性表现 第一,人类社会依赖于自然界,是整个物质世界的组成部分。 第二,人们谋取物质生活资料的实践活动虽然有意识作指导,但仍然是以物质力量改造物质力量的活动,仍然是物质性的活动。 第三,物质资料的生产方式是人类社会存在和发展的基础,集中体现着人类社会的物质性。综上所述,包括自然界和人类社会在内的整个世界,其真正统一性在于它的物质性。物质是世界的本原,社会运动也是物质运动的一种特殊形式。 3、社会生活的实践性表现 第一,实践是社会关系形成的基础。 第二,实践形成了社会生活的基本领域 第三。实践构成了社会发展的动力 4、矛盾的普遍性与特殊性的辩证关系 第一、盾的普遍性,是指矛盾是自然、社会以及人类思维中客观的普遍的现象;是指矛盾的共性、绝对性。 第二、矛盾的特殊性是指具体事物的矛盾以及矛盾的每一个侧面都有自己的特点;是指矛盾的个性、相对性。 第三、矛盾的普遍性和特殊性的关系是共性与个性的对立统一关系。 第四、矛盾的普遍性即共性是无条件的、绝对的,特殊性即个性是有条件的、相对的;共性包括的是个性中本质的东西,它比个性深刻,个性比共性丰富。 第五、二者相互依存,相互制约:共性寓于(存在于)个性之中,共性只能通过个性而存在;共性统摄着个性,个性总是与共性相联系而存在。割裂了这种联系,就会导致类似“白马非马”的诡辩命题。 第六、二者在一定条件下相互转化:随事物的发展和条件的改变,共性与个性可以相互过渡,相互转化。 5、量变和质变的辩证关系 第一,量变是质变的必要准备 第二,质变是量变的必然结果 第三,量变和质变是相互渗透的 质量互变规律体现了事物发展的渐进性和飞跃性的统一 6、客观规律性与主观能动性的辩证关系 尊重客观规律是发挥主观能动性的前提 在尊重客观规律的基础上充分发挥主观能动性 必须尊重客观规律。发挥人的主观能动性必须以承认规律的客观性为前提。

相关主题
文本预览
相关文档 最新文档