当前位置:文档之家› 2018年高考数学一轮复习专题24平面向量的概念及其线性运算教学案理!

2018年高考数学一轮复习专题24平面向量的概念及其线性运算教学案理!

2018年高考数学一轮复习专题24平面向量的概念及其线性运算教学案理!
2018年高考数学一轮复习专题24平面向量的概念及其线性运算教学案理!

专题24 平面向量的概念及其线性运算

1.了解向量的实际背景.

2.理解平面向量的概念,理解两个向量相等的含义.

3.理解向量的几何表示.

4.掌握向量加法、减法的运算,并理解其几何意义.

5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.

6.了解向量线性运算的性质及其几何意义.

1.向量的有关概念

2.向量的线性运算

3.共线向量定理

向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .

高频考点一 平面向量的概念

例1、下列命题中,不正确的是________(填序号). ①若|a |=|b |,则a =b ;

②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →

”是“四边形ABCD 为平行四边形”的充要条件;

③若a =b ,b =c ,则a =c .

【方法规律】(1)相等向量具有传递性,非零向量的平行也具有传递性.

(2)共线向量即为平行向量,它们均与起点无关.

(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.

(4)非零向量a 与a |a |的关系:a

|a |是与a 同方向的单位向量.

【变式探究】 下列命题中,正确的是________(填序号). ①有向线段就是向量,向量就是有向线段;

②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③两个向量不能比较大小,但它们的模能比较大小.

解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;

③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小. 答案 ③

高频考点二 平面向量的线性运算

例2、(1)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC .若AB →

=a ,

AC →

=b ,则PQ →

=( )

A.13a +1

3b B.-13a +1

3b

C.13a -1

3

b

D.-13a -13

b

(2)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →

,则x =________;y =________.

解析 (1)PQ →=PB →+BQ →=23AB →+13BC →=23AB →

13(AC →-AB →)=13AB →+13AC →=13a +1

3

b ,故选A. (2)由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,所

以x =12,y =-1

6

.

答案 (1)A (2)12 -16

【方法规律】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.

(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.

【变式探究】 (1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个靠近B 点的三等分点,那么EF →

等于( )

A.12AB →-13AD →

B.14AB →+12AD →

C.13AB →+12

DA →

D.12AB →-23

AD → (2)在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →

=λAB →+μBC →

,则λ+μ等于( )

A.1

B.1

2

C.13

D.23

解析 (1)在△CEF 中,有EF →=EC →+CF →

. 因为点E 为DC 的中点,所以EC →=12DC →

.

因为点F 为BC 的一个靠近B 点的三等分点, 所以CF →=23

CB →.

所以EF →=12DC →+23CB →=12AB →+23DA →

=12AB →-23AD →

,故选D. (2)∵AD →=AB →+BD →=AB →+13BC →,

∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.

故λ+μ=12+16=2

3.

答案 (1)D (2)D

【感悟提升】平面向量线性运算问题的常见类型及解题策略

(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.

(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.

(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.

【变式探究】如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于K ,其中,AE →=25AB →,AF →=12

AD →,AK →=λAC →

,则λ的值为( )

A.29

B.27

C.25

D.2

3 答案 A

高频考点三 共线定理的应用 例3、设两个非零向量a 与b 不共线.

(1)若AB →=a +b ,BC →=2a +8b ,CD →

=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.

(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →

=3(a -b ).

∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →.∴AB →,BD →

共线, 又它们有公共点B , ∴A ,B ,D 三点共线.

(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b .

∵a ,b 是不共线的两个非零向量,

∴k -λ=λk -1=0,∴k 2

-1=0,∴k =±1.

【方法规律】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.

(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立. 【变式探究】 (1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →

=-3a +3b ,则( ) A.A ,B ,C 三点共线 B.A ,B ,D 三点共线 C.A ,C ,D 三点共线

D.B ,C ,D 三点共线

(2)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →

+xOB →+BC →=0成立的实数x 的取值集合为( )

A.{0}

B.?

C.{-1}

D.{0,-1}

解析 (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →

, ∴BD →、AB →

共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.

高频考点四、方程思想在平面向量线性运算中的应用

例4、如图所示,在△ABO 中,OC →=14OA →,OD →=12

OB →,AD 与BC 相交于点M ,设OA →=a ,OB →

b .试用a 和b 表示向量OM →

.

解 设OM →

=m a +n b ,

则AM →=OM →-OA →

=m a +n b -a =(m -1)a +n b . AD →=OD →-OA →=12OB →-OA →

=-a +12b .[3分]

又∵A 、M 、D 三点共线,∴AM →与AD →

共线. ∴存在实数t ,使得AM →=tAD →

, 即(m -1)a +n b =t ? ????-a +12b .[5分] ∴(m -1)a +n b =-t a +1

2

t b .

∴?????

m -1=-t ,n =t 2

,消去t 得,m -1=-2n ,

即m +2n =1.① [7分]

又∵CM →=OM →-OC →

=m a +n b -14a =? ????m -14a +n b ,

CB →=OB →-OC →

=b -14a =-14

a +

b .

又∵C 、M 、B 三点共线,∴CM →与CB →

共线. ∴存在实数t 1,使得CM →=t 1CB →

∴? ????m -14a +n b =t 1? ??

??-14a +b , ∴?????

m -14

=-14t 1,

n =t 1.

消去t 1得,4m +n =1.②

由①②得m =17,n =37,∴OM →=17a +37

b .

【感悟提升】(1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A 、M 、D 三点共线和B 、M 、C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.

【方法技巧】

1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.

2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.

3.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →

(x ,y ∈R ),则P ,A ,B 共线?x +y =1.

【易错提醒】

1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.

2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.

1.【2016高考新课标2理数】已知向量(1,)(3,2)a m a =- ,=,且()a b b ⊥

+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D

【解析】向量a b (4,m 2)+=- ,由(a b )b +⊥ 得43(m 2)(2)0?+-?-=,

解得m 8=,故选D.

2.【2016高考江苏卷】如图,在ABC ?中,D 是BC 的中点,,E F 是,A D 上的两个三

等分点,4BC CA ?= ,1BF CF ?=- ,则BE CE ?

的值是 ▲ .

【答案】

78

【2015高考新课标1,理7】设D 为ABC ?所在平面内一点3BC CD =

,则( )

(A )1433AD AB AC =-+

(B)1433

AD AB AC =-

(C )4133AD AB AC =+ (D)41

33

AD AB AC =-

【答案】A 【

11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433

AB AC -+

,故选A.

1.(20142辽宁卷)设a ,b ,c 是非零向量,已知命题p :若a 2b =0,b 2c =0,则a 2c =0,命题q :若a ∥b ,b∥c ,则a∥c ,则下列命题中真命题是( )

A .p ∨q

B .p ∧q

C .(綈p )∧(綈q )

D .p ∨ (綈q ) 【答案】A

【解析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.

2.(20142新课标全国卷Ⅰ] 已知A ,B ,C 为圆O 上的三点,若AO →=12

(AB →+AC →),则AB →

AC →

的夹角为________.

【答案】90°

【解析】由题易知点O 为BC 的中点,即BC 为圆O 的直径,故在△ABC 中,BC 对应的角A 为直角,即AC 与AB 的夹角为90°.

3.(20142四川卷)平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )

A .-2

B .-1

C .1

D .2 【答案】2

【解析】c =ma +b =(m +4,2m +2),由题意知a 2c |a |2|c |=b 2c |b |2|c |

,即

(1,2)2(m +4,2m +2)

12

+2

2

(4,2)2(m +4,2m +2)

42

+2

2

,即5m +8=8m +20

2

,解得m =2.

4.(20132江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →

λ1AB →+λ2AC →

(λ1,λ2为实数),则λ1+λ2的值为________.

【答案】1

2

5.(20132陕西卷)设a ,b 为向量,则“|a2b|=|a||b|”是“a∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件

D .既不充分也不必要条件 【答案】C

【解析】由已知中|a2b|=|a|2|b|可得,a 与b 同向或反向,所以a∥b .又因为由a∥b ,可得|cos 〈a ,b 〉|=1,故|a2b|=|a|2|b ||cos 〈a ,b 〉|=|a|2|b |,故|a 2b |=|a |2|b |是a ∥b 的充分必要条件.

6.(20132四川卷) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2 A -B 2

cos

B -sin (A -B)sin B +cos(A +C)=-3

5

.

(1)求cos A 的值;

(2)若a =4 2,b =5,求向量BA →在BC →

方向上的投影. 【解析】(1)由2cos

2

A -

B 2cos B -sin(A -B)sin B +cos(A +C)=-3

5

,得 [cos(A -B)+1]cosB -sin(A -B)sinB -cosB =-3

5,

即cos(A -B)cosB -sin(A -B)sinB =-3

5,

则cos(A -B +B)=-35,即cos A =-3

5.

(2)由cos A =-35, 0

5

.

由正弦定理,有a sin A =b sinB ,所以sinB =bsinA a =2

2.

由题意知a>b ,则A>B ,故B =π

4

.

根据余弦定理,有(4 2)2=52+c 2

-235c3? ??

??-35,

解得c =1或c =-7(舍去),

故向量BA →在BC →方向上的投影为|BA →

|cosB =22

.

7.(20132四川卷)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →

,则λ=________.

【答案】2

【解析】根据向量运算法则,AB →+AD →=AC →=2AO →

,故λ=2.

8.(20132重庆卷)在平面上,AB 1→⊥AB 2→,|OB 1|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<1

2

则|OA →

|的取值范围是( )

A.? ????0,

52 B.? ????5

2,72 C.? ????52,2 D.? ????72,2

【答案】D

【解析】根据条件知A ,B 1,P ,B 2构成一个矩形AB 1PB 2,以AB 1,AB 2所在直线为坐标轴建立直角坐标系,如图.设|AB 1|=a ,|AB 2|=b ,点O 的坐标为(x ,y),则点P 的坐标为(a ,b),

由|OB 1→|=|OB 2→

|=1得?????(x -a )2

+y 2

=1,x 2+(y -b )2

=1, 则?

????(x -a )2

=1-y 2

(y -b )2=1-x 2

. 又由|OP →|<12,得(x -a)2+(y -b)2<14,则1-x 2+1-y 2<14,即x 2+y 2

>74①.

又(x -a)2

+y 2

=1,得x 2

+y 2

+a 2

=1+2ax≤1+a 2

+x 2

,则y 2

≤1; 同理由x 2

+(y -b)2

=1,得x 2

≤1,即有x 2

+y 2

≤2②. 由①②知74<x 2+y 2≤2,所以72<x 2+y 2

≤ 2.

而|OA →|=x 2+y 2

,所以72

<|OA →|≤2,故选D.

1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →

-CD →

.其中结果为零向量的个数为( )

A.1

B.2

C.3

D.4

解析 由题知结果为零向量的是①④,故选B. 答案 B

2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2

a 的方向相同 C.|-λa |≥|a |

D.|-λa |≥|λ|2a

3.如图,在正六边形ABCDEF 中,BA →+CD →+EF →

=( )

A.0

B.BE →

C.AD →

D.CF →

解析 由题图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →

. 答案 D

4.设a 0为单位向量,下述命题中:①若a 为平面内的某个向量,则a =|a |a 0;②若a 与

a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )

A.0

B.1

C.2

D.3

5.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →

等于( )

A.OM →

B.2OM →

C.3OM →

D.4OM →

解析 OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →

.故选D. 答案 D

6.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →

等于( ) A.23b +1

3c B.53c -23b C.23b -1

3

c D.13b +23

c 解析 ∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →

), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .

答案 A

7.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →

=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )

A.-2

B.-1

C.1

D.2

解析 ∵BC →=a +b ,CD →

=a -2b , ∴BD →=BC →+CD →

=2a -b .

又∵A ,B ,D 三点共线,∴AB →,BD →

共线. 设AB →=λBD →

,∴2a +p b =λ(2a -b ), ∴2=2λ,p =-λ,∴λ=1,p =-1. 答案 B

8.如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →

=b ,则AD →

=( )

A.a -1

2

b

B.1

2

a -

b C.a +12b D. 1

2

a +b

解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=1

2

a ,

所以AD →=AC →+CD →

=b +12a .

答案 D

9.设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →

=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为( )

A.-94

B.-49

C.-38

D.不存在

10.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →

,则( ) A.点P 在线段AB 上 B.点P 在线段AB 的反向延长线上 C.点P 在线段AB 的延长线上 D.点P 不在直线AB 上

解析 因为2OP →=2OA →+BA →,所以2AP →=BA →

,所以点P 在线段AB 的反向延长线上,故选B. 答案 B

11.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足:OP →=OA →

+λ? ?????avs4alco 1(f (o (AB,sup 6(→)),|AB →|)+AC →|AC →|),λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( )

A.外心

B.内心

C.重心

D.垂心

解析 作∠BAC 的平分线AD .∵

OP →

OA →

λ?

?????avs4alco 1(f (o (AB,sup 6(→)),|AB →

|)+AC →|AC →|),

∴AP →=λ? ?????avs4alco 1(f (o (AB,sup 6(→)),|AB →|)+AC →|AC →|)=λ′2AD sup 6(→)|AD →|(λ′∈[0,+

∞)),

∴AP →

=错误!2错误!,∴错误!∥错误!. ∴P 的轨迹一定通过△ABC 的内心. 答案 B

12.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →

|,则△ABC 的形状为________.

13.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →

=2e 1+e 2,给出下列结论:①A ,

B ,

C 共线;②A ,B ,

D 共线;③B ,C ,D 共线;④A ,C ,D 共线.其中所有正确结论的序号为

________.

解析 由AC →=AB →-CB →=4e 1+2e 2=2CD →,且AB →与CB →

不共线,可得A ,C ,D 共线,且B 不在此直线上.

答案 ④

14.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →

成立,则m =________.

解析 由已知条件得MB →+MC →=-MA →

,如图,延长AM 交BC 于D 点,则D 为BC 的中点.

延长BM 交AC 于E 点,延长CM 交AB 于F 点,同理可证E ,F 分别为AC ,AB 的中点,即M 为△ABC 的重心,

∴AM →=23AD →=13(AB →+AC →),即AB →+AC →=3AM →

,则m =3.

答案 3

《第一节平面向量的概念及其线性运算》教案

教学过程 课堂导入 以前台胞春节期间来大陆探亲,乘飞机先从台北到香港,再从香港到上海.20XX年7月4日,两岸直航包机启航.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.想一想,向量a、b、c有何关系? 复习预习 1.我们已经学习过位移、速度、力等,你能总结出它们的特点吗?特点为________________________________.

2.在学习三角函数线时,我们已经学习过有向线段了,你还记得吗? 所谓有向线段就是________________________,三角函数线都是_____________. 知识讲解 考点1 向量的有关概念

考点2 向量的线性运算 向量运算定义法则(或几何意义)运算律 加法求两个向量和的运算(1)交换律:a+b=b+a (2)结合律:(a+b)+c=a +(b+c) 减法求a与b的相反向量-b的 和的运算叫做a与b的差 a-b=a+(-b) 数乘求实数λ与向量a的积的运 算 (1)|λa|=|λ||a| (2)当λ>0时,λa与a的方向相同; 当λ<0时,λa与a的方向相反;当λ =0时,λa=0 λ(μa)=(λμ) a (λ+μ)a=λa+μa λ(a+b)=λa+λb 考点3 共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.

例题精析 【例题1】 【题干】设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0; ③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是() A.0 B.1 C.2 D.3 【答案】D 【解析】向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3. 【例题2】 【题干】如图,在△OAB中,延长BA到C,使AC=BA,在OB上取点D,使DB=13OB.设OA=a,OB=b,用a,b表示向量OC,DC.

平面向量的概念与线性运算知识点

平面向量的概念与线性运算知识点 一.平面向量的有关概念 1.向量:既有大小,又有方向的量. 2.数量:只有大小,没有方向的量. 3.有向线段的三要素:起点、方向、长度. 4.零向量:长度为0的向量. 5.单位向量:长度等于1个单位的向量. 6.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 注:任一组平平行向量都可以平移到同一直线上 7.相等向量:长度相等且方向相同的向量. 8.相反向量:长度相等且方向相反的向量 二.向量的表示法 1.字母表示法:如:a ,AB 等 2.几何表示法:用一条有向线段表示向量 3.代数表示法:在平面直角坐标系中,设向量OA 的起点O是坐标原点,终点坐标是(x ,y ),则(x ,y )称为OA 的坐标,记作:OA =(x ,y ) 三.向量的运算 1.向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=. b a C B A a b C C -=A -AB =B

⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 2.向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 3.向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 4.向量共线定理: 向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠共线. 四.跟踪训练 1.=++++( ) A . B .0 C . D . 2.给出命题 (1)零向量的长度为零,方向是任意的.(2)若a ,b 都是单位向量,则a =b . (3)向量AB 与向量BA 相等.(4)若非零向量AB 与CD 是共线向量,则A ,B ,C ,D 四点共线. 以上命题中,正确命题序号是 A.(1) B.(2) C.(1)和(3) D.(1)和(4) 3.在四边形ABCD 中,如果0AB CD =,AB DC =,那么四边形ABCD 的形状是 A.矩形 B.菱形 C.正方形 D.直角梯形 4.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点 G ,则下列各等式中不正确的是

人教A版高中数学《平面向量的线性运算》教学设计

2.2《平面向量的线性运算》教学设计 【教学目标】 1.掌握向量的加、减法运算,并理解其几何意义; 2.会用向量加、减的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 4.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算; 5.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行; 6.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想. 【导入新课】 设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:AC BC AB =+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+ (4)船速为AB ,水速为,则两速度和:AC =+ 新授课阶段 一、向量的加法 A B C A C A B C

O A a a a b b b 1.向量的加法:求两个向量和的运算,叫做向量的加法. 2.三角形法则(“首尾相接,首尾 连”) 如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a. 探究:(1)两相向量的和仍是一个向量; (2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且 |a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加. 例1 已知向量a 、b ,求作向量a +b . 作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应); A B C a +b a +b a a b b a b b aa

2018年高考数学—导数专题

导数 (选修2-2P18A7改编)曲线y=sin x x在x= π 2处的切线方程为() A.y=0 B.y=2π C.y=- 4 π2 x+ 4 π D.y= 4 π2 x 解析∵y′=x cos x-sin x x2,∴y′|x= π 2=- 4 π2 , 当x=π 2时,y= 2 π , ∴切线方程为y-2 π =- 4 π2? ? ? ? ? x- π 2 ,即y=- 4 π2 x+ 4 π . (2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________. 解析因为f(x)=(2x+1)e x, 所以f′(x)=2e x+(2x+1)e x=(2x+3)e x, 所以f′(0)=3e0=3. (2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________. 解析y′=a- 1 x+1 ,由题意得y′|x=0=2,即a-1=2, 所以a=3. (2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0

解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴?????y 0=x 0ln x 0, y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x ,∴y ′=1+1 x ,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由?????y =2x -1,y =ax 2 +(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1. 设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由?????2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得???x 0=-12,a =8. 答案 8 (2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P

向量的概念及线性运算

向量的概念及线性运算 编制人:马兰主审人: 朱礼强 一、新课引入 1. 老鼠以10 m/s的速度向东跑,猫以50 m/s的速度向西追,猫能否追上老鼠? 分析:老鼠逃窜的路线、猫追逐的路线实际上都是有方向、有长短的量. 2. 问题:质量、力、速度这三个物理量有什么区别? 质量只有大小;力、速度既有大小,又有方向. 二、概念建构 1.向量的有关概念 2.向量的线性运算

3.共线向量定理 向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 三、例题选讲 【例1】(1)已知下列结论: ① 若a ∥b ,b ∥c ,则a ∥c ; ① 非零向量a 与b 同向是a =b 的必要不充分条件; ① 四边形ABCD 是平行四边形的充要条件是=; ① λ,μ为实数,若λa = μb ,则a 与b 共线. 其中正确的序号为 . (2)设,a b 都是非零向量,下列四个条件中,使 =a b a b 成立的充分条件是( ) A .|a |=|b |且a ∥b B .a =-b C .a ∥b D .a =2b 【解题导引】(1)利用共线向量定理及向量相等的概念逐一判断. (2)利用单位向量与向量相等的概念求解. 【规范解答】(1)对于①,当b =0时,条件满足但结论不成立; 对于①,因为向量a 与b 都是非零向量,所以该命题是正确的;

对于①,四边形是大前提,当AB DC =u u u r u u u r 时,即AB∥DC ,且AB=DC ,所以四边形ABCD 是平行四边形,反之,若四边形ABCD 是平行四边形,则AB DC =u u u r u u u r , 所以①正确; 对于①,当λ=μ=0时,a 与b 可为任意向量,不一定共线,所以①不正确. 答案:①①. (2)选D .由a a 表示与a 同向的单位向量,表示与b 同向的单位向量,故只要a 与b 同向即可,观察可知D 满足题意. 【变式】 1. 本例(2)①中,若b ≠0,该结论是否正确? 【解析】若b ≠0,又a ①b ,b ①c ,所以a ①c 显然成立,故该结论正确. 2. 若本例(2)①中的实数λ,μ满足λ2+μ2 ≠ 0,该结论是否正确? 【解析】由λ2+μ2 ≠ 0知实数λ,μ 中至少有一个不为0. (①)若λ≠0,μ=0,则λa =0·b =0.因为λ≠0,所以a =0,又0与任何向量共线, 所以结论正确. (①)同理,若λ=0,μ≠0,结论也正确; (①)若λ≠0,μ≠0,由λa = μb 得a =μ λ b ,由共线向量定理知结论正确. 综上所述,该结论正确. 【易错警示】解答本例题(1)有两点容易出错. (1) 不清楚 ,a b a b 表示何种向量,不知道a a 是a 方向上的单位向量. (2) 求解时易忽视两向量是同向还是反向,是共线还是相等. 【规律方法】把握向量有关概念的关键点 (1)定义:方向和长度. (2)非零共线向量:方向相同或相反,长度没有限制. (3)相等向量:方向相同且长度相等. (4)单位向量:方向没有限制,但长度都是一个单位长度. (5)零向量:方向没有限制,长度是0,规定零向量与任何向量共线. 【变式训练】设a 0为单位向量,下列命题中:

41平面向量的概念及线性运算

6. (2010浙江杭州调研)设a 、b 是两个不共线向量, AB = 2a + pb , BC = a + b , CD = a — 2b , 第四单元 平面向量 4.1 平面向量的概念及线性运算 、选择题 1.在厶 ABC 中,AB = c , AC = b ,若点 D 满足 BD = 2DC ,则 AD =( ) 2 1 A ?3b + 3c 5 2 B ?3c — 3b C.2b -3c 3 3 1 2 D ?1b + 3c …AD = AB + BD = c + 3( b — c) = §b + 3c 答案:A 2. (2010广东中山调研)已知a 、b 是两个不共线的向量,AB =入a b, AC = a +讥入 此R ), 那么 A 、B 、C 三点共线的充要条, 件是 ( ) A . ?+尸 2 B .入一 (i= 1 C . 入=—1 D . 入=1 解析 由 AB =入 a b, AC = a + 3 b 人 卩€ R )及 A 、B 、 C 三点共线得AB = tAC (t € R), 入=t 所以 入 t+ b^ t(a + ub ta +1 3, 「所以 1 ,即入 =1. 1 = t 3 答案 :D 3. (2009 ?东)设P 是厶ABC 所在平面内的一点, BC + BA = 2BP ,则( ) A . PA + PB = 0 C . PB + PC =0 B . P C + PA = 0 D . PA + PB + PC = 0 V ----------- 」 解析:如上图,根据向量加法的几何意义 Be + B A = 2B P ? P 是AC 的中点, 故 PA + PC = 0. 答案:B 4.已知平面内有一点 P 及一个△ ABC ,若PA + PB + PC = AB ,则( ) A .点P 在厶ABC 外部 B .点P 在线段 AB 上 C .点P 在线段BC 上 D .点P 在线段AC 上 解析:?/ PA + PB + PC = AB , ??? PA + PB + PC = PB — PA ??? PC = — 2PA.A 2PA = CP ,?点 P 在线段 AC 上. 答案:D 、填空题 5. (2009宁夏银川模拟)若AB = 3% CD = — 5e i ,且AD 与CB 的模相等,则四边形 ABCD 是 解析:?/ AB = — 3CD , ??? AB // CD ,且 |AB|M |CD|. 5 答案:等腰梯形 解析: D C =AC — AB = b- c , B D = 2BC = 2(b — c),

平面向量线性运算教案

向量的加法;向量的减法;向量的数乘. 教学目标 通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义。能 熟练地掌握向量加法的平行四边形法则和三角形法则, 并能作出已知两向量的和向量。 通 过探究活动,掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反 向量。 教学重点 向量的加减法的运算。 〔 _____________ ! 教学难点 教学过程 」、导入 高考对本内容的考查主要以选择题或者是填空题的形式来出题, 一般难度不 大,属于简单题 二、知识讲解 I 考)向量加量加三法形法则 在定义中所给出的求象量和的方法就是向量加法的三角形法则。 运用这一法则时 要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点, 则由第 一个向量的起点指向第二个向量的终点的向量即为和向量。 0位移的合成可以看 作向量加法三角形法则的物理模型。 知识点 向量的加减法的几何意义 。 【知识导图】

(2)平行四边形法则 以同一点0为起点的两个已知向量 A.B为邻边作平行四边形,则以0为起点的对角线0C就是a与b 的和。我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。 由于方向反转两次仍法法原来的方向,因此a和-:互为相反向量。 于是-(-a)=a。 我们规定,零向量的相反向量仍是零向量. ____________ __ 一「 4 ■+ , 4 4 任一向量与其相反向量的和是零向量,即 a (-a)二(-a)■ a =0。 TH 4 4 H ^4^4 所以,如果a,b是互为相反的向量,那么a二-b,b二-a,a ? b =0。 考点3实数与向量的积的运算律 设■, ^为实数,那么 ⑴,(七)=(」i)a; (2)(I 丄)a 虫;」a ; (3)(a b)八a ■ b. ■.斗、- ,4 _斗屮.4 特别地,我们有(- ’)a = ,a)二’(-a),,(a-b)二’a-'b。 ■H 屮 4 . 向量共线的等价条件是:如果a(a = 0)与b共线,那么有且只有一个实数?,使 ■I J b —■ a。 二、例题精析 类型一平面向量的坐标表示 例题知边长为1的正方形ABCD 中, AB与x轴正半轴成30°角.求点B和点D的坐标和 uuiv uuv AB与AD的坐标.

2018年高考数学专题23基本初等函数理

专题2.3 基本初等函数 【三年高考】 1. 【2017课标1,理11】设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z 【答案】D 【解析】试题分析:令235(1)x y z k k ===>,则2log x k =,3log y k =,5log z k = ∴ 22lg lg 3lg 913lg 23lg lg8x k y k =?=>,则23x y >,22lg lg5lg 2515lg 25lg lg32 x k z k =?=<,则25x z <,故选D. 2. 【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a << (C )b a c << (D )b c a << 【答案】C 【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8 202 log 5.13<<<, 0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C . 3. 【2017北京,理8】根据有关资料,围棋状态空间复杂度的上限M 约为3361 ,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与 M N 最接近的是( )(参考数据:lg3≈0.48) (A )1033 (B )1053 (C )1073 (D )1093 【答案】D 4. 【2016高考新课标3理数】已知4 32a =,254b =,13 25c =,则( ) (A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A 【解析】因为422335244a b ==>=,122333 2554c a ==>=,所以b a c <<,故选A .

2015届高考数学一轮总复习 5-1平面向量的概念与线性运算

2015届高考数学一轮总复习 5-1平面向量的概念与线性运算 基础巩固强化 一、选择题 1.(文)(2014·南通中学月考)设P 是△ABC 所在平面内的一点,BC → +BA → =2BP → ,则( ) A.P A →+PB →=0 B.PC →+P A →=0 C.PB → +PC → =0 D.P A → +PB → +PC → =0 [答案] B [解析] 如图,根据向量加法的几何意义,BC → +BA → =2BP → ?P 是AC 的中点,故P A → +PC → =0. (理)已知△ABC 中,点D 在BC 边上,且CD → =2DB →,CD → =rAB → +sAC → ,则r +s 的值是( ) A.23 B.43 C .-3 D .0 [答案] D [解析] CD → =AD → -AC → ,DB → =AB → -AD → . ∴CD →=AB →-DB →-AC →=AB → -1 2CD →-AC →. ∴3 2 CD →=AB →-AC → ,

∴CD →=23AB →-2 3 AC → . 又CD →=rAB →+sAC → ,∴r =23,s =-2 3, ∴r +s =0. 2.(2012·四川理,7)设a 、b 都是非零向量,下列四个条件中,使a |a |=b |b |成立的充分条件是( ) A .a =-b B .a ∥b C .a =2b D .a ∥b 且|a |=|b | [答案] C [解析] 本小题考查共线向量、单位向量、向量的模等基本概念. 因a |a |表示与a 同向的单位向量,b |b |表示与b 同向的单位向量,要使a |a |=b |b |成立,则必须a 与b 同向共线,所以由a =2b 可得出a |a |=b |b | . [点评] a =-b 时,a 与b 方向相反;a ∥b 时,a 与b 方向相同或相反.因此A 、B 、D 都不能推出a |a |=b |b | . 3.(2013·长春调研)已知向量a =(2,1),b =(x ,-2),若a ∥b ,则a +b 等于( ) A .(-2,-1) B .(2,1) C .(3,-1) D .(-3,1) [答案] A [解析] 由a ∥b 可得2×(-2)-1×x =0,故x =-4,所以a +b =(-2,-1),故选A. 4.(2013·辽宁五校联考)设点M 是线段BC 的中点,点A 在直线BC 外,BC → 2=16,|AB → +AC → |=|AB → -AC → |,则|AM → |=( ) A .2 B .4 C .6 D .8 [答案] A [解析] 由|AB → +AC →|=|AB →-AC →|两边平方得AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即AB →·AC → =0, 所以AB →⊥AC → ,∴AM 为Rt △ABC 斜边BC 上的中线,又由BC →2=16得|BC →|=4,所以|AM → |=2. 5.设OA → =e 1,OB → =e 2,若e 1与e 2不共线,且点P 在线段AB 上,|AP PB |=4,如图所示,则 OP → =( )

2018年高考数学总复习专题1.1集合试题

专题1.1 集合 【三年高考】 1.【2017高考江苏1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1 【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1. 【考点】集合的运算、元素的互异性 【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件. (2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防范空集.在解决有关,A B A B =??等集合问题时,往往容易忽略空集的情况,一 定要先考虑?时是否成立,以防漏解. 2.【2016高考江苏1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{} {}{}1,2,3,6231,2A B x x =--<<=-.故答案应填:{}1,2- 【考点】集合运算 【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解. 2.【2015高考江苏1】已知集合{ }3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5 【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算

平面向量的概念与线性运算

平面向量的概念及线性运算知识点: 1.向量的有关概念 2.向量的线性运算

3.向量共线的判定定理 a是一个非零向量,若存在一个实数λ,使得b=λa,则向量b与非零向量a共线. 选择题: 给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量AB→与BA→相等.则所有正确命题的序号是( ) A.①B.③C.①③D.①② 解析根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB→与BA→互为相反向量,故③错误. →;③OA→+OB→+BO→+CO→;④AB→-AC→+BD→已知下列各式:①AB→+BC→+CA→;②AB→+MB→+BO→+OM -CD→,其中结果为零向量的个数为( )

A.1 B.2 C.3 D.4 解析由题知结果为零向量的是①④,故选B. 设a0为单位向量,①若a为平面的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a 与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是( ) A.0 B.1 C.2 D.3 解析向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a 与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3. 设a0,b0分别是与a,b同向的单位向量,则下列结论中正确的是( ) A.a0=b0B.a0·b0=1 C.|a0|+|b0|=2 D.|a0+b0|=2 解析∵是单位向量,∴|a0|=1,|b0|=1 设a是非零向量,λ是非零实数,下列结论中正确的是( ) A.a与λa的方向相反B.a与λ2a的方向相同C.|-λa|≥|a| D.|-λa|≥|λ|·a 解析对于A,当λ>0时,a与λa的方向相同,当λ<0时,a与λa的方向相反,B正确;对于C,|-λa|=|-λ||a|,由于|-λ|的大小不确定,故|-λa|与|a|的大小关系不确定;对于D,|λ|a是向量,而|-λa|表示长度,两者不能比较大小. 设a、b是两个非零向量( ) A.若|a+b|=|a|-|b|,则a⊥b B.若a⊥b,则|a+b|=|a|-|b| C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λa D.若存在实数λ,使得b=λa,则|a+b|=|a|-|b| 解析对于A,可得cos〈a,b〉=-1,∴a⊥b不成立;对于B,满足a⊥b时|a+b|=|a|-|b|

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

平面向量的线性运算教学设计

《平面向量的线性运算》复习教学设计 高中数学北师大版 西安交通大学第二附属中学 刘正伟

§5.1平面向量的线性运算 【教学目标】 知识与能力;过程与方法;情感、态度、价值观; 1.掌握向量加法,减法的运算,并理解其几何意义; 2.掌握向量数乘向量的运算及其几何意义,理解向量共线的充要条件; 了解向量共线的含义,理解向量共线判定和性质定理。 【教学重点、难点】 重点:理解并掌握向量的线性运算及向量共线的充要条件; 难点:向量的线性运算及向量共线的充要条件的应用。 【教具准备】 多媒体课件 【教学方法】 启发引导式;讲练结合 【教学设计】 (一).复习导入 问题:前面我们已经复习了的向量的有关概念,知道了向量是既有大小又有方向的量,物理中既有大小又有方向的量? 学生:速度,加速度,位移,力 力可以合成也可以分解,那么向量怎么运算 那么我们今天一起回顾向量的线性运算——板书课题 (二)知识要点 1.向量的线性运算

a 是一个非零向量,若存在一个实数λ.,使得 b =λa ,则向量b 与非零向量a 共线. 3.【知识拓展】 1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终 点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n ——→=A 1A n →,特别地,一个封闭图形,首尾连 接而成的向量和为零向量. 2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12 (OA →+OB →). 3.OA →=λOB →+μOC →(λ,μ为实数),点A ,B ,C 共线 λ+μ=1. 题型一 平面向量的线性运算 命题点1 向量的线性运算 例2 (1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( )

2018年高考数学分类汇编专题十三极坐标与参数方程

《2018年高考数学分类汇编》 第十三篇:极坐标与参数方程 一、填空题 1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切, 则a =__________. 2.【2018天津卷12】)已知圆22 20x y x +-=的圆心为C ,直线2 1,232 ? =-??? ?=-?? x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 二、解答题 1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2 2cos 30ρρθ+-=. (1)求2C 的直角坐标方程; (2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数), 直线的参数方程为 (为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数), xOy C 2cos 4sin x θy θ =??=?, θl 1cos 2sin x t αy t α =+?? =+?, t C l C l (1,2)l xOy O ⊙cos sin x y θθ=??=? , θ

过点且倾斜角为的直线与交于两点. (1)求的取值范围; (2)求中点的轨迹的参数方程. 4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为π sin()26 ρθ-=,曲线C 的方程为 4cos ρθ=,求直线l 被曲线C 截得的弦长. 参考答案 一、填空题 1.21+ 2. 2 1 二、解答题 1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆. 由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与 2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两 个公共点. 当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22 21 k =+,故 4 3 k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当4 3 k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. (02, αl O ⊙A B ,αAB P

平面向量线性运算教案

适用
高中数学
适用年级
高一
学科
适用区域 苏教版区域
课时时长(分钟)
2 课时
知识点 向量的加法;向量的减法;向量的数乘.
教学目标
通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义。能 熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量。通 过探究活动,掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反 向量。
教学重点 向量的加减法的运算。
教学难点 向量的加减法的几何意义。
【知识导图】
教学过程
一、导入
高考对本内容的考查主要以选择题或者是填空题的形式来出题,一般难度不 大,属于简单题。
二、知识讲解
(考1)点向1量向加量法加的法三法角则形法则 在定义中所给出的求象量和的方法就是向量加法的三角形法则。运用这一法则时 要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一 个向量的起点指向第二个向量的终点的向量即为和向量。0 位移的合成可以看作 向量加法三角形法则的物理模型。
第1页/共9页

(2)平行四边形法则 以同一点 O 为起点的两个已知向量 A.B 为邻边作平行四边形,则以 O 为起点的 对角线 OC 就是 a 与 b 的和。我们把这种作两个向量和的方法叫做向量加法的平 行四边形法则。
由考于点方2向反向转量两的次减仍法回法到则原来的方向,因此 a 和 a 互为相反向量。 于是 (a) a 。 我们规定,零向量的相反向量仍是零向量. 任一向量与其相反向量的和是零向量,即 a (a) (a) a 0 。 所以,如果 a, b 是互为相反的向量,那么 a= b,b= a, a b 0 。
考点 3 实数与向量的积的运算律 设 , 为实数,那么 (1) ( a) ()a ; (2) ( )a a a ; (3) (a b) a b . 特别地,我们有 ()a (a) (a) , (a b) a b 。 向量共线的等价条件是:如果 a(a 0) 与 b 共线,那么有且只有一个实数 ,使 b a。
三 、例题精析 类型一 平面向量的坐标表示
例题 1
已知边长为 1 的正方形 ABCD 中,AB 与 x 轴正半轴成 30°角.求点 B 和点 D 的坐标和 AB 与 AD 的坐标.
第2页/共9页

第32讲 平面向量的概念及线性运算

金题精讲 题一:判断下列命题的真假:[来源学_科_网Z_X_X_K] (1)若非零向量,AB CD 是共线向量,则四点D C B A ,,,共线; (2)若//,//,a b b c 则//a c ; (3)起点不同,但方向相同且长度相等的几条有向线段表示的向量是相等的向量; (4)不相等的向量,则一定不平行; (5)与非零向量a 共线的单位向量是 || a a . 题二:已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0→,那么( ) A .AO → = OD → B .AO → = 2OD → C .AO → = 3O D → D .2AO →=OD → 题三:已知P 、A 、B 、C 是平面内四个不同的点,且PA →+PB →+PC →=AC →,则( ) A .A 、B 、C 三点共线 B .A 、B 、P 三点共线 C .A 、C 、P 三点共线 D .B 、C 、P 三点共线 题四:已知OA →=a ,OB →=b ,C 为线段AO 上距A 较近的一个三等分点,D 为线段C B 上距C 较近 的一个三等分点,则用a 、b 表示OD →的表达式为__________________. 题五:设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b + d ,则四边形ABCD 为( ) A .菱形 B .梯形 C .矩形 D .平行四边形

金题精讲 题一:(1)假命题;(2) 假命题;(3)真命题;(4) 假命题;(5) 假命题. 题二:A . 题三:B . 题四:OD → = 49a +13b . 题五:D .

高中数学必修4《平面向量线性运算》教案

高中数学必修4《平面向量线性运算》教案 High school mathematics compulsory 4 "plane vector linear op eration" teaching plan

高中数学必修4《平面向量线性运算》教案前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 教学准备 教学目标 1、掌握向量的加法运算,并理解其几何意义; 2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重难点 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义.

教学工具 投影仪 教学过程 一、设置情景: 1、复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行. 三、应用举例: 例二(P94—95)略 练习:P95 四、小结 1、向量加法的几何意义; 2、交换律和结合律;

相关主题
文本预览
相关文档 最新文档