当前位置:文档之家› 谷根代数值分析__上机实习报告范本

谷根代数值分析__上机实习报告范本

谷根代数值分析__上机实习报告范本
谷根代数值分析__上机实习报告范本

《数值分析》实验报告实验题目非线性方程求解

()/21;else a x end

x a b n n end

==+=+

由于本题中()f x 恒大于0,不满足二分法()()0f a f b <的条件,故本例无法通过二分法求出方程的根。

(2)牛顿迭代法

牛顿迭代法迭代法迭代公式为:

1'()

()

k k k k f x x x f x +=-

a).对单根条件下,牛顿迭代法平方收敛,牛顿迭代法程序框图如下所示:

b). 对重根条件下,此时迭代公式修改为

1'()

,()

k k k k f x x x m m f x +=-?

为根的重数 此时,牛顿迭代法至少平方收敛。

(3)割线法

割线法的迭代公式为:

111()

(),1,2()()

k k k k k k k f x x x x x k f x f x +--=-

-=-…]

割线法是超线性收敛,其程序流程图为

(4)斯蒂芬森迭代法

斯蒂芬森迭代法的计算格式为

2

1()()

()2n n n n n n n n n n n

y x z y y x x x z y x ??+==-=-

-+

《数值分析》实验报告实验题目插值与拟合

(1)求以上数据形如2

012()y x c c x c x =++的拟合曲线及其平方误差;

(2)求以上数据形如()b x

y x ae

-

=的拟合曲线及其平方误差;

(3)通过观察(1)、(2)的结果,写出你对数据拟合的认识。

2.1 算法分析

2.1.1 插值

(1)牛顿插值法

Lagrange 插值公式结构紧凑,便于理论分析。利用插值基函数也容易到插值多项式的,Lagrange 插值公式的缺点是,当插值节点增加,或其位置变化时,全部插值基函数均要随之变化,从而整个插值公式的结构也发生变化,这在实际计算中是非常不利的。下面引入的Newton 插值公式可以克服这个缺点。

Newton 插值多项式可以灵活地增加插值节点进行递推计算。该公式形式对称,结构紧凑,因而容易编写计算程序。

Newton 插值多项式为:

00,11

()()[,...,]()N

n k k k N x f x f x x x x ω==+∑

其中:

1,20,110,10

[,...,][,...,]

[,...,]k k k k f x x x f x x x f x x x x x --=

-

称之为 f (x )在0,1,...,k x x x 上的k 阶均差(或差商)。实际计算中,可以由差商表计算。,如下所示:

表1 差商表

牛顿迭代法程序流程图如下所示:

(2)三次样条插值

分段低次插值光滑性较差,对于像高速飞机的机翼形线,船体放样等型值线往往要求有二阶光滑度,即有二阶连续导数。

三次样条函数 记为()S x 它是定义在区间[a, b] 上的函数, 满足以下两个条件:

1). S(x) 在每一个小区间1[,]i i x x -上是一个三次多项式函数 ;

2). 在整个区间[a,b]上,其二阶导数存在且连续。 即在每个节点处的二阶导数连续。 问题:给定函数()f x 在n+1个节点01,,...,n x x x 处的函数值为 01,,...,n y y y 。 要求:求一个三次样条函数()S x ,使其满足:()i i S x y =

如何确定三次样条函数在每一个小区间上的三次多项式函数的系数呢?这里只简介确定系数的思想。

对于三次样条插值呢,每一个区间上的三次函数的四个参数,在该区间上由两个端点的函数值只能够产生两个方程,仅此不足以唯一确定四个参数。注意到三次样条函数对整体光滑性要求,其二阶导数存在且连续,从全局的角度上考虑参数个数与方程个数的关系如下:

参数:每个小段上4个,n 个小段共计4n 个。

方程:

1) 每个小段上由给定函数值得到2个,n 个小段共计2n 个;

2) 光滑性要求每一个部节点的一阶二阶导数连续,得出其左右导数相等,因此,每个节点产生2个方程,共计2(n-1) 个 。现在得到了4n-2个方程,还差两个。为此,常用的方法是对边界节点除函数值外附加要求,这就是所谓的边界条件。需要两个,正好左右两个端点各一个。常用如下三类边界条件:

第一边界条件 给定两个边界节点的一阶导数值:m 0,m n , 即: S '(x 0)=m 0, S '(x n )=m n 。 第二边界条件 给定两个边界节点的二阶导数值:M 0,M n , 即: S ''(x 0)=M 0, S '' (x n )=M n 。 特别地,当 M 0和M n 都为零时,称为自然边界条件。

周期性边界条件 在两个边界的函数值,一阶导数值以及二阶导数值均相等:即

S '

(x 0)= S '(x n ); S ''(x 0)= S ''(x n ) 。

2.1.2 拟合

在科学实验或者统计研究中常常需要从一组测得的数据中去求得自变量x 和因变量y 之间的一个近似解析表达式使得误差最小, 这就是给定N 个点进行曲线拟合的问题。

曲线拟合常用n 次多项式()n P x 来进行拟合,即0

()n

k

n k k P x a x

==∑

求解下面方程就可进行曲线拟合:

对于指数形式的拟合曲线b x

y ae =,可以令ln()z y =,1/x t =,则有z a bx =+,用上式依然可以解除,a b

2.2 数据处理与问题分析

2.2.1 插值

(1)运用所编程序,分别求出1,5,10,20,25n =时,得出插值函数,并在同一坐标系下画出

原函数与插值函数图像,分别如下所示:

图1 n=1时原函数与插值函数图象

图2 n=5时原函数与插值函数图象

图3 n=10时原函数与插值函数图象

图4 n=20时原函数与插值函数图象

图5 n=25时原函数与插值函数图象

(2) 运用所编程序,求出1,5,10

n 下三次样条插值函数,并在同一坐标系下作出原函数图象与插值函数图象。如下图所示:

图6 n=1时原函数与插值函数图象

图7 n=5时原函数与插值函数图象

图8 n=10时原函数与插值函数图象

2.2.2 拟合

(1)形如2012()y x c c x c x =++的拟合,根据所编matlab 程序,得到拟合方程为

2()106.18590.63880.0208y x x x =+-

(2)形如()b x

y x ae -=的拟合,根据所编matlab 程序,得到拟合方程为

0.0915()111.4876x

y x e -=

(3)将(1)、(2)与原数据散点图图象做在同一坐标系中,如下如所示:

通过此图,可以发现,指数形式的拟合函数更加和原数据走势拟合,然而不管哪一种拟合形式,都不能保证所有的数据点都在拟合曲线上。所以,拟合可以表现出数据的真题趋势,而且,通过拟合可以合理的排除一些误差点。 2.3 问题分析 2.3.1 插值

(1)由2.2.1 中1,5,10,20,25n =时插值函数与原函数的图象分析可知,插值点越多,插值函数越逼近与原函数。然而,当把此题的区间扩大,改为[7,7]-时,情况却发生变化,3,5,10,25n =时插值函数与原函数的图象如下所示:

图9 n=3时原函数与插值函数图象

图10 n=5时原函数与插值函数图象

图11 n=10时原函数与插值函数图象

图12 n=25时原函数与插值函数图象

通过上述四图发现,随着插值节点数目的增多,区间中间的确越来越逼近原函数,然而区间两端发生了较大震荡,即发生了Runge现象。这是由插值余项的表达式所决

定的。

-,(2)为进一步说明三次样条插值下插值节点数目与插值函数的关系,同上,将区间扩大至[7,7]

n=时,得出插值函数,并在同一坐标系下画出原函数与插值函数图像,别求出1,5,10,

分别如下所示:

图13 n=1时原函数与插值函数图象

图14 n=5时原函数与插值函数图象

图15 n=10时原函数与插值函数图象

通过图6~8,图13~15,可以发现:插值节点数目越多,三次样条插值函数越逼近与原函数。三次样条函数没有Runge现象,这是三次样条插值将区间分成了n份。

(3)对于整体插值,如果节点数目较少,插值函数有不怎么精确,如图9,图10所示;如果节点数目增多,就有可能会发生Runge现象,如图11、12所示。解决方法是分段低次插值。

2 拟合

拟合部分问题分析见2.2.2

三、本次实验的难点分析

(1)由于自学,本次试验对牛顿插值法的差商公式理解有一点偏差。

-区间却不出现Runge (3)本次试验中插值部分,对于牛顿插值,随着插值节点n的增大,在[1,1]

-。此时,随着插值节点数现象,对于这点感到迷惑。为了说明问题,只能将插值区间选为[7,7]

目的增多,出现了明显的Runge现象。

四、参考文献

[1]谷根代,晓忠等.数值分析[M].:科学,2011

[2]马东升,雷永军.数值计算方法[M].:机械工业,2008

[3]周路,渝等译.数值方法(Matlab版)[M].:电子工业,2010

《数值分析》实验报告实验题目数值微分和数值积分

输入命令格式如下:[T2,T1,nn]=Variable_step(-1,1,1e-5,n),其中n为题中函数参数。

迭代次数

n

1 10 100 500

1 0.540302-0.8390710.862319-0.883849

2 0.489547-0.3486210.672401-0.381678

3 0.480839-0.1018540.626418-0.280988

4 0.478895-0.1304000.615014-0.257077

5 0.478423-0.1377420.612169-0.251175

6 0.478306-0.1395890.000711-0.001471

7 0.478277-0.140038-0.007551-0.008067

8 -0.140152-0.0092420.001407

9 -0.140181-0.009656-0.001254

10 -0.009757-0.001735

11 -0.009772-0.001848

12 -0.001876 2 龙贝格求积算法

p0=[p0(1),p0(1)+h/2,p0(2:n)]; if n1==1

ep=[ep(1)/2,ep(1)/2,ep(2:n1)]; end if q==0 p=p0; else

p=[p(1:q),p0]; end end end

当1n =时,积分结果 0.478266I = ,产生的积分节点为 n 1 2 3 4 5 6 7

8

x -1 -0.5 -0.25 0

0.25

0.5

0.75

1

下图表现了被积函数的曲线和自适应法产生的求积节点的关系

当10n =时,积分结果 -0.140191I = ,产生的积分节点为

n x n

x

1 -1 16 0.125

2 -0.9375 17 0.1875

3 -0.875 18 0.25

4 -0.812

5 19 0.375 5 -0.75 20 0.4375

6 -0.6875 21 0.5

7 -0.625 22 0.125

8 -0.5625 23 0.1875

9 -0.5 24 0.25 10 -0.4375 25 0.375 11 -0.375 26 0.4375 12 -0.25 27 0.5 13 -0.1875 28 0.5625 14 -0.125 29 0.625 15

30

下图表现了被积函数的曲线和自适应法产生的求积节点的关系

数值分析上机作业

数值分析上机实验报告 选题:曲线拟合的最小二乘法 指导老师: 专业: 学号: 姓名:

课题八曲线拟合的最小二乘法 一、问题提出 从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。 在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。 二、要求 1、用最小二乘法进行曲线拟合; 2、近似解析表达式为()33221t a t a t a t ++=?; 3、打印出拟合函数()t ?,并打印出()j t ?与()j t y 的误差,12,,2,1 =j ; 4、另外选取一个近似表达式,尝试拟合效果的比较; 5、*绘制出曲线拟合图*。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系。 四、计算公式 对于给定的测量数据(x i ,f i )(i=1,2,…,n ),设函数分布为 ∑==m j j j x a x y 0)()(? 特别的,取)(x j ?为多项式 j j x x =)(? (j=0, 1,…,m )

则根据最小二乘法原理,可以构造泛函 ∑∑==-=n i m j i j j i m x a f a a a H 1 10))((),,,(? 令 0=??k a H (k=0, 1,…,m ) 则可以得到法方程 ???? ??????? ?=????????????????????????),(),(),(),(),(),(),(),(),(),(),(),(1010101111000100m m m m m m m m f f f a a a ????????????????????? 求该解方程组,则可以得到解m a a a ,,,10 ,因此可得到数据的最小二乘解 ∑=≈m j j j x a x f 0)()(? 曲线拟合:实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。 五、结构程序设计 在程序结构方面主要是按照顺序结构进行设计,在进行曲线的拟合时,为了进行比较,在程序设计中,直接调用了最小二乘法的拟合函数polyfit ,并且依次调用了plot 、figure 、hold on 函数进行图象的绘制,最后调用了一个绝对值函数abs 用于计算拟合函数与原有数据的误差,进行拟合效果的比较。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析上机作业

昆明理工大学工科研究生《数值分析》上机实验 学院:材料科学与工程学院 专业:材料物理与化学 学号:2011230024 姓名: 郑录 任课教师:胡杰

P277-E1 1.已知矩阵A= 10787 7565 86109 75910 ?? ?? ?? ?? ?? ??,B= 23456 44567 03678 00289 00010 ?? ?? ?? ?? ?? ?? ?? ?? ,错误!未找到引用源。 = 11/21/31/41/51/6 1/21/31/41/51/61/7 1/31/41/51/61/71/8 1/41/51/61/71/81/9 1/51/61/71/81/91/10 1/61/71/81/91/101/11?????????????????? (1)用MA TLAB函数“eig”求矩阵全部特征值。 (2)用基本QR算法求全部特征值(可用MA TLAB函数“qr”实现矩阵的QR分解)。解:MA TLAB程序如下: 求矩阵A的特征值: clear; A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; E=eig(A) 输出结果: 求矩阵B的特征值: clear; B=[2 3 4 5 6;4 4 5 6 7;0 3 6 7 8;0 0 2 8 9;0 0 0 1 0]; E=eig(B) 输出结果:

求矩阵错误!未找到引用源。的特征值: clear; 错误!未找到引用源。=[1 1/2 1/3 1/4 1/5 1/6; 1/2 1/3 1/4 1/5 1/6 1/7; 1/3 1/4 1/5 1/6 1/7 1/8; 1/4 1/5 1/6 1/7 1/8 1/9;1/5 1/6 1/7 1/8 1/9 1/10; 1/6 1/7 1/8 1/9 1/10 1/11]; E=eig(错误!未找到引用源。) 输出结果: (2)A= 10 7877565861097 5 9 10 第一步:A0=hess(A);[Q0,R0]=qr(A0);A1=R0*Q0 返回得到: 第二部:[Q1,R1]=qr(A1);A2=R1*Q1

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

数值分析上机题课后作业全部-东南大学

2015.1.9 上机作业题报告 USER

1.Chapter1 1.1题目 设S N = 1 j 2?1 N j =2 ,其精确值为 )1 1123(21+--N N 。 (1)编制按从大到小的顺序1 1 1311212 22-+??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

东南大学数值分析上机作业汇总

东南大学数值分析上机作业 汇总 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数值分析上机报告 院系: 学号: 姓名:

目录 作业1、舍入误差与有效数 (1) 1、函数文件cxdd.m (1) 2、函数文件cddx.m (1) 3、两种方法有效位数对比 (1) 4、心得 (2) 作业2、Newton迭代法 (2) 1、通用程序函数文件 (3) 2、局部收敛性 (4) (1)最大δ值文件 (4) (2)验证局部收敛性 (4) 3、心得 (6) 作业3、列主元素Gauss消去法 (7) 1、列主元Gauss消去法的通用程序 (7) 2、解题中线性方程组 (7) 3、心得 (9) 作业4、三次样条插值函数 (10) 1、第一型三次样条插值函数通用程序: (10) 2、数据输入及计算结果 (12)

作业1、舍入误差与有效数 设∑ =-=N j N j S 2 2 11 ,其精确值为?? ? ??---1112321N N . (1)编制按从小到大的顺序1 1 131121222-? ??+-+-=N S N ,计算N S 的通用程序; (2)编制按从大到小的顺序()1 21 11111222-???+--+-=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算642101010,,S S S ,并指出有效位数; (4)通过本上机你明白了什么? 程序: 1、函数文件cxdd.m function S=cxdd(N) S=0; i=2.0; while (i<=N) S=S+1.0/(i*i-1); i=i+1; end script 运行结果(省略>>): S=cxdd(80) S= 0.737577 2、函数文件cddx.m function S=cddx (N) S=0; for i=N:-1:2 S=S+1/(i*i-1); end script 运行结果(省略>>): S=cddx(80) S= 0.737577 3、两种方法有效位数对比

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

Matlab作业3(数值分析)答案

Matlab作业3(数值分析) 机电工程学院(院、系)专业班组 学号姓名实验日期教师评定 1.计算多项式乘法(x2+2x+2)(x2+5x+4)。 答: 2. (1)将(x-6)(x-3)(x-8)展开为系数多项式的形式。(2)求解在x=8时多项 式(x-1)(x-2) (x-3)(x-4)的值。 答:(1) (2)

3. y=sin(x),x从0到2π,?x=0.02π,求y的最大值、最小值、均值和标准差。 4.设x=[0.00.30.8 1.1 1.6 2.3]',y=[0.500.82 1.14 1.25 1.35 1.40]',试求二次多项式拟合系数,并据此计算x1=[0.9 1.2]时对应的y1。解:x=[0.0 0.3 0.8 1.1 1.6 2.3]'; %输入变量数据x y=[0.50 0.82 1.14 1.25 1.35 1.40]'; %输入变量数据y p=polyfit(x,y,2) %对x,y用二次多项式拟合,得到系数p x1=[0.9 1.2]; %输入点x1 y1=polyval(p,x1) %估计x1处对应的y1 p = -0.2387 0.9191 0.5318 y1 = a) 1.2909

5.实验数据处理:已知某压力传感器的测试数据如下表 p为压力值,u为电压值,试用多项式 d cp bp ap p u+ + + =2 3 ) ( 来拟 合其特性函数,求出a,b,c,d,并把拟合曲线和各个测试数据点画在同一幅图上。解: >> p=[0.0,1.1,2.1,2.8,4.2,5.0,6.1,6.9,8.1,9.0,9.9]; u=[10,11,13,14,17,18,22,24,29,34,39]; x=polyfit(p,u,3) %得多项式系数 t=linspace(0,10,100); y=polyval(x,t); %求多项式得值 plot(p,u,'*',t,y,'r') %画拟和曲线 x = 0.0195 -0.0412 1.4469 9.8267

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析上机作业1-1

数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出: 考虑一个高次的代数多项式 ∏=-= ---=20 1)()20)...(2)(1()(k k x x x x x p (E1-1) 显然该多项式的全部根为l ,2,…,20,共计20个,且每个根都是单重的(也称为简 单的)。现考虑该多项式方程的一个扰动 0)(19 =+x x p ε (E1-2) 其中ε是一个非常小的数。这相当于是对(E1-1)中19 x 的系数作一个小的扰动。我们希望比较(E1-1)和(E1-2)根的差别,从而分析方程(E1-1)的解对扰动的敏感性。 实验内容: 为了实现方便,我们先介绍两个 Matlab 函数:“roots ”和“poly ”,输入函数 u =roots (a ) 其中若变量a 存储1+n 维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,...,,+n a a a ,则输出u 的各分量是多项式方程 0...1121=++++-n n n n a x a x a x a 的全部根,而函数 b=poly(v) 的输出b 是一个n +1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“Poly ”是两个互逆的运算函数. ve=zeros(1,21); ve(2)=ess; roots(poly(1:20))+ve) 上述简单的Matlab 程序便得到(E1-2)的全部根,程序中的“ess ”即是(E1-2)中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。如果扰动项的系数ε很小,我们自然感觉(E1-1)和(E1-2)的解应当相差很小。计算中你有什么出乎意料的发现?表明有些解关于如此的扰动敏感性如何? (2)将方程(E1-2)中的扰动项改成18 x ε或其他形式,实验中又有怎样的现象出现?

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值分析作业

第二章 1. 题目:运用MATLAB编程实现牛顿迭代 2. 实验操作 1、打开MATLAB程序软件。 2、在MATLAB中编辑如下的M程序。 function [p1,err,k,y]=newton(f,df,p0,delta,max) %f 是要求根的方程(f(x)=0); %df 是f(x)的导数; %p0是所给初值,位于x*附近; %delta是给定允许误差; %max是迭代的最大次数; %p1是newton法求得的方程的近似解; %err是p0的误差估计; %k是迭代次数; p0 for k=1:max p1=p0-feval('f',p0)/feval('df',p0); err=abs(p1-p0); p0=p1; k p1 err y=feval('f',p1) if (err> newton('f','df',1.2,10^(-6),20) 3.实验结果

p0 = 1.2000 k =1 p1=1.1030 err=0.0970 y=0.0329 k= 2 p1=1.0524 err=0.0507 y=0.0084 k =3 p1=1.0264 err=0.0260 y=0.0021 k =4 p1=1.0133 err=0.0131 y=5.2963e-004 k =5 p1=1.0066 err=0.0066 y=1.3270e-004 k =6 p1=1.0033 err=0.0033 y=3.3211e-005 k =7 p1=1.0017 err=0.0017 y=8.3074e-006 k =8 p1=1.0008 err=8.3157e-004 y = 2.0774e-006 k =9 p1=1.0004 err=4.1596e-004 y =5.1943e-007 k=10 p1=1.0002 err=2.0802e-004 y= 1.2987e-007 k=11 p1=1.0001 err=1.0402e-004 y =3.2468e-008 k=12 p1=1.0001 err=5.2014e-005 y=8.1170e-009 k=13 p1=1.0000 err=2.6008e-005 y= 2.0293e-009 k=14 p1=1.0000 err=1.3004e-005 y=5.0732e-010 k=15 p1 =1.0000 err=6.5020e-006 y=1.2683e-010 k=16 p1 =1.0000 err=3.2510e-006 y=3.1708e-011 k=17 p1 =1.0000 err=1.6255e-006 y =7.9272e-012 k=18 p1 =1.0000 err =8.1279e-007 y= 1.9820e-012 ans = 1.0000 结果说明:经过18次迭代得到精确解为1,误差为8.1279e-007。

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

相关主题
文本预览
相关文档 最新文档