当前位置:文档之家› HIV-1耐药性产生机制及检测方法

HIV-1耐药性产生机制及检测方法

HIV-1耐药性产生机制及检测方法
HIV-1耐药性产生机制及检测方法

?综述?

HIV 21耐药性产生机制及检测方法

谢静,李太生

(中国医学科学院,中国协和医科大学,北京协和医院,北京 100730)

中图分类号:R37319 文献标识码:A 文章编号:1672-5662(2005)02-0150-03收稿日期:2004-08-30;修回日期:2004-10-14

作者简介:谢静(1978-),女,陕西省西安市人,北京协和医院在读硕士研究生,从事艾滋病防治工作研究。

通讯作者:李太生,E 2mail :litsh @2631net

HIV 21耐药性的产生是导致艾滋病(AIDS )抗病毒治疗失败的重要原因,目前HIV 21耐药性产生机制及检测方法已成为HIV/AIDS 研究领域的热点之一。随着高效抗逆转录病毒联合疗法(highly active antiretroviral therapy ,HAART )在我国的展开,对HIV 21耐药株进行监测以指导临床用药及预防耐药株的迅速上升和扩散日显其重要性。本文将对HIV 21耐药性产生机制及当前国际上应用的耐药性检测方法进行综述。

1 前言

自从1995年开始应用新的抗病毒治疗方案,即联合使用逆转录酶抑制剂和蛋白酶抑制剂的HAART 以来,HIV 感染的临床进程被大大改变。这些药物通过阻断病毒复制使得免疫系统重建其CD +4T 细胞库并恢复对病原体的免疫力[1,2],明显降低了HIV/AIDS 相关疾病的发病率和病死率。截至目前,美国FDA 已经批准了4大类共26种抗病毒药物用于艾

滋病的临床治疗,其中包括核苷类逆转录酶抑制剂(nucleoside

reverse transcriptase inhibitor ,NRTI )、非核苷类逆转录酶抑制

剂(non 2nucleoside reverse transcriptase inhibitor ,NNRTI )、蛋白酶抑制剂(protease inhibitor ,PI )和融合抑制剂(fusion in 2

hibitors )。我国已有5种国产抗病毒药物进入临床。

HAART 的首要目标是最大限度地、持久地抑制病人体

内病毒复制。但是,在实际临床治疗当中,部分病人达不到这样的效果,即使在初始治疗时能有效提升

CD +

4T 细胞数量并

显著降低血浆病毒载量的病人中,仍有相当一部分在持续治疗一段时间后血浆病毒载量出现反弹。这就意味着抗病毒治疗的失败。导致抗病毒治疗失败的原因是多方面的,其中

HIV 21耐药性的产生是主要因素之一。目前,广泛应用于临

床的几类抗病毒药物均有耐药株产生[3-5]

,HIV 21耐药株的

传播已呈现上升的趋势,而且HIV 病毒株常常会对同一类药

当中的不同种药物产生交叉耐药性[6-8]

。耐药成为AIDS 治

疗面临的严峻挑战,同时耐药性检测逐渐成为帮助临床医生

选择联合用药方案的重要工具。

2 HIV 21耐药性产生机制

HIV 21耐药性的产生取决于两方面:病毒复制过程中的

高频突变和抗病毒药物产生的选择压力。

首先,HIV 21是RNA 病毒,其基因组由单链RNA 转变为

RNA 2DNA 复合物,进而反向转录为前病毒DNA ,再由前病毒

转录为病毒基因组RNA 的整个过程均由病毒自身的逆转录酶(reverse transcriptase ,RT )催化。因RT 缺乏核酸外切酶活性,对转录错误无校正功能,所以转录的忠实性差,转录中的碱基错配常导致基因突变,因此HIV 21复制过程中表现出很高的突变频率,每个碱基对在每轮复制中发生突变的频率约为314×10-5[9]。另一方面,HIV 21复制迅速,感染初期每天可新形成109~1010病毒颗粒[10]。在未经治疗的患者,其体内的淋巴样组织当中产毒性感染细胞的数量大约为107~108个[11],而且被感染细胞的半寿期明显缩短,仅一到两天[10,12]。而研究发现,在慢性感染期产毒性感染细胞数量保持稳定,这就反映了HIV 的快速复制并感染新的靶细胞。

HIV 21的高速复制及复制过程中的高频突变,导致原发感染

的几个月内就可形成非常大量的基因突变病毒。一旦突变发生在逆转录酶和蛋白酶的编码基因序列,就有可能引起逆转录酶和蛋白酶分子发生改变,导致HIV 21对作用于这两种酶的抑制剂不再敏感,产生耐药性。

通常情况下,发生突变的病毒复制能力相对减弱,而野生型病毒复制能力最强[13,14]。在未经治疗的个体,其体内的病毒以野生型为优势群体,突变型复制缓慢,数量很少。开始抗病毒治疗后,野生型病毒被显著抑制,临床上可见到病毒载量明显下降,如果药物对病毒抑制不完全,与耐药有关的突变型仍可以持续复制。在药物产生的选择压力下,耐药突变型最终取代野生病毒株成为优势群体,临床上可表现为病毒载量的反弹。

有研究者将耐药突变分为两类:原发突变(primary muta 2

tion )和继发突变(secondary mutation )。原发突变一般出现较

早,一旦发生能明显降低病毒对药物的敏感性,而且每种药物有其相对特异的原发突变。继发突变通常发生在已经出现了原发突变的病毒基因组,能增强病毒的复制能力,对药物敏感性没有影响或影响很小。

3 HIV 21耐药性检测方法

HIV 21耐药性检测类似于细菌的药敏试验,即在体外用

实验方法测定HIV 21对抗病毒药物的敏感性。目前发展较为成熟并且国际上已应用于临床的有基因型分析和表型分析两种。

311 基因型分析 基因型分析是检测病人体内病毒基因组

是否存在耐药相关突变位点。所有基因型分析的初始步骤都是相同的:经RT2PCR技术扩增HIV21的蛋白酶和逆转录酶基因序列。后续的检测手段存在差异,总的说来可分为两类:测序和杂交。

直接对RT2PCR产物进行基因测序能提供较为全面的耐药突变信息。目前已有商品化的试剂盒:TRU EGEN E HIV21 G enotyping K it(Visible G enetics,Inc1Toronto,Canada)和Vi2 roSeq K it(Applied Biosystems,Inc1Foster City,CA,USA)。两者都已获得美国FDA批准成为应用于临床常规检测的试剂盒。

核酸杂交技术也可以用来确定RT2PCR产物的基因突变情况。与直接测序相比耗时短,较简便,局限之处在于检测范围限于所设计的固相探针上的突变位点,因此只能提供部分突变信息,不能用来发现新出现的突变位点。常见的有线性探针技术(Line probe assay),也有商品化的试剂盒LiPA(Inno2 genetics,Ghent,Belgium)[15]。作为一种高通量的检测方法,基因芯片技术很快被用于HIV21耐药性分析,Affymetrix公司生产的基因芯片可以用来检测全部蛋白酶基因序列和逆转录酶基因的前1200个碱基[16]。

312 表型分析 表型分析直接测定HIV21在不同浓度抗病毒药物存在时的复制增殖能力,根据其剂量2反应曲线得到50%抑制浓度(50%inhibitory concentration,IC50),与标准参比毒株的IC50相比以确定对药物的敏感性。

第一个表型分析的标准方法是:首先从病人体内分离病毒,与待检药物共同培养,然后测定不同药物浓度下外周血单个核细胞(PBMC)所产生的p24抗原量,据此得到IC50[17]。该法步骤复杂,对操作技术要求高,整个过程至少需6周时间,病毒分离培养过程还有可能发生变异。

随着分子生物学技术的发展及临床上对耐药性快速检测的需要,以重组病毒技术为基础的表型分析方法取代了上述的病毒分离培养。将病人体内HIV21的蛋白酶和逆转录酶基因序列进行RT2PCR扩增,扩增产物继而插入pol基因缺失型HIV21载体以形成重组病毒,因此重组病毒保持了病人体内病毒对药物的敏感性,然后在不同药物,同一药物不同浓度下对重组病毒进行培养,即可测定出对药物的敏感性[18,19]。313 基因型分析和表型分析的比较 两种耐药性检测方法各有优缺点。基因型分析费用较低,耗时短,操作较简单,但如何依据检测结果正确评价病毒对药物的敏感性是该方法面临的最大困难。检测出的突变位点只提供了有关耐药的间接证据,而且耐药突变的类型多种多样,不同突变的排列组合及它们之间的相互作用对病毒表型均会产生不同影响[20],因此对基因型检测结果的解释需要专业人员结合病人病史、用药情况、临床疗效进行综合分析。目前已有数个数据库可以帮助研究人员进行此项工作,如:www1hivresistance1com、http://hivdb1stanford1edu、http://hiv2web1lanl1gov。Visible G enetics和Applied Biosystems均提供相应的软件对测序结果进行解释,并且Visible G enetics每6个月对其软件进行升级。Virco2Tibotec公司开发了虚拟表型(Virtual Phenotype)分析系统,将耐药突变信息与数据库中基因型和表型数据进行比对,计算出相应IC50。已有研究表明,虚拟表型分析与基因型分析有良好的相关性[21],与stanford HIV2SEQ系统在NNRTI 和PI上有良好的相关性,但在NRTIs上存在差异[22]。

表型分析可直接检测病毒对药物的敏感性,但费用高,周期长,对操作技术要求高。而且表型分析得到IC50后确定是否耐药仍存在问题,究竟IC50升高几倍可以认为产生了耐药性目前尚无统一标准[23,24]。此外,目前所有的表型分析均未考虑药物之间的相互作用。例如有的治疗方案在应用saquinavir的同时加用ritonavir,后者的作用是增加saquinavir 的有效浓度。一种FDA批准的药物K aletra,即为lopinavir加上作为增强剂的ritonavir。此类药物之间的相互作用会部分增强其抗病毒活性[25],因此必须对相应药物IC50的cut2off值进行调整。

需要指出的是,随检测技术的不同要求病人血浆病毒载量≥500~1000拷贝/ml,如果病毒载量很低,即使存在耐药病毒也有可能检测不到。而且目前的检测方法只能检测病人体内的优势病毒,需要耐药毒株至少占病人体内病毒准种的20%以上。治疗停止后,野生型病毒可很快成为血浆中的优势病毒。因此,如果病人在停药或换药一段时间后进行耐药性检测,无论是基因型检测还是表型检测都有可能得到错误的结果[26,27]。

4 耐药性检测在临床上的推荐使用

目前已有数项研究表明,对病人进行耐药性检测具有重要临床应用价值,因而国际艾滋病学会(International AIDS S ociety2USA)、欧洲AIDS临床学会(European AIDS Clinical S ociety,EACS)等几个专家组,在其AIDS治疗指南当中推荐使用HIV耐药检测[28,29]。主要包括以下情况:(1)治疗失败的病人;(2)急性感染或感染时间在12个月以内的病人,尤其是传染源(the source patient)正在接受抗病毒治疗的;(3)慢性感染病人开始抗病毒治疗前有条件进行该项检测的;(4)HIV 抗体阳性的孕妇,尤其是血浆病毒载量高于检测下限值的,有条件允许时也应考虑耐药检测。

HIV耐药性检测除帮助临床医生制定最佳的个体化的联合治疗方案外,还可用于监测耐药株的传播情况,评价联合治疗方案的优劣,研究新的抗病毒药物。

在我国,随着进口药的降价和抗病毒药物的国产化,越来越多的AIDS患者可以接受治疗,如何加强治疗的规范性,预防耐药株的迅速出现和上升,是当前面临的主要问题。目前,针对每个病人制定合理的联合用药方案,最大限度地、持久地抑制病毒复制是预防耐药株产生和增加的根本途径。在此情况下,开展耐药性检测意义重大。

参考文献:

[1]Autran B,Carcelain G,Li TS,et al.Positive effects of combined an2

tiretroviral therapy on CD+4T cell homeostasis and function in ad2 vanced HIV disease[J].Science,1997,277:112-116.

[2]Li TS,Tubiana R,K atlama C,et al.Long2lasting recovery in CD+4T

cell function and viral2load reduction after highly active antiretroviral

therapy in advanced HIV disease[J].Lancet,1998,351:1682-1686.

[3]Little S J,Daar ES,D’Aquila RT,et al.Reduced antiretroviral drug

susceptibility among patients with primary HIV infection[J].JAMA, 1999,282:1142-1149.

[4]Palmer S,Shafer RW,Mergan TC,et al.Highly drug2resistance HIV2

1clinical isolates are cross2resistance to many antiretroviral com2 pounds in current clinical development[J].AIDS,1999,13:661-667.

[5]Menzo S,Castagna A,Monachetti A,et al.G enotype and Phenotype

Patterns of Human Immunodeficiency Virus Type1Resistance to En2 fuvirtide during Long2Term Treatment[J].Antimicrob Agents Chemother,2004,48:3253-3259.

[6]Hertogs K,Bloor S,K emp SD,et al.Phenotypic and genotypic analy2

sis of clinical HIV21isolates reveals extensive protease inhibitor cross2 resistance:a survey of over6000samples[J].AIDS,2000,14:1203-1210.

[7]Miller V,Larder BA.Mutational patterns in the HIV genome and

cross2resistance following nucleoside and nucleotide analogue drug ex2 posure[J].Antivir Ther,2001,6(Suppl3):25-44.

[8]Race E,Dam E,Obry V,Paulous S,Clavel F.Analysis of HIV cross2

resistance to protease inhibitors using a rapid single2cycle recombinant virus assay for patients failing on combination therapies[J].AIDS, 1999,13:2061-2068.

[9]Mansky LM.Temin HM.Lower in vivo mutation rate of human im2

munodeficiency virus type1than that predicted from the fidelity of purified reverse transcriptase[J].J Virol,1995,69:5087-94. [10]Perelson AS,Neumann AU,Markowitz M,et al.HIV21dynamics in

vivo:virion clearance rate,infected cell life2span,and viral generation time[J].Science,1996,271:1582-1586.

[11]Haase AT.Population biology of HIV21infection:viral and CD+4T

cell demographics and dynamics in lymphatic tissues[J].Annu Rev Immunol,1999,17:625-656.

[12]Wei X,Ghosh SK,Taylor ME,et al.Viral dynamics in human im2

munodeficiency virus type1infection[J].Nature,1995,373:117-122.

[13]Prado J G,Wrin T,Beauchaine J,et al.Amprenavir2resistant HIV21

exhibits lopinavir cross2resistance and reduced replication capacity[J].

AIDS,2002,16(7):1009-17.

[14]Resch W,Z iermann R,Parkin N,et al.Nelfinavir2resistant,ampre2

navir2hypersusceptible strains of human immunodeficiency virus type 1carrying an N88S mutation in protease have reduced infectivity,re2 duced replication capacity,and reduced fitness and process the G ag polyprotein precursor aberrantly[J].J Virol,2002,76(17):8659-

66.

[15]Stuyver L,Wyseur A,Rombout A,et al.Line probe assay for rapid

detection of drug2selected mutations in the human immunodeficiency virus type1revere transcriptase gene[J].Antimicrob Agents Chemother,1997,41:284-291.

[16]K ozal MJ,Shah N,Shen N,et al.Extensive polymorphisms observed

in HIV21clade B protease gene using high2density oligonucleotides ar2 rays[J].Nat Med,1996,2:753-759.[17]Japour AJ,Mayers DL,Johnson VA,et al.Standardized peripheral

blood mononuclear cell culture assay for determination of drug suscep2 tibilities of clinical human immunodeficiency virus type lisolates.The RV243Study Group,the AIDS Clinical Trails Group Virology Com2 mittee Resistance Working Group[J].Antimicrob Agents Chemoth2 er,1993,37:1095-1101.

[18]Hertogs K,De Bethune MP,Miller V,et al.A rapid method for si2

multaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase on recombinant human immunodeficiency virus type1isolates from patients treated with antiretroviral drugs [J].Antimicrob Agents Chemother,1998,42:269-276.

[19]Petropoulos C J,Parkin N T,Limoli K L,et al.A novel phenotypic

drug susceptibility assay for human immunodeficiency virus type1 [J].Antimicrob Agents Chemother,2000,44:920-928.

[20]Schmidt B,Walter H,Zeitler N,et al.G enotypic drug resistance in2

terpretation systems2the cutting edge of antiretroviral therapy[J].

AIDS Rev,2003,5(1):63.

[21]G allego O,Martin2Carbonero L,Aguero J,et al.Correlation between

rules2based interpretation and virtual phenotype interpretation of HIV21genotypes for predicting drug resistance in HIV2infected indi2 viduals[J].J Virol Methods.2004,121(1):115-118.

[22]Puchhammer2Stockl E,Steininger C,G eringer E,et https://www.doczj.com/doc/d613105256.html,parison

of virtual phenotype and HIV2SEQ program(Stanford)interpretation for predicting drug resistance of HIV strains[J].HIV Med,2002,3: 200-206.

[23]G arcia2Lerma G J,Heneine W.Rapid biochemical assays for pheno2

typic drug resistance testing of HIV21[J].J Antimicrob Chemother, 2002,50:771-774.

[24]Hanna G J,D’Aquila RT.Clinical use of genotypic and phenotypic

drug resistance testing to monitor antiretroviral chemotherapy[J].

Clinical Infectious Diseases,2001,32:774-782.

[25]Benson CA,Deek SG,Brun SC,et al.Safety and antiviral activity at

48weeks of lopinavir/ritonavir plus nevirapine and2nucleoside re2 verse transcriptase inhibitors in human immunodeficiency virus type 12infected protease inhibitor2experienced patients[J].J Infect Dis, 2002,185:599-607.

[26]Devereux HL,Y oule M,Johnson MA,et al.Rapid decline in de2

tectability of HIV21drug resistance mutations after stopping therapy [J].AIDS,1999,13(18):F123-7.

[27]Verhofstede C,Wanzeele FV,Van Der Gucht B,et al.Interruption

of reverse transcriptase inhibitors or a switch from reverse transcrip2 tase to protease inhibitors resulted in a fast reappearance of virus strains with a reverse transcriptase inhibitor2sensitive genotype[J].

AIDS,1999,13(18):2541-6.

[28]Hirsch MS,Brun2Vezinet F,Clotet B,et al.Antiretroviral drug resis2

tance testing in adults infected with human immunodeficiency virus type1:2003recommendations of an international AIDS society2USA panel[J].Clin Infec Dis,2003,37:113-28.

[29]The EACS Euroguidelines Group.European guidelines for the clini2

cal management and treatment of HIV2infected adults in Europe[J].

AIDS,2003,17(suppl2):S32S26.

细菌耐药性的产生机制

福建金谷科技专栏 由福建金谷科技开发有限公司供搞细菌耐药性的产生机制 梅景良福建农林大学动物科学学院%"$$$# 随着磺胺药和抗生素等抗菌药物在临床上的广泛应用和长期使用,细菌等病原微生物的耐药株已逐年增多,导致抗菌药物的疗效越来越差。如对青霉素的耐药菌株,开始使用时仅有+,,近年来已达--,,有的报道认为在.$,以上。因此,细菌的耐药性问题已经成为细菌性疾病化学治疗中非常严重的一个问题,对细菌耐药性产生机制的研究在临床兽医学上具有极其重要的意义。本文简要地介绍了细菌耐药性的产生机制。 大家知道,自然界中存在的致病菌种类繁多,人们所使用的抗菌药物种类也很多,即使是同一种致病菌,对不同抗菌药其产生耐药性的机制也有可能存在很大的差别,因此,细菌耐药性的产生机制级为复杂。但是,通过大量的研究结果,人们发现细菌耐药性的生成只不过是细菌在生存中发挥其对药物的适应性或细菌偶然发生遗传基因突变所产生的后果。具体地说,细菌有可能是自发的,也有可能是在外界药物等因素的作用下发生了遗传基因的改变,产生了耐药基因,然后在耐药基因的介导下,进行/0*1的转录和蛋白质及酶的转译,从而导致细菌的形态结构和生理生化机能等发生了变化,使细菌获得了耐受抗菌药的能力。由此可见,遗传基因发生改变并产生耐药基因是细菌产生耐药性的第一步骤,在耐药基因介导下转录/0*1是细菌产生耐药性的第二步骤,以/0*1为模板转译合成蛋白质或酶,并最终导致细菌的形态结构和生理生化机能发生改变是细菌产生耐药性的第三步骤。当然,这三个步骤的划分是为了阐述的方便而人为界定的,其实这三个步骤是不可分的,因为细菌耐药性的产生是一个统一而完整的过程。 2细菌遗传基因发生变化细菌的遗传物质包括3*1和0*1两种,其中3*1主要存在于染色体上,也有少量3*1存在于质粒当中。不管是染色体中的3*1,还是质粒3*1,都能单独地进行准确地复制,将其遗传信息稳定地传给下一代。但是,细菌在生长繁殖过程中,也有可能受到一些外界因素影响或自发突变,使遗传物质发生改变,并有可能出现耐药基因,导致细菌的某些性状发生了改变,使细菌产生了耐药性。 根据引起细菌3*1遗传基因发生变化的原因不同,可将之分为三种情况:!天然存在耐药基因;"突变产生耐药基因;#质粒传递产生耐药基因。 2)2天然存在耐药基因这是在细菌与任何抗菌药接触之前就已经存在于染色体3*1或质粒3*1之种的遗传基因,它是细菌的遗传特征,由细菌的遗传信息所决定,一般是不会改变的。天然耐药基因的出现和存在与外界因素的影响无关,因此,天然存在的耐药基因所介导产生的细菌耐药性我们称之为先天耐药性。如对许多抗生素具有屏障作用的细菌细胞壁,就是先天耐药性的表现形式之一。 2)#突变产生耐药基因各种理化因素,如各种超短波辐射、高温诱变效应、低浓度诱变物质及细菌自身的代谢产物,尤其是过氧化氢的长时期综合作用,都可诱发细菌发生基因突变。除此之外,突变也可为细菌3*1在没有任何人为因素干扰条件下自发变化所产生。突变以后,新形成的突变基因中就有可能出现耐药基因。有人认为,自发突变是产生突变耐药基因的主要方式。2)%质粒传递耐药基因质粒是存在于染色体外的3*1。质粒常带有多种耐药基因而成为耐药质粒,它广泛存在于革兰氏阳性和革兰氏阴性细菌中,并可通过转化、转导、接合、转座等方式将耐药基因从耐药菌转移到敏感菌体内,由此而使敏感菌产生了耐药基因。 一般来说,先天存在的耐药基因所介导产生的先天耐药性是造成抗菌药具有不同抗菌谱最主要的原因,对细菌而言也是一种最重要的耐药性。由耐药质粒传递的耐药基因介导产生的耐药性由于具有横向传播性,可在短期内造成耐药菌的大量出现,因此,这种耐药性是人们在进行临床化学治疗中最为重要的一种耐药性。由突变耐药基因介导的耐药菌的生长和细胞分裂变慢,对其它细菌包括未发生突变的细菌的竞争力也变弱,因而突变产生的耐药性仅居次要地位。 #细菌/0*1发生变化细菌3*1遗传基因因变化而产生了耐药基因后,就可以耐药基因为模板进行转录,并形成相应的/0*1,这是细菌体内原先所没有的新的/0*1。新的/0*1是细菌产生耐药性所必需的,它是连接耐药基因和最终耐药性之间的桥梁。 这里需要说明的一点是,不同的耐药基因其转录/0*1的状态是不相同。有些细菌虽然具有耐药基因,但因其尚未进入转录状态,不能合成相应的/0*1,因此,细菌就不具备抵抗抗菌药的能力,即不具有耐药性。有些细菌从一开始,其耐药基因就处于不断转录之中,从而导致细菌产生了天然耐药性。另外,有些细菌则必需要有抗菌药的存在,其耐药基因才进入转录状态而产生耐药性,一旦抗菌药不再存在,其耐药基因的转录就停止,从而导致耐药性消失而恢复敏感性。因此,根据研究结果,现在一般认为,当细菌处于生长状态下,在任何特定时刻仅有大约",的基因组是处在高活性和转录之中,其它基因组或者沉默,或者以十分低

常见致病菌耐药机制与应对措施

2014年第二季度细菌耐药监测结果预警与应对策略由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。 2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M 型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M 型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpCβ-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。

细菌主要耐药机制

细菌主要耐药机制 1.产生灭活抗生素的各种酶 1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。 1.1.1超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs) ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。 国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议。 1.1.2头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。 通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。 实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突

常见细菌的耐药趋势和控制修订稿

常见细菌的耐药趋势和 控制 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

常见细菌的耐药趋势和控制 北京大学第三医院宁永忠 细菌的耐药主要内容包括三个方面:一个是相关的基本知识;第二个是国内常见细菌耐药的现状和趋势;第三是耐药的控制。 一、相关的基本知识 首先我们来看一下基本的知识。第一我们来看一下微生物,微生物它就是肉眼看不见的一些微小的生物,它在微观的世界里有一个真实的存在。它会导致人类的感染,所以我们会称之为病原。目前临床上主要有四类微生物:病毒、细菌、真菌、寄生虫。这四大类微生物都出现了我们今天的主题--耐药,只不过它们的严重程度不一致而已。下面一个概念我们来看一下感染性疾病,它指的是微生物导致的有临床证据的这样一个疾病,这个临床证据包括症状、体征、免疫学反应和微生物学证据。在临床医学领域各个病种当中,感染性疾病的发病率最高。应该说我们所有的人都得过感染性疾病,感染性疾病很多时候还会表现为中、重度一个临床表现。这个时候是必须治疗的,因为不治疗预后不良,甚至会出现死亡。感染性疾病还有一个特点,就是有传播性,病原可以传播,感染性疾病的传播性甚至会影响到社会历史进程、影响到人类的行为和心理。这个是感染性疾病不同于其他临床医学病种的很重要的一个特征。刚才提到感染性疾病需要治疗,我们治疗用的特异性的药物就是抗微生物药物,它指的就是特异性的抑制、杀灭微生物的这样一些药物,在细菌领域里主要就是抗生素。目前抗微生物药物效力下降的主要的一个原因就是耐药,有些时候这个效力会完全消失。因此临床上治疗无效的时候,耐药是很主要的一个原因。 另外耐药涉及到的概念也比较多,比如说生物学耐药和临床耐药,环境介导的耐药和微生物介导的耐药,天然耐药和获得性耐药,这里面天然耐药和获得性耐药这一对概念比较重要,给大家展开说一下。天然耐药指的是这个菌种在鉴定到种的时候就可以明确的耐药,也就是说一个菌种内所有的菌株都具有的耐药的特点。这一类耐药特点,一般是人类在应用抗生素之前就已经存在的,是纯自然的情况下形成的一个耐药的特点。而获得性耐药,指的是这个基因在菌种的层面是不能够确定是否存在的,只有到具体的菌株的层面,同一个菌种内不同的菌株它的耐药性可能不同,有的菌株有这个耐药性,有的菌株没有这个耐药性。这一类耐药性基本上都是人类应用抗生素之后,在人类的抗生素使用的选择压力下产生的耐药。此外还有原发性耐药和继发性耐药,表型耐药和基因型耐药,交叉耐药和多重耐药,低水平耐药和高水平耐药,异质耐药性等等这些概念。

常见致病菌耐药机制与应对措施

2014年第二季度细菌耐药监测结果预警与应对策略 由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

备注:耐药率超过30%的抗菌药物,提示“预警抗菌药物”;耐药率超过40%的抗菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。 2 细菌产生耐药性机制 2.1 铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M 型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M 型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpC β-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3 肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。

病原微生物第6章 细菌的耐药性习题与答案

第 6章细菌的耐药性 一、选择题 A型题 1、编码细菌对抗菌药物耐药性的质粒是: A. F 质粒 B . R 质粒 C. Vi 质粒 D. Col 质粒 E. K 质粒 2、固有耐药性的产生是由于: A. 染色体突变 B. 接合性 R 质粒介导 C. 非接合性 R 质粒介导 D. 转座因子介导 E.细菌种属特异性所决定 3、获得耐药性的产生原因不包括: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 非接合性 R质粒介导 D. 接合性 R质粒介导 E. 转座因子介导 4、关于 R 质粒的描述,下列哪项是错误的: A. R 质粒是耐药性质粒 B. R 质粒可通过接合方式传递 C. R 质粒在肠道菌中更为常见 D. R 质粒在呼吸道感染细菌中更为常见 E. R 质粒由 RTF 和 r 决定子组成 5、R 质粒决定的耐药性的特点不包括: A. 以多重耐药性较为常见 B. 可从宿主菌检出 R 质粒 C. 容易因质粒丢失成为敏感株 D. R 质粒的多重耐药性较稳定 E. 耐药性可经接合转移 6、细菌耐药性产生的机制不包括: A. 钝化酶的产生 B. 药物作用靶位的改变 C. 抗菌药物的使用导致细菌发生耐药性基因突变 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 X 型题 1、下列基因转移与重组的方式中,哪些与细菌的耐药性形成有关? A.转化 B.转导 C.接合 D.溶原性转换 E.原生质体融合 2、获得耐药性发生的原因: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 抗菌药物的使用 D. R 质粒介导 E. 转座因子介导 3、细菌耐药性的控制策略: A. 合理使用抗菌药物 B. 严格执行消毒隔离制度 C. 研制新抗菌药物 D. 研制质粒消除剂 E.采用抗菌药物的“轮休”措施 4、细菌耐药性产生的机制 A.抗菌药物的使用导致细菌发生耐药性基因突变 B. 药物作用靶位的改变 C. 钝化酶的产生 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 二、填空题 1、细菌耐药性产生的机制主要有,,和 。 2、引起细菌耐药的钝化酶主要有,, 和。 3、细菌耐药性的控制策略有,,,, 和。 三、名词解释 1、耐药性(drug resistance); 2、固有耐药性(intrinsic resistance); 3、获得耐药性(acquired resistance); 4、R质粒(resistance plasmid)。 四、问答题

细菌耐药性监测及预警机制

细菌耐药性监测及预警机制 多重耐药菌感染已成为延长患者住院时间、增加医疗费用和导致患者死亡的重要原因。为了加强对多重耐药菌感染监控与细菌耐药预警,更好地为临床合理使用抗菌药物提供科学依据,依照卫生部卫办医政发(2011)5号《多重耐药菌医院感染预防与控制技术指南(试行)》、卫生部(卫生令第84号)《抗菌药物临床应用管理办法》及卫办医政发(2009)38号《关于抗菌药物临床使用管理有关问题的通知》的精神,结合我院具体情况,现就建立完善细菌耐药监测与预警机制相关工作要求如下,请科室立即遵照执行。 一、临床科室 (一)对多重耐药菌感染患者或定植高危患者要进行监测,高危患者:(如1、长期住院患者;2、在ICU内;3、高龄、营养不 良及慢性疾病病人;4、机体免疫低下;5、前期使用多种抗生 素;6、外科手术、创伤及烧伤;7、侵袭性诊断;8、使用呼 吸机;)通过对无感染症状患者的标本(如鼻试纸、咽试纸、 伤口、气道内、肛试纸或大便)进行培养、监测,发现MDRO 定植患者;及时采集有关标本送检,并追踪结果,以及时发现、 早期诊断多重耐药感染患者。属医院感染,应在24小时内填 《医院感染上报表》报告感控科。 (二)科内及科间告知制度: 1、主管医生发现或接到检验科室多重耐药菌感染病例报告,应立即开“特殊疾病护理”医嘱,报告科室主任及科室感控员。

2、感控员应在早交班上告知全科医护人员。 3、护士感控员落实消毒、隔离措施,并填报《耐药菌控制措施督查表》。 4、责任护士负责告知家属及陪护人员相关隔离常识。 5、主管医生根据患者治疗情况判断解除隔离的时机,如果患者转科/转院或死亡,护士做好多重耐药菌患者床单元的终末消毒。 6、转床、转科、送医技科室辅助检查或需要手术治疗时应告知相关科室的接诊医生或护士,做好消毒隔离。 7、感控员及时对耐药感染预防控制措施的有效性进行追踪总结。(三)科室短时间内发生特殊耐药表型或3例以上名称相同、耐药表型相同的耐药菌病例,应立即向感控科报告。班外时间、节假日报院总值班,院总值班通知感控看负责人。 (四)科室应按《多重耐药菌管理流程》落实相关院感防控措施。(五)应了解医院前五位目标细菌及科室(重点科室)前五位目标细菌名称及耐药率,根据细菌耐药性情况分析和耐药预警报 告,指导经验性使用抗菌药物。 二、检验科 (一)应及时对临床送检标本进行细菌培养及药敏,发现多重耐药菌应填写《多重耐药菌病人交接班登记本》并及时通知 临床科室,及感控科。 (二)一旦发现特殊耐药表型或短时间内某一病区有3例及以上某耐药表型相同病原菌,应立即通知感控科及相关临床

细菌耐药性干预措施

细菌耐药性干预措施 铁岭市中医医院 细菌产生耐药性机制及干预措施 细菌的耐药性又称抗药性,一般是指细菌与药物多次接触后,对药物的敏感性下降甚至消失,致使药物对耐药菌的疗效降低或无效。 一、耐药性产生机制 1.产生灭活酶 灭活酶有两种,一是水解酶,如β-内酰胺酶可水解青霉素或头孢菌素。该酶可由染色体或质粒介导,某些酶的产生为体质性(组构酶);某些则可经诱导产生(诱导酶)。二是钝化酶又称合成酶,可催化某些基团结合到抗生素的OH基或NH2基上,使抗生素失活。多数对氨基甙类抗生素耐药的革兰阴性杆菌能产生质粒介导的钝化酶,如乙酰转移酶作用于NH2基上,磷酸转移酶及核苷转移酶作用于OH基上。上述酶位于胞浆膜外间隙,氨基甙类被上述酶钝化后不易与细菌体内的核蛋白体结合,从而引起耐药性。 2.改变细菌胞浆膜通透性 细菌可通过各种途径使抗菌药物不易进入菌体,如革兰阴性杆菌的细胞外膜对青霉素G等有天然屏障作用;绿脓杆菌和其他革兰阴性杆菌细胞壁水孔或外膜非特异性通道功能改变引起细菌对一些广谱青霉素类、头孢菌素类包括某些第三代头孢菌素的耐药;细菌对四环素耐药主要由于所带的耐药质粒可诱导产生三种新的蛋白,阻塞了细胞壁水孔,使药物无法进入。革兰阴性杆菌对氨基甙类耐药除前述产生钝化酶外,也可由于细胞壁水孔改变,使药物不易渗透至细菌体内。

铁岭市中医医院 3.细菌体内靶位结构的改变 链霉素耐药株的细菌核蛋白体30S亚基上链霉素作用靶位P10蛋白质发生改变;利福平的耐药性是细菌RNA多聚酶的β’亚基发生改变,使其与药物的结合力降 低而耐药。由质粒介导的对林可霉素和红霉素的耐药性,系细菌核蛋白体23S亚基的腺嘌呤甲基化,使药物不能与细菌结合所致。某些肺炎球菌、淋球菌对青霉素G 耐药,以及金葡菌对甲氧苯青霉素耐药,乃因经突变引起青霉素结合蛋白(PBPs)改变,使药物不易与之结合。这种耐药株往往对其他青霉素(如苯唑或邻氯青霉素)和头孢菌素类也都耐药。 4.其他 细菌对磺胺类的耐药,可由对药物具拮抗作用的底物PABA的产生增多所致;也可能通过改变对代谢物的需要等途径。 二、细菌耐药性的干预措施 l.合理使用抗菌药物,建立细菌耐药性监测网,掌握重要致病菌对抗菌药物敏感程度的准确资料,以便用来指导临床用药。对严重全身感染,要求在用药前先送培养并做药敏试验,以便及时调整临床用药。注意抗菌药物的使用疗程、剂量及给药方式,不随意使用广谱高效抗菌药物,不随意联合用药。 2.严格执行的消毒隔离制度,防止耐药菌的交叉感染,并对耐药菌感染的患者给予隔离。医务人员严格执行洗手制度是防止院内交叉感染的重要措施。 铁岭市中医医院

细菌耐药性

细菌耐药性 细菌耐药性(Resistance to Drug )又称抗药性,系指细菌对于抗菌药物作用的耐受性,耐药性一旦产生,药物的化疗作用就明显下降。耐药性根据其发生原因可分为获得耐药性和天然耐药性。 自然界中的病原体,如细菌的某一株也可存在天然耐药性。当长期应用抗生素时,占多数的敏感菌株不断被杀灭,耐药菌株就大量繁殖,代替敏感菌株,而使细菌对该种药物的耐药率不断升高。目前认为后一种方式是产生耐药菌的主要原因。为了保持抗生素的有效性,应重视其合理使用。折叠 产生原因 细菌耐药性是细菌产细菌耐药性 的现象,产生原因是细菌在自身生存过程中的一种特殊表现形式。天然抗生素是细菌产生的次级代谢产物,用于抵御其他微生物,保护自身安全的化学物质。人类将细菌产生的这种物质制成抗菌药物用于杀灭感染的微生物,微生物接触到抗菌药,也会通过改变代谢途径或制造出相应的灭活物质抵抗抗菌药物。 分类

(intrins细菌耐药性 resistance)和获得性耐药(acquired resistance)。固有耐药性又称天然耐药性,是由细菌染色体基因决定、代代相传,不会改变的,如链球菌对氨基糖苷类抗生素天然耐药;肠道G-杆菌对青霉素天然耐药;铜绿假单胞菌对多数抗生素均不敏感。获得性耐药性是由于细菌与抗生素接触后,由质粒介导,通过改变自身的代谢途径,使其不被抗生素杀灭。如金黄色葡萄球菌产生β-内酰胺酶而耐药。细菌的获得性耐药可因不再接触抗生素而消失,也可由质粒将耐药基因转移个染色体而代代相传,成为固有耐药。 病理机制 细菌产生灭活抗细菌耐药性 酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着新抗生素在临床的应用迅速增长,详细机制见β-内酰胺类抗生素章。氨基苷类抗生素钝化酶:细菌在接触到氨基苷类抗生素后产生钝化酶使后者失去抗菌作用,常见的氨基苷类钝化酶有乙酰化酶、腺苷化酶和磷酸化酶,这些酶的基因经质粒介导合成,可以将乙酰基、腺苷酰基和磷酰基连接到氨基苷类的氨基或羟基上,使氨基甘类的结构改变而失去抗菌活性;其他酶类:细菌可产生氯霉素乙酰转移酶灭活氯霉素;产生酯酶灭活大环内酯类抗生素;金黄色葡糖球菌产生核苷转移酶灭活林可霉素。 2、抗菌药物作用靶位改变:由于改变了细胞内膜上与抗生素结合部位的靶蛋白,降低与抗生素的亲和力,使抗生素不能与其结合,导致抗菌的失败。如肺炎链球菌对青霉素的高度耐药就是通过此机制产生的;细菌与抗生素接触之后产生一种新的原来敏感菌没有的靶蛋

抗药性产生的原因分析与防治

《水产动物疾病学》课程论文 论文题目:对于水产病害防治中的抗药性产生原因 的分析及应对措施 学院:动物科技学院 专业:水产养殖学 年级:2010级 编号: 学号: 姓名: 成绩: 二零一二年五月二十三日

对于水产病害防治中的抗药性产生原因的 分析及应对措施 摘要:病原体在反复接触抗病原体药物后,其反应不断减弱,以至最后能够抵抗药物而不被杀灭或抑制,即被称为抗药性,亦称耐药性。抗药性的本质是耐药病原体的产生和获得性遗传性状的传递。近年来,随着水产养殖业的快速发展,各种防治病害药物的大量频繁使用,病原体产生抗药性的速度和范围均呈上升趋势。耐药性的产生导致生产上用药量的不断增加,抗生素类药物不断的升级换代,而药效越来越差,并形成恶性循环,可以说,抗药性已成为影响水产养殖健康发展和威胁人类公共卫生安全的突出问题,必须引起高度重视。 关键词:水产动物病害防治抗药性 病原体产生抗药性的原因: 抗药性是病原体适应环境和化学药物作用的结果,可分为先天耐药和后天耐药2种。先天耐药是遗传学中个体差异和种群差异的一种表现,同一病原体对不同药物的敏感性差异以及同一群体中的某些个体对一种药物的敏感性呈现差异均与先天耐药有关,先天耐药主要是病原体对药物代谢过快所致。后天耐药通常与用药有关,生产实际中,用药量不足、疗程不够、长期使用同一种或同一类药物以及滥用药物等是导致后天耐药的主要原因,如液化气单胞菌对低剂量土霉素极易产生耐药性,以至于以后大剂量应用时也没有效果。具有类似化学结构和类似抗菌作用机理的药物之间,通常会产生交叉耐药现象,如细菌对四环素产生耐药后,对土霉素同样会产生耐药;不同化学结构的药物之间有时也会产生交叉耐药现象。

害虫产生抗药性的原因及防治措施

害虫产生抗药性的原因及防治措施 摘要从生理性抗性和环境因子两方面简要介绍了害虫产生抗药性的原因,概述害虫抗药性特点,并根据当前使用害虫防治剂的防治手段、用药方式等方面阐述了害虫抗药性的预防措施,以期对促进农业可持续发展有一定帮助,从而使工农业生产取得良好的经济效益、生态效益和社会效益。 关键词害虫抗药性原因防治措施 自从1908年首次发现美国的梨圆蚁对石硫合剂产生抗药性以来(Melander ,1914),害虫抗药性已有百年的历史。到1948年产生抗药性的害虫种类达14 种,到1964年增至224种,1976年增至364 种,1984年增至447种。至今至少有600多种昆虫及螨类已产生了抗药性, 这些害虫中以双翅目与鳞翅目昆虫产生抗药性虫种数量最多(张友军等,1998 )。我国有45种昆虫产生了抗药性, 其中农业害虫36种, 卫生害虫9种(唐振华, 2000)。抗性突出的害虫有棉蚜、棉铃虫、二化螟、小菜蛾、家蝇、淡色库蚊、德国小镰等, 它们对多种药剂均产生了抗药性, 并抗性水平较高。抗性最为严重的是北方棉区的棉蚜和南方蔬菜地的小菜蛾, 它们对拟除虫菊酯的抗性达到万倍以上(姚洪渭等,2002 )。害虫抗药性的危害多种多样, 如导致农药防效降低,造成作物减产; 增加用药量, 加大成本; 增加了对环境的污染, 对鱼虾以及蜜蜂等有益生物的为害, 打破自然界生态平衡; 人畜中毒; 减少某类农药市场的寿命等, 这成为当前植保中一个重要问题。 1.害虫抗药性 世界卫生组织(WHO)1957年对昆虫抗药性作了如下定义: 昆虫具有忍受杀死正常种群大多数个体的药量的能力,并在其种群中发展起来的现象(农化新世纪,2005) 。也指害虫对某一种化学农药或某一些化合物的耐受量增加,抵抗力增强的现象(胡淑霞,2002)。而且这种由于使用了杀虫剂所产生的抗药能力是可以遗传下去的.害虫抗药性主要表现,就是用某种农药防治某种害虫时所需要药剂的浓度和剂量,大大超过原来所需要的浓度和刹量,而要成几倍、几十倍,甚至百倍、千倍的增加,才能达到原来的防治效果,那么这种害虫对这种药剂已经产生抵抗能力了,也就是产生了抗药性。这是昆虫在不利的环境条件下求得生存的一种进化现象。

细菌耐药性监测和预警机制

细菌耐药性监测和预警 机制 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

细菌耐药性监测及预警机制 多重耐药菌感染已成为延长患者住院时间、增加医疗费用和导致患者死亡的重要原因。为了加强对多重耐药菌感染监控与细菌耐药预警,更好地为临床合理使用抗菌药物提供科学依据,依照卫生部卫办医政发(2011)5号《多重耐药菌医院感染预防与控制技术指南(试行)》、卫生部(卫生令第84号)《抗菌药物临床应用管理办法》及卫办医政发(2009)38号《关于抗菌药物临床使用管理有关问题的通知》的精神,结合我院具体情况,现就建立完善细菌耐药监测与预警机制相关工作要求如下,请科室立即遵照执行。 一、临床科室 (一)对多重耐药菌感染患者或定植高危患者要进行监测,高危患者:(如 1、长期住院患者; 2、在ICU内; 3、高龄、营养不良及慢性疾病病人; 4、机体免疫低下; 5、前期使用多种抗生素; 6、外科手术、创伤及烧伤; 7、侵袭性诊断;8、使用呼吸机;)通过对无感染症状患者的标本(如鼻 试纸、咽试纸、伤口、气道内、肛试纸或大便)进行培养、监测,发现MDRO定植患者;及时采集有关标本送检,并追踪结果,以及时发现、早期诊断多重耐药感染患者。属医院感染,应在24小时内填《医院感染上报表》报告感控科。 (二)科内及科间告知制度: 1、主管医生发现或接到检验科室多重耐药菌感染病例报告,应立即开“特殊疾病护理”医嘱,报告科室主任及科室感控员。 2、感控员应在早交班上告知全科医护人员。 3、护士感控员落实消毒、隔离措施,并填报《耐药菌控制措施督查表》。

4、责任护士负责告知家属及陪护人员相关隔离常识。 5、主管医生根据患者治疗情况判断解除隔离的时机,如果患者转科/转院或死亡,护士做好多重耐药菌患者床单元的终末消毒。 6、转床、转科、送医技科室辅助检查或需要手术治疗时应告知相关科室的接诊医生或护士,做好消毒隔离。 7、感控员及时对耐药感染预防控制措施的有效性进行追踪总结。 (三)科室短时间内发生特殊耐药表型或3例以上名称相同、耐药表型相同的耐药菌病例,应立即向感控科报告。班外时间、节假日报院总值班,院总值班通知感控看负责人。 (四)科室应按《多重耐药菌管理流程》落实相关院感防控措施。 (五)应了解医院前五位目标细菌及科室(重点科室)前五位目标细菌名称及耐药率,根据细菌耐药性情况分析和耐药预警报告,指导经验性使用抗菌药物。 二、检验科 (一)应及时对临床送检标本进行细菌培养及药敏,发现多重耐药菌应填写《多重耐药菌病人交接班登记本》并及时通知临床科室,及感控科。 (二)一旦发现特殊耐药表型或短时间内某一病区有3例及以上某耐药表型相同病原菌,应立即通知感控科及相关临床科室。 (三)每季度对全院及重点部门细菌耐药情况进行统计及趋势分析,提交感控科进行审核及发布。 三、医院感染管理科 (一)定期通过检验科提供的微生物检验报告单查看多重耐药菌检出情况,一旦发现多重耐药菌病例及时通知并指导相关科室做好接触隔离工作。

细菌耐药机制

(一)细菌产生灭活酶或钝化酶细菌可产生灭活酶或钝化酶,以此来破坏各种抗菌药物。目前,细菌产生的灭活酶或钝化酶主要是β-内酰胺酶////氨基糖苷类抗菌药物钝化酶///氯霉素乙酰转移酶///MLS(大环内酯类—林克霉素类—链阳菌素类)类抗菌药物钝化酶β-内酰胺酶根据各自的氨基酸序列可分为A、B、C、D共4种分子类别,按照各自的底物、抑制剂及分子结构分为4组,第1组是不被β-内酰胺酶抑制剂克拉维酸抑制的头孢菌素酶,分子量大于30kD,分子类别属C类。大部分由染色体介导,但近年来发现也可由质粒介导。第2组为可被克拉维酸抑制的β-内酰胺酶,为数量最多的一组,一半以上由质粒介导。根据对青霉素类、头孢菌素类、肟类β-内酰胺、氯唑西林、羧苄西林和碳青霉烯类抗菌药物的水解活性分为2a、2b、2be、2c、2d、2e共6个亚组;最近发现的不能被克拉维酸抑制的TEM型酶和染色体介导的A类碳青霉烯酶分属于2br和2f亚组。除2d的分子类别为D 类外,其余各亚组分子类别均为A类。第3组酶的作用需要金属离子如Zn2+的参与,故称为金属β-内酰胺酶。分子类别属B类,不被克拉维酸抑制,但可被乙二胺四乙酸(EDTA)抑制。第4组包括少量青霉素酶,不被克拉维酸抑制,主要由染色体介导。本组分子类别未知。氨基糖苷类抗菌药物钝化酶可修饰抗菌药物分子中某些保持抗菌活性所必须的基团,使其与作用靶位核糖体的亲和力大为降低。这些钝化酶包括氨基糖苷酰基转移酶、氨基糖苷腺苷转移酶或氨基糖苷核苷转移酶和氨基糖苷磷酸转移酶等。MSL类钝化酶,MSL类抗菌药物因其结构的差异,细菌产生的钝化酶也有差异。对红霉素具有高度耐受性的肠杆菌属、大肠埃希氏菌中存在红霉素钝化酶,红霉素钝化酶可酯解红霉素和竹桃霉素的大环内酯结构。氯霉素钝化酶是酰基转移酶(chloramphenicol acetyltransferase,CAT)。该酶存在于葡萄球菌、D组链球菌、肺炎链球菌、肠杆菌属和奈瑟氏菌中,其编码基因可以定位在染色体上,也可以定位在质粒上。(二)细菌药物作用靶位改变β-内酰胺类是临床最常用的抗菌药物,其作用靶点是青霉素结合蛋白(penicillin binding proteins,PBPs)。PBPs是一组位于细菌内膜、具有催化作用的酶,参与细菌细胞壁的合成、形态维持和细菌糖肽结构调整等功能。万古霉素是一种高分子量的糖肽类抗菌药物,它和革兰氏阳性菌的细胞壁肽聚糖前体五肽中的D-丙氨酸-D-丙氨酸末端(D-ala-D-ala)结合,抑制细菌细胞壁蛋白合成。绝大多数临床的革兰氏阳性菌,均对万古霉素敏感。万古霉素也是治疗MRSA临床感染的最为有效的抗菌药物。但因为临床上万古霉素的大量使用及其在使用中的不合理现象,导致了耐万古霉素肠球菌(vancomycin resistant enterococus ,VRE)的出现。VRE可通过DNA获得质粒或转座子以及突变株的发生,而产生耐药性。大环内酯类、林可霉素、链阳菌素、四环素类、氨基糖苷类药物作用靶位改变.此类药物主要通过与细菌核糖体结合,抑制细菌蛋白质合成,而发挥抗菌作用。细菌核糖体由大亚基(50s)、小亚基(30s)构成,亚基中mRNA及蛋白质的改变,可引起与抗菌药物亲和力的变化,而产生对上述几类药物的耐药性。利福霉素类通过与RNA聚合酶结合,抑制细菌转录过程,而到达抗菌效果。耐利福霉素细菌,如大肠埃希菌、结核分支杆菌,编码RNA聚合酶β亚基的基因(rpoB)可产生突变,导致其不易与利福霉素类药物相结合,而产生耐药。喹诺酮可抑制DNA拓扑异构酶活性,阻止DNA复制、修复,染色体分离、转录及其他功能,从而发挥杀菌作用。DNA拓扑异构酶Ⅱ又常称为DNA旋转酶,其基因突变可引起耐药. 磺胺类药物可通过抑制二氢叶酸合成酶或二氢叶酸还原酶,使细菌发生叶酸代谢障碍,而发挥抑菌作用。耐磺胺类药物的细菌的二氢叶酸合成酶或二氢叶酸还原酶与磺胺类药物亲和力

细菌耐药性产生的机制与最新研究进展

细菌耐药性产生的机制与最新研究进展 抗菌新药不断涌现,感染性疾病的发病率和病死率仍居高不下。究其原因,与细菌耐药性的产生明显相关,纵观细菌耐药的历史,几乎是伴随着抗生素诞生之始就有细菌耐药性的存在。目前细菌耐药和多重耐药成为全球关注的问题,掌握细菌对抗生素的耐药机制才能在临床工作中制定出正确的给药方案。 1. 细菌耐药性的产生及其发展概况 微生物为了保护自身会产生一些具有调节本身代谢和杀灭其他微生物作用的代谢产物。这些物质被人类发现并被研制成抗菌药物。细菌在接触过抗菌药物后,就会千方百计地制造出能灭活抗菌药物的物质,例如各种灭活酶,或通过改变自身代谢规律来使抗菌药物失效。这样就形成了细菌的耐药性。早期细菌的耐药性主要表现在某种细菌对某类药物的耐药,例如1940年青霉素问世以后,1951年就发现金黄色葡萄球菌能产生B-内酰胺酶灭活青霉素而对青霉素产生了耐药性。此后60年代、70年代,细菌耐药性主要表现为金黄色葡萄球菌和一般肠道阴性杆菌由于能产生B-内酰胺酶使青霉素类和一代头孢菌素抗菌作用下降,同时也发现细菌能产生不同的酶,可灭活作用于细菌体内蛋白合成的抗生素,形成对这些抗生素不同程度的耐药性。自80年代后期至90年代,人们对阴性杆菌产生的超广谱B-内酰胺酶和染色体介导的?类酶引起了注意,并对由于广泛使用三代头孢菌素引起的对包括三代头孢菌素在内的多种抗生素耐药的多重耐药革兰阴性杆菌的增加所有警惕。 2. 耐药性产生的生物化学机制归纳起来,主要有以下几种情况 (1)干扰或阻断抗菌药物输入细菌细胞的能力。如磷酸霉素与磷酸烯醇式丙酮酸的结构相似,运送磷酸烯醇式丙酮酸的运输系统可用于磷酸霉素的运输。(2)细菌细胞的药物作用位点发生改变,因而降低或失去抗菌药物与细菌的结合能力。如对红霉素、链霉素、春雷霉素、氯霉素、磷酸霉素及利福平等产生的抗药性,均与细菌细胞的药物作用位点的改变有关。(3)使抗菌药物失活或钝化而失去作用。如某些酶使抗生素灭活或钝化,青霉素酶使青霉素失去作用。许多酶可使抗生素失去作用,这些酶受染色体基因或质粒控制。(4)对抗菌药抑制的代谢途径形成替代途径,或称旁路。(5)细菌的

细菌耐药性监测及预警机制

细菌耐药性监测及预警 机制 SANY GROUP system office room 【SANYUA16H-

细菌耐药性监测及预警机制 多重耐药菌感染已成为延长患者住院时间、增加医疗费用和导致患者死亡的重要原因。为了加强对多重耐药菌感染监控与细菌耐药预警,更好地为临床合理使用抗菌药物提供科学依据,依照卫生部卫办医政发(2011)5号《多重耐药菌医院感染预防与控制技术指南(试行)》、卫生部(卫生令第84号)《抗菌药物临床应用管理办法》及卫办医政发(2009)38号《关于抗菌药物临床使用管理有关问题的通知》的精神,结合我院具体情况,现就建立完善细菌耐药监测与预警机制相关工作要求如下,请科室立即遵照执行。 一、临床科室 (一)对多重耐药菌感染患者或定植高危患者要进行监测,高危患者:(如1、长期住院患者;2、在ICU内;3、高龄、营养不良及慢性疾病病人;4、机体免疫低下;5、前期使用多种抗生素;6、外科手术、创伤及烧伤;7、侵袭性诊断;8、使用呼吸机;)通过对无感染症状患者的标本(如鼻试纸、咽试纸、伤口、气道内、肛试纸或大便)进行培养、监测,发现MDRO定植患者;及时采集有关标本送检,并追踪结果,以及时发现、早期诊断多重耐药感染患者。属医院感染,应在24小时内填《医院感染上报表》报告感控科。(二)科内及科间告知制度: 1、主管医生发现或接到检验科室多重耐药菌感染病例报告,应立即开“特殊疾病护理”医嘱,报告科室主任及科室感控员。

2、感控员应在早交班上告知全科医护人员。 3、护士感控员落实消毒、隔离措施,并填报《耐药菌控制措施督查表》。 4、责任护士负责告知家属及陪护人员相关隔离常识。 5、主管医生根据患者治疗情况判断解除隔离的时机,如果患者转科/转院或死亡,护士做好多重耐药菌患者床单元的终末消毒。 6、转床、转科、送医技科室辅助检查或需要手术治疗时应告知相关科室的接诊医生或护士,做好消毒隔离。 7、感控员及时对耐药感染预防控制措施的有效性进行追踪总结。(三)科室短时间内发生特殊耐药表型或3例以上名称相同、耐药表型相同的耐药菌病例,应立即向感控科报告。班外时间、节假日报院总值班,院总值班通知感控看负责人。(四)科室应按《多重耐药菌管理流程》落实相关院感防控措施。 (五)应了解医院前五位目标细菌及科室(重点科室)前五位目标细菌名称及耐药率,根据细菌耐药性情况分析和耐药预警报告,指导经验性使用抗菌药物。 二、检验科 (一)应及时对临床送检标本进行细菌培养及药敏,发现多重耐药菌应填写《多重耐药菌病人交接班登记本》并及时 通知临床科室,及感控科。 (二)一旦发现特殊耐药表型或短时间内某一病区有3例及以

相关主题
文本预览
相关文档 最新文档