第七章 数值积分、微分
- 格式:pdf
- 大小:175.94 KB
- 文档页数:26
数值微分与数值积分数值微分与数值积分是现代计算机科学中非常重要的数学工具。
它们可以用来处理各种研究。
在本文中,我们将讨论这两种方法的基础原理,以及它们在不同领域中的应用。
什么是数值微分?数值微分是指对给定函数进行求导的一种数值方法。
在实际应用中,函数的导数通常很难求得解析解,这时需要使用数值微分的方法来进行近似计算。
数值微分通常是通过在函数的某个点进行差分计算来完成的。
考虑一个函数$f(x)$在某个点$x_0$进行微分的情况。
我们可以计算$f(x_0+h)$和$f(x_0-h)$,其中$h$是一个小的正数。
然后,我们可以计算$[f(x_0+h) - f(x_0-h)]/2h$来得到$f'(x_0)$的近似值。
数值微分的应用非常广泛。
在科学和工程领域中,它通常用于计算物理量相关的导数。
例如,流体力学中的速度梯度、量子力学中的波函数导数,都可以使用数值微分进行近似计算。
此外,在金融领域中,数值微分也可用于计算期权价格等任意变量导数的近似解。
什么是数值积分?数值积分是指对给定函数进行积分的一种数值方法。
与数值微分类似,函数的积分通常很难求得解析解,而不得不使用数值积分的方法来近似计算。
在数值积分中,我们通常使用数值积分公式来计算定义在一个区间$[a,b]$上的函数(如果积分问题是无限积分,我们需要进行变形,将其转化为有限积分问题)。
数值积分公式通常基于插值方法,即将函数转化为一个多项式,并对多项式进行积分。
数值积分也应用广泛。
在科学和工程领域中,它通常用于计算面积、物质质量,以及探测信号的峰值等。
在金融领域中,数值积分也可用于计算期权定价公式的近似解。
数值微分和数值积分的误差分析在应用数值微分和数值积分时,误差是一个重要的考虑因素。
误差源可以来自于采样、采样噪声、近似方法等。
通常,我们使用误差分析来评估误差大小。
数值微分的误差通常归因于选取的$h$值。
当$h$太大时,我们会失去一些重要的信息,如函数的局部斜率。
数值积分与微分方程数值解法数值积分和微分方程数值解法是数值计算中的重要组成部分,在科学计算、工程分析和实际问题求解中起着不可或缺的作用。
本文将介绍数值积分的基本概念和常用方法,以及微分方程数值解法的应用和实现过程。
一、数值积分的基本概念和常用方法数值积分是求解定积分近似值的方法,通过将连续函数的积分转化为离散形式的求和,以达到近似计算的目的。
常用的数值积分方法包括矩形法、梯形法、辛普森法等。
(1)矩形法:将积分区间等分为若干子区间,然后在每个子区间内取点,用函数在相应点处的取值近似代替该子区间内的函数值,最后将所有子区间的函数值相加得到近似积分值。
(2)梯形法:与矩形法类似,但是将每个子区间近似为一个梯形,通过计算梯形的面积来近似计算积分值。
(3)辛普森法:将积分区间等分为若干子区间,然后在每个子区间内取三个点,根据这三个点构造出一个二次函数,并用该二次函数的积分来近似计算积分值。
二、微分方程数值解法的应用和实现过程微分方程数值解法是对微分方程进行近似求解的方法,通过离散化微分方程来构造数值格式,然后通过数值计算来求解。
常用的微分方程数值解法包括常微分方程的欧拉法、改进欧拉法和龙格-库塔法,以及偏微分方程的有限差分法、有限元法等。
(1)常微分方程数值解法:- 欧拉法:根据微分方程的定义,将微分项近似为差分项,通过迭代逼近真实解。
- 改进欧拉法:在欧拉法的基础上,通过利用两个点的斜率来逼近解的变化率,提高精度。
- 龙格-库塔法:通过多次迭代,根据不同的权重系数计算不同阶数的近似解,提高精度。
(2)偏微分方程数值解法:- 有限差分法:将偏微分方程中的一阶和二阶导数近似为差分项,通过离散化区域和时间来构造矩阵方程组,然后通过求解线性方程组来获得数值解。
- 有限元法:将区域进行剖分,将偏微分方程转化为变分问题,通过选取适当的试函数和加权残差法来逼近真实解。
总结:数值积分和微分方程数值解法是数值计算中重要的工具,能够帮助我们处理实际问题和解决科学工程中的复杂计算。
数值积分与微分方法
数值积分
数值积分也叫数值分析,它是一种利用数学模型和计算机技术计算实际问题的方法。
它是一种数学技术,用于解决实际问题中的积分问题,摆脱了定积分的困难,使积分问题更加简单。
主要实现原理是:将积分区间分割成多个短短的积分区间,然后根据其中一种计算方法将积分区间拆分成更小的正方形,计算每一个小正方形的面积加起来,从而得到整个区间的积分值。
数值积分的常见方法有梯形法和辛普森公式,梯形法的原理是将积分区间拆分成多个梯形,将每个梯形的面积加起来,从而得到整个区间的积分值;辛普森公式的原理是将积分区间拆分成多个正方形,分别计算每一个正方形的面积,然后加起来,从而得到整个区间的积分值。
数值积分是一种有效的解决实际问题的方法,它可以用来计算复杂的函数的积分,也可以用来解决实际应用中的复杂问题。
例如,在电力系统中,真实的变动数据可以用数值积分来求解真实的电力发电量。
微分方法
微分方法是一种利用微分几何理论解决数学问题的方法,它通过计算曲面与曲线之间的特征关系,来找出最优解。
第七章 高斯数值积分法对于等参单元推导载荷列阵和刚度矩阵时,需计算如下形式的积分:其中被积函数一般比较复杂,甚至得不到显式。
因此,通常采用数值积分代替函数积分,即在单元内部选取某些点,先计算被积函数在这些点的函数值,然后用这些系数(称为加权系数,简称权)乘上这些函数值,再求总和作为近似积分值。
在有限元法中通常采用精度较高的高斯数值求积分法。
首先介绍一维高斯求积公式式中,()k f ξ是被积函数f 在积分点k ξ处的函数值;k w 是加权系数;n 是所选积分点的数目。
例如取一个积分点01=ξ(此时即1=n ),该点的函数值为1f (如图4.9 (a)),并取加权系数21=w ,则积分这是一种最简单的计算方法,只有当函数()ξf f =是一条直线时,即()ξf f =线之下是一个梯形才是精确的,若()ξf f =是任意曲线,则此计算结果是相当粗糙的。
为了改善精度,在11+≤≤-ξ范围内,取两个对称点1ξ,2ξ其函数值分别为()1ξf 和()2ξf 如图7.1(b ),但是横坐标1ξ、2ξ以及相应的权1w 和1w 需要确定。
为此设()ξf 为三次式,即则而由高斯求积公式于是由式(c )和(d )两式得即为了在3210,,,c c c c 取任意数值时式(d )都是精确的,因此上式两边对应的系数必须相等,则有因此解得实根值得说明的是,上面确定的两个积分点的高斯求积公式(d )对于被积函数是四次以下(不包括四次)的多项式是完全精确的,否则是近似的表达式。
另外,如图7.1(b )所示,用两个矩形面积来表示函数()ξf 在区间[—1,十1]与轴ξ所围的面积,这就是式(d )的几何意义。
图7.1 被积函数f 在积分点处的数值以相同的方法可以处理由3个函数值所组成的近似积分,如图7.1(c )。
对不同的积分点数可确定相应的积分点坐标和加权系数,由此构成高斯积分表,见表7.1。
下面讨论二维、三维的高斯求积公式,对于二重积分可先对ξ积分,而把η视为常量,此时引入一维的高斯求积公式,则有再对η积分有将式(e )代入式(f ),则可得二维的高斯求积公式用相同的方法可以导得三维的高斯求积公式在实际计算中,为了保证计算精度,并且不过分增加计算工作量,高斯积分中的积分点数n 通常可根据等参单元的节点数来选取,对于讨论的平面8节点等参单元和空间20节点等参单元都可以取3=n 。
数值微分与数值积分数值微分和数值积分是数值分析中两个重要的概念和技术。
它们在数学与工程领域中都有着广泛的应用。
本文将介绍数值微分和数值积分的概念、原理和应用。
1. 数值微分数值微分是指通过数值计算方法来逼近函数的导数。
在实际计算中,我们常常需要求解某一函数在特定点的导数值,这时数值微分就能派上用场了。
一种常用的数值微分方法是有限差分法。
它基于函数在离给定点很近的两个点上的函数值来逼近导数。
我们可以通过选取合适的差分间距h来求得函数在该点的导数值。
有限差分法的一般形式可以表示为:f'(x) ≈ (f(x+h) - f(x))/h其中,f'(x)是函数f(x)在点x处的导数值,h是差分间距。
数值微分方法有很多种,比如前向差分、后向差分和中心差分等。
根据实际需求和计算精度的要求,我们可以选择合适的数值微分方法来进行计算。
2. 数值积分数值积分是指通过数值计算方法来近似计算函数的定积分。
在实际问题中,我们经常需要求解函数在某一区间上的积分值,而数值积分可以提供一个快速而准确的近似。
一种常见的数值积分方法是复合梯形法。
它将积分区间分割成若干个小区间,然后在每个小区间上应用梯形面积的计算公式。
最后将所有小区间上的梯形面积相加,即可得到整个积分区间上的积分值。
复合梯形法的一般形式可以表示为:∫[a, b] f(x)dx ≈ h/2 * [f(a) + 2∑(i=1 to n-1)f(x_i) + f(b)]其中,[a, b]是积分区间,h是分割的小区间宽度,n是划分的小区间个数,x_i表示第i个小区间的起始点。
除了复合梯形法,还有其他常用的数值积分方法,比如复合辛普森法、龙贝格积分法等。
根据被积函数的性质和计算精度要求,我们可以选择合适的数值积分方法来进行计算。
3. 数值微分和数值积分的应用数值微分和数值积分在科学研究和工程实践中具有广泛的应用。
以下是一些常见的应用领域:3.1 物理学在物理学中,我们经常需要对物体的位置、速度和加速度进行计算。
(整理)第七章常微分方程数值解第七章常微分方程数值解7.1 引言本章讨论常微分方程初值问题(7.1.1)的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(7.1.1)中f(x,y)对y满足Lipschitz 条件,即存在常数L>0,使对,有(7.1.2)则初值问题(7.1.1)的解存在唯一.假定(7.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点上求的近似.通常取,h称为步长,求(7.1.1)的数值解是按节点的顺序逐步推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题. 7.2 简单的单步法及基本概念7.2.1 Euler法、后退Euler法与梯形法求初值问题(7.1.1)的一种最简单方法是将节点的导数用差商代替,于是(7.1.1)的方程可近似写成(7.2.1)从出发,由(7.2.1)求得再将代入(7.2.1)右端,得到的近似,一般写成(7.2.2)称为解初值问题的Euler法.Euler法的几何意义如图7-1所示.初值问题(7.1.1)的解曲线y=y(x)过点,从出发,以为斜率作一段直线,与直线交点于,显然有,再从出发,以为斜率作直线推进到上一点,其余类推,这样得到解曲线的一条近似曲线,它就是折线.Euler法也可利用的Taylor展开式得到,由(7.2.3) 略去余项,以,就得到近似计算公式(7.2.2).另外,还可对(7.1.1)的方程两端由到积分得(7.2.4)若右端积分用左矩形公式,用,,则得(7.2.2).如果在(7.2.4)的积分中用右矩形公式,则得(7.2.5)称为后退(隐式)Euler法.若在(7.2.4)的积分中用梯形公式,则得(7.2.6)称为梯形方法.上述三个公式(7.2.2),(7.2.5)及(7.2.6)都是由计算,这种只用前一步即可算出的公式称为单步法,其中(7.2.2)可由逐次求出的值,称为显式方法,而(7.2.5)及(7.2.6)右端含有当f对y非线性时它不能直接求出,此时应把它看作一个方程,求解,这类方法称为稳式方法.此时可将(7.2.5)或(7.2.6)写成不动点形式的方程这里对式(7.2.5)有,对(7.2.6)则,g与无关,可构造迭代法(7.2.7)由于对y满足条件(7.1.2),故有当或,迭代法(7.2.7)收敛到,因此只要步长h足够小,就可保证迭代(7.2.7)收敛.对后退Euler法(7.2.5),当时迭代收敛,对梯形法(7.2.6),当时迭代序列收敛.例7.1用Euler法、隐式Euler法、梯形法解取h=0.1,计算到x=0.5,并与精确解比较.解本题可直接用给出公式计算.由于,Euler法的计算公式为n=0时,.其余n=1,2,3,4的计算结果见表7-1. 对隐式Euler法,计算公式为解出当n=0时,.其余n=1,2,3,4的计算结果见表7-1. 表7-1 例7.1的三种方法及精确解的计算结果对梯形法,计算公式为解得当n=0时,.其余n=1,2,3,4的计算结果见表7-1.本题的精确解为,表7-1列出三种方法及精确解的计算结果.7.2.2 单步法的局部截断误差解初值问题(7.1.1)的单步法可表示为(7.2.8)其中与有关,称为增量函数,当含有时,是隐式单步法,如(7.2.5)及(7.2.6)均为隐式单步法,而当不含时,则为显式单步法,它表示为(7.2.9)如Euler法(7.2.2),.为讨论方便,我们只对显式单步法(7.2.9)给出局部截断误差概念.定义2.1设y(x)是初值问题(7.1.1)的精确解,记(7.2.10)称为显式单步法(7.2.9)在的局部截断误差.之所以称为局部截断误差,可理解为用公式(7.2.9)计算时,前面各步都没有误差,即,只考虑由计算到这一步的误差,此时由(7.2.10)有局部截断误差(7.2.10)实际上是将精确解代入(7.2.9)产生的公式误差,利用Taylor展开式可得到.例如对Euler法(7.2.2)有,故它表明Euler法(7.2.2)的局部截断误差为,称为局部截断误差主项.定义2.2 设是初值问题(7.1.1)的精确解,若显式单步法(7.2.9)的局部截断误差,是展开式的最大整数,称为单步法(7.2.9)的阶,含的项称为局部截断误差主项.根据定义,Euler法(7.2.2)中的=1故此方法为一阶方法.对隐式单步法(7.2.8)也可类似求其局部截断误差和阶,如对后退Euler法(7.2.5)有局部截断误差故此方法的局部截断误差主项为,也是一阶方法.对梯形法(7.2.6)同样有它的局部误差主项为,方法是二阶的.7.2.3 改进Euler法上述三种简单的单步法中,梯形法(7.2.6)为二阶方法,且局部截断误差最小,但方法是隐式的,计算要用迭代法.为避免迭代,可先用Euler法计算出的近似,将(7.2.6)改为(7.2.11)称为改进Euler法,它实际上是显式方法.即(7.2.12)右端已不含.可以证明,=2,故方法仍为二阶的,与梯形法一样,但用(7.2.11)计算不用迭代.例7.2用改进Euler法求例7.1的初值问题并与Euler法和梯形法比较误差的大小.解将改进Euler法用于例7.1的计算公式当n=0时,.其余结果见表7-2.表7-2 改进Euler法及三种方法的误差比较从表7-2中看到改进Euler法的误差数量级与梯形法大致相同,而比Euler法小得多,它优于Euler法.讲解:求初值问题(7.1.1)的数值解就是在假定初值问题解存在唯一的前提下在给定区间上的一组离散点上求解析解的一组近似为此先要建立求数值解的计算公式,通常称为差分公式,简单的单步法就是由计算下一步,构造差分公式有三种方法,一是用均差(即差商)近似,二是用等价的积分方程(7.2.4)用数值积分方法,三是用函数的Taylor展开,其中Taylor展开最有普遍性,可以得到任何数值解的计算公式及其局部截断误差。
数值分析中的数值微分与数值积分数值分析是一门重要的数学分支,用于研究如何使用计算机来求解各种数学问题。
数值微分和数值积分是数值分析中的两个基本概念,它们在科学计算和工程应用中具有广泛的应用。
一、数值微分数值微分是通过数值方法来近似计算函数的导数。
在实际计算中,往往很难直接求得函数的导数表达式,这时候数值微分方法就派上用场了。
1. 前向差分公式前向差分公式是最简单的数值微分方法之一,它基于导数的定义,用函数值的差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0)) / h其中h是一个足够小的正数,通常称为步长。
通过取不同的步长h,可以得到不同精度的数值微分结果。
2. 中心差分公式中心差分公式是数值微分中较为常用的方法,它利用了函数值的前向和后向差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0 - h)) / (2h)与前向差分公式相比,中心差分公式的精度更高,但计算量稍大一些。
二、数值积分数值积分是通过数值方法来近似计算函数在某个区间上的定积分值。
定积分在数学、物理等领域中具有广泛的应用,尤其是对于无法用解析方法求解的积分问题,数值积分提供了可行的解决办法。
1. 矩形法则矩形法则是最简单的数值积分方法之一,它将函数在积分区间上分成若干个小矩形,然后计算这些小矩形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * f(x)其中x是[a, b]上的随机点。
2. 梯形法则梯形法则是数值积分中较常用的方法,它将函数在积分区间上分成若干个小梯形,然后计算这些小梯形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * (f(a) + f(b)) / 2梯形法则的精度要比矩形法则要高一些。