当前位置:文档之家› 240V高压直流供电技术交流

240V高压直流供电技术交流

高压直流系统

高压直流电源系统介绍 易国华:非常感谢各位利用给我这个汇报的机会,时间关系,我只讲一些重点。简单介绍一下公司,我们公司的产品主要有四大类,一个是通信电源系统,第二在电力系统当中使用的电力操作电源系统,第三是高压直流系统,应急电源。这是我们在电力行业里面使用的电力操作电源系统,主要在变电站、电厂。这是电力操作电源核心,跟我们通信电源相类似,模块等等。这是应急电源,主要是消防上的,一些大的用户电里面实际上是锂电器。这是室内和室外的系统。 今天主要把时间放到高压直流上面,主要是替代UPS的目的。我们数字机房包括一些计算机终端来供电的,既然高压直流是替代UPS的,必须了解这两个之间的区别。高压直流从AC到DC,UPS比高压直流多一个变换。UPS和高压直流相比存在哪些问题呢?第一个主要多了一个变换效率比较低,第二系UPS的输出采用工频滤波损耗大。UPS控制复杂,可靠性降低。UPS的电池在输入端,如果UPS本身出故障,他一定要保证自己不出问题才可以不间断。UPS并机要需要同频、同相、同电位,并机复杂,可靠性低。我说这个东西也简单,它的可靠性越高。高压直流并机是直流并联,只有同电位的问题,控制非常简单。只要电压相同就可以。UPS系统并联数量上受到限制,高压直流是没有这个限制的,我们实际操作当中一般是40台并联。UPS现在机房使用绝大多数都是1+1并联方式,实际负荷单机往往小于40%,这样一来单台机的运行效率很低,70%左右。高压直流现在使用是N+1方式,因此它的符合可以达到70-80%,一般涉及到80%以下。现在的高压直流效率在30%的负载的时候可以做到92%,我们的效率在92%以上。 值得一提是高压直流这种N+1方式维护起来非常的方便,大家知道大型UPS出故障之后大家都傻眼了,没有什么招了。而高压直流由于电池的存在,N+1的系统最大的好处我个人认为实际上是维护,你不太担心他。

高压直流供电

高压(240V及以上)直流IDC机房供电方案 高压直流供电系统从提出到实施已有3到5年时间了,其优点在这就不再罗列,相信各位都有了解,比如节能、维护方便等,但也存在一些致命弱点,比如浮地输出绝缘问题、割接安全性问题等,下面我们主要讨论一下直流IDC机房供电方案。 目前IDC机房内服务器基本采用交流输入,主要由UPS通过如并机冗余n+1系统、串并联冗余、双总线、双回路等系统供电方式来提供可靠供电,但往往导致整个系统复杂多变,增加了维护难度和成本。而高频直流模块化开关电源已是成熟产品,供电模式简单、维护方便、成本低、效率高,但与-48伏系统又存在一定差别,主要是一、电压高,操作危险性大; 二、高压直流供电系统输出浮地,对线缆耐压和绝缘程度要求高;三、由于高压直流供电是对现有交流服务器不改造实施,供电安全性可靠性必须有充分认证后再实施,避免引起服务器自带AC-DC变换器高低压保护而停止服务。 至于供电方案仍以分散供电为主,我初步考验以下几种: 一、单系统双路由方式:(目前机房-48V传输供电方式) 该供电方式与目前机房-48V传输供电方式一样,由一套系统提供两路主、备高压 直流电源。 优点:1、采用一套高压直流系统,结构简单,成本低。 2、输出采用双回路,可靠性较高。 3、效率高,但系统负载率可达70%以上。 缺点:仍存在单点故障隐患。

二、双系统双路由供电方案:(类似UPS并机冗余n+1系统) 优点:采用两套系统,可靠性高。 缺点:1、投资大、结构复杂。 2、效率低,但系统负载率必须控制在40%以内。 三、不同系统双路由供电方案:

优点:采用两套不同系统,可靠性高。可在现有系统中实施改造,增加一套高压直流系统,对重要双电源输入服务器实施改造 缺点:1、投资大、结构复杂。 2、效率低,但系统负载率必须控制在40%以内。

240V高压直流说明书

240V高压直流系统 说 明 书

1.1 整流模块说明书 RM24020-Ⅲ系列模块简介 RM24020-Ⅲ系列模块是电源最主要的配置模块,广泛应用于通信行业及电力行业10kV到550kV的变电站电力电源中。 RM24020-Ⅲ系列模块采用风冷的散热方式,在轻载时自冷运行,符合电力系统的实际运行情况。 型号说明 RM 240 20 -III 产品版本号 额定输出电流20A 额定电压输出240VDC 整流模块 工作原理概述 以RM24020-Ⅲ模块的工作原理框图如下图所示。 图1 RM240D20-Ⅲ模块原理图 RM24020-Ⅲ模块由三相无源PFC和DC/DC两个功率部分组成。在两功率部分之外还有辅助电源以及输入输出检测保护电路。 前级三相无源PFC电路由输入EMI和三相无源PFC组成,用以实现交流输入的整流滤波和输入电流的校正,使输入电路的功率因素大于0.92,以满足DL/T781-2001中三相谐波标准和GB/T 17794.2.2-2003中相关EMI、EMC标准。

后级的DC/DC变换器由PWM发生器控制前级PFC输出的DC电压、经过高频变压器输出后再整流滤波输出DC电压等电路组成,用以实现将前级整流电压转换成电力操作系统要求的稳定的直流电压输出。 辅助电源在输入三相无源PFC之后,DC/DC变换器之前,利用三相无源PFC的直流输出,产生控制电路所需的各路电源。输入检测电路实现输入过欠压、缺相等检测。DC/DC的检测保护电路包括输出电压电流的检测,散热器温度的检测等,所有这些信号用以DC/DC的控制和保护。结构及接口 1.模块外观 RM24020-Ⅲ模块的外观如下图所示。 图2 RM24020-Ⅲ模块外观 2.前面板 RM24020-Ⅲ模块前面板如下图所示。

高压直流电源

基于SG3525的3KW逆变电源设计 作者姓名:潘传义电子信息工程一班 指导教师:王生德 本电路利用48V直流蓄电池,可为后端提供3KW,2000V的高压直流电源。本电路设计的初衷是为电子捕鱼器后端产生脉冲波提供2000V直流电压。 本文对开关电源常用的电力电子器件做了简单介绍,重点介绍了 SG3525芯片的内部结构及其特性和工作原理,介绍了开关管MOSFET 的工作原理和开关动态特性等。设计了一款基于SG3525的推挽式DC-DC开关电源,提供高达2000V的直流电压。给出了系统的电路设计方法以及主要电路模块的原理分析和参数计算,特别是对开关电源高频变压器的设计给出了详尽的原理分析和各个参数的详细计算。 本电路采用推挽式开关变换,利用SG3525作为主要的控制芯片,产生两路互补的PWM方波脉冲控制开关管的通断。为提高PWM脉冲的驱动能力,加入桥式功率放大电路。滤波整流电路则采用桥式整流,RC滤波电路。另外,开关管工作频率高达25kHz,为此设计了RCD缓冲电路。考虑到电路环境的复杂性以及元器件的误差,电路在设计时对部分参数留有较大余量。 本电路的不同之处在于:采用两组相同的推挽变换电路且输出串联的设计,对变压器和整流滤波电路进行了有效的分压。产生高电压的同时,并没有大幅提高元器件的耐压要求,从而降低了对各种电力电子器件参数的要求。因而也使得电路的稳定性和可靠性更高。

本电路实现了从直流48V电压逆变到2000V直流电压的DC-DC变换供后续电路使用。本电路技术指标为:1)输入电压:蓄电池提供直流48V;2)输出电压:额定直流2000V;3)输出功率:最大3000W;4)输出波纹:无特殊要求,因此无需稳压电路。该系统工作过程:第一阶段:48V直流输入电压Ui经推挽电路变换成高频交流方波电压; 第二阶段:产生的交流方波电压经整流滤波电路分别产生1000V 直流电压,串联后实现2000V直流输出。 实验结果表明,该电源具有效率高,输出有效电压满足设计要求且运行可靠等优点。

高压直流电源技术的发展现状及应用通用版

安全管理编号:YTO-FS-PD451 高压直流电源技术的发展现状及应用 通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

高压直流电源技术的发展现状及应 用通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 高压直流电源的基本工作原理和应用 高压直流电源是将工频电网电能转变成特种形式的高压电源的一种电子仪器设备,高压直流电源按输出电压极性可分为正极性和负极性两种。高压直流电源已经广泛应用于各行各业,农业领域也有应用,例如农业环境静电除尘,静电喷雾杀虫,农业物料静电喷涂包裹,农产品加工中的静电植绒、农业生物静电效应研究、静电杀菌、农业种子静电处理等等。随着农业科学技术的不断发展进步,农业科学研究和农业工程应用实践对高压静电电源的需求逐年增多,对其精度、性能、规格、品种、类型、体积、智能化操作等方面都提出了许多新的要求,现有的高压直流电源已经不能满足农业领域中的许多需要,研究和开发适合农业领域要求的多种新型直流高压电源已经成为一种客观需求,而且其社会效益和经济效益都比较显著,市场前景比较光明。

恒流高压直流电源

§1 恒流高压直流电源 §1.1 恒流源供电的理论基础 对电除尘器采用恒流源供电,是八十年代中期开始的,虽然它采用了大量的无源元件:电抗器、电容组成L-C变换网络,但却改变了一种供电方式,采用电流源供电。 作为一个供电回路,一般由电源和负载组成,其表征参量为三个,电压、电流和阻抗,以电压作为电源的形式供电(电压源),则电流随负载变化;以电流作为电源的形式供电(电流源),则电压随负载变化。无论是较早的磁饱和放大器电源,还是现在的可控硅电源,均是电压源的特性,一种方式是改变回路的阻抗,进行限流,一种是改变输出电压的平均值(波形),虽然均可以做到“恒压” ,“恒流” 运行,但均是通过控制调整电压来达到的,其主变量,即能直接控制、调整的是电压μ,如图一所示:i=f(u)。而恒流源是一种电流源的概念,能直接控制、调整的是电流i,如图二所示:u=f(i),通过控制和调整电流i做到“恒压” ,“恒流” 、“最佳火花率”等工作状态下运行。 图1 电压源供电i=f(u) 图2 电流源供电u=f(i) 除尘器电场某一局部由电晕放电向火花击穿过渡是需要时间和功率,不论哪一种电源供电,电场处在电晕放电状态,电源所提供的电流则电晕电流,当电场处在火花放电状态,则电源所提供的电流为火花电流,因此在用恒流源供电时,由于电晕放电向火花放电过渡时,放电通道的等效电阻R随电离强度的增加而减小,这样注入到放电通道的功率P=I2(t)R减小,P也减小,抑制了放电的进一步发展,这相当于一个负反馈的物理过程,因此火花击穿的临界电压明显提高,

也就是说使除尘器的伏安特性的正阻区得到了大幅度的延伸,延伸的幅值取决于除尘器的状态和工况条件,一般含尘浓度大、电阻率高的烟尘,除尘器机械缺陷较大的,其伏安特性延伸幅值也大,而且延伸是在r=du/di→0附近,也就是说电压增加几千伏,电流成倍地增加。 从图一、图二的伏安特性可以看出,由于除尘器是具有气体放电特性的一个非线性特性,特别是曲线的后半段具有负阻特性,因此对于同一个电压值,电流可能是多值的,而对同一个电流值来说,电压是单值的,即在某一时刻,除尘器的工作电压是其电流的单值函数,因此,简单地从非线性电路平衡状态的稳定性来考虑,以恒流源来供电时,电压不会发生跳跃,可以稳定工作在r=du/di→0附近,即工作在高的电压和电流下,因为一个电流值,只有一个电压所对应,而电流值是由设备所决定的,因此这种稳定的工作状态不需要反馈控制回路来支撑,而且是本身回路所具有的。所以,用恒流源供电,可以使除尘器工作在较高的功率水平下

高压直流系统学习心得

高压直流设备深入学习心得体会 鉴于交流UPS供电的模式在通信系统中安全性、经济性等方面的问题越来越凸显,主要体现为能耗高、可靠性低、维护扩容难度大及建设成本大。另外由于转型业务、数据通信、各种增值业务平台在电信运营商的比重日趋增大,安全要求、节能要求与电源保障提出了空前高的要求,所以应运而生出现了使用高压直流设备替代传统交流UPS设备的设想及实践实例。 就现在的市场前景及需求,公司组织了一次公司研发的高压直流设备学习,在深入学习的情况下总结一下个人的学习心得体会,探讨一下自己对该类型设备的认知。 一、高压直流设备是什么 随着世界范围内通信行业的高速发展,数据业务的快速增加需求,传统的UPS供电系统的大量应用加剧了通信局站的供电压力,增大了安全隐患,也加大了设备维护工作量。而众所周知直流供电系统的可靠性要远高于UPS供电系统,那么我们能不能找到一种新的供电系统来取代UPS供电系统,消除人们的顾虑呢。因此也就促使产生了一种新型的高压直流供电系统。在国外从上世纪90年代末就已经开始研究,现在因各国的实际供电需求不一也造成此设备输出电压的不一致,譬如我国就采用的是标称为240V的高压直流设备。 高压直流设备系统与传统48V供电系统十分类似,高压直流设备是由多个并联冗余整流器和蓄电池组成的。在正常情况下,整流器将市电交流电源变换为270V、350V或420V 等直流电源,供给受电设备,同时给蓄电池充电。受电设备需要的其它电压等级的直流电源,采用DC/DC变换器变换得到。市电停电时,由蓄电池放电为受电设备供电;长时间市电停电时,由备用发电机组替代市电,提供交流输入电源。与传统的-48V直流电源系统的一样,蓄电池备用时间为1~24h。 二、较UPS的优势 1、能耗低 由于UPS中采用了逆变器,逆变频率为工频50Hz,必须采用工频变压器,所以功率因数低,效率低。正常情况下单机效率一般在60-70%。为保证IT设备用电的安全可靠性,目前通信用UPS电源系统,均配置在线式串联热备份或N+1并机冗余模式;最常见的配置为1+1并机冗余系统或2+1并机冗余系统,这就使得系统效率进一步降低,一般在40-50%,实际使用中业务的发展是一个渐进的过程,兼顾到建设周期和业务发展规划,使得平均使用

高压直流电源系统

高压直流电源系统产品 产品介绍 CP DUM27—240/400型通信用高压直流开关电源系统概述 DUM27—240/400型通信用高压直流供电系统包含交流配电部分、高频开关整流模块、直流配电部分和监控单元组成的柜式直流电源系统。是集有源功率因数校正技术、高频脉宽调制技术、软开关技术、单片机控制技术于一体的高新技术产品。可广泛适用于原交流UPS的所有应用环境,且具有更可靠,更省电,更节省投资的优势。 性能特点 ●高功率密度,单供电柜容量可达120KW ●输入高功率因数,低谐波电流 ●优秀的环境适应能力,宽的电压适应范围 ●完善的监控功能及成熟的电池管理功能 ●扩容灵活,维护方便,模块可热插拔 系统组成 ● CP DPJ05-380/630型交流配电屏 ● CP DUM27-240/400 型高压直流开关电源系统 ● CP DPZ03-240/1000 型高压直流配电屏

● CP DMA10-240/40型高频开关整流器(安装入模块架) ● CP DKD12型监控器(安装入模块架) 主要技术指标 CP DMA10-240/40型高频开关整流器?? 工作环境温度?-5℃~+50℃???????????????????? 交流输入参数 电压:三相三线制?380V±20% 频率:45~65Hz 功率因数:≥0.93 开机浪涌电流:≤20A 输入电流谐波THD:≤9% 电磁干扰:符合GB 9254-1988 直流输出参数???????????? 额定电压:220V 电压范围:190V-286V 输出电流:额定值40A(输出电压286V时) 额定功率:10,000W (AC≥323V) 效率(满载测试):≥93% 限流选择范围:3-42A 均分负载不平衡度:≤±2.5% 电网调整率:≤±0.1% 负载调整率:≤±0.5% 稳压精度:≤±0.6% 温度系数:≤0.02%/℃ 纹波系数: ≤±0.2% 峰—峰杂音电压:≤200mV; 可闻噪声:≤50dB(A)。

课程设计-基于51单片机的数控直流电源设计.doc

基于51单片机的数控直流电源设计 学号:XXXXXXXXXX 姓名:XXX 日期:2013年12月

目录 第1章绪论 (1) 1.1 课题的背景及意义 (1) 1.2 课程设计的主要内容 (1) 第2章系统总体设计 (3) 2.1 方案设计与论证 (3) 2.2 系统总框图 (4) 第3章硬件设计 (6) 3.1 硬件选型 (6) 3.1.1 系统供电部分 (6) 3.1.2 控制器部分 (6) 3.1.3 显示部分 (6) 3.1.4 键盘部分 (6) 3.1.5 数模/模数转换部分 (7) 3.1.6 掉电记忆部分 (7) 3.2 硬件电路设计 (7) 3.2.1 电源模块 (7) 3.2.2 DA转换模块 (8) 3.2.3 电压调整模块 (9) 3.2.4 键盘模块 (10) 3.2.5 EEPROM拓展模块 (11) 3.2.6 显示模块 (12) 第4章软件设计 (13) 4.1主程序流程 (13) 4.2 键盘程序流程图 (14) 4.3 EEPROM读写程序流程 (15) 4.4 DAC0832程序流程 (16) 4.5 TLC1543程序流程 (17) 第5章系统测试及误差分析 (18) 5.1 系统测试 (18) 5.1.1 软件测试 (18) 5.1.2 硬件测试 (18)

5.1.3 系统整体测试 (18) 5.2 误差分析 (19) 结论(心得体会) (21) 参考文献 (22) 附录一 (23) 附录二 (24)

第1章绪论 1.1 课题的背景及意义 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。直流稳压电源是电子技术常用的仪器设备之一,广泛的应用于教学、科研等领域,是电子实验员、电子设计人员及电路开发部门进行实验操作和研究不可缺少的电子仪器。在电子电路中,通常都需要电压稳定的直流电源来供电。而整个稳压过程是由电源变压器、整流、滤波、稳压等四部分组成。然而这种传统的直流稳压电源功能简单、不好控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通的直流稳压电源品种有很多,但均存在以下两个问题:输出电压是通过粗调(波段开关)及细调(电位器)来调节。这样,当输出电压需要精确输出,或需要在一个小范围内改变时,困难就较大。另外,随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。稳压方式均是采用串联型稳压电路,对过载进行限流或截流型保护,电路构成复杂,稳压精度也不高。在家用电器和其他各类电子设备中,通常都需要电压稳定的直流电源供电。但在实际生活中,都是由220V的交流电网供电。这就需要通过变压、整流、滤波、稳压电路将交流电转换成稳定的直流电。滤波器用于滤去整流输出电压中的纹波,一般传统电路由滤波扼流圈和电容器组成,若由晶体管滤波器来替代,则可缩小直流电源的体积,减轻其重量,且晶体管滤波直流电源不需直流稳压器就能用作家用电器的电源,这既降低了家用电器的成本,又缩小了其体积,使家用电器小型化。传统的直流稳压电源通常采用电位器和波段开关来实现电压的调节,并有电压表指示电压值的大小。因此,电压的调整精度不高,读数欠直观,电位器也易磨损。而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。 随着科学技术的不断发展,特别是计算机技术的突飞猛进,现代工业应用的工控产品均需要有低纹波、宽调整范围的高压电源,而在一些高能物理领域,更是急需电脑或单片机控制的低纹波、宽调整范围的电源。 1.2 课程设计的主要内容

240V高压直流-HVDC-供电系统技术应用指导意见

通信用 240V 高压直流(HVDC)供电系统 技术应用指导意见 V 2.1 (报批稿) 2010 年 7 月

目录 1概述 (3) 1.1基本概况 (3) 1.2技术特点 (7) 1.3适用范围 (9) 1.4应用目标 (9) 2规范性引用文件 (9) 3术语和定义 (10) 4规划设计要求 (13) 4.1使用环境条件 (13) 4.2系统标准电压 (13) 4.3系统组成 (14) 4.4系统容量配置 (15) 4.5蓄电池组配置 (15) 4.6系统采用悬浮方式供电 (16) 4.7保护接地方式 (17) 4.8直流配电 (17) 4.9末端设备机架配电及控制方式 (19) 5系统设备技术要求 (19) 5.1系统总体技术要求 (19) 5.2保护功能要求 (21) 5.3告警性能要求 (22) 5.4防雷性能要求 (22) 5.5安全性能要求 (22) 5.6系统电磁兼容性要求 (24) 5.7系统音响噪声要求 (24) 5.8可靠性指标要求 (24) 5.9有效使用年限要求 (24) 5.10监控模块功能要求 (25) 5.11整流模块功能要求 (26) 5.12交流配电功能要求 (27) 5.13直流总输出屏要求 (27) 5.14机房直流配电屏要求 (27) 5.15直流电源列柜要求 (28) 5.16设备外观与结构要求 (29) 5.17包装与标志 (29) 6 IT 设备对 HVDC 的适应性要求 (29) 7工程管理及验收、割接要求 (30) 7.1系统设备安装基本原则 (30) 7.2系统设备安装要求 (30) 7.3工程验收测试项目和要求 (30) 8运行维护要求 (31) 8.1IT 设备对直流电源供电适应性的确认 (31) 8.2IT 设备送电应按下列顺序和要求操作 (31)

超高压直流系统中的换流变压器保护

编号:AQ-JS-02392 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 超高压直流系统中的换流变压 器保护 Converter transformer protection in UHVDC System

超高压直流系统中的换流变压器保 护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

中国联通240V直流供电系统技术规范v1.0

中国联通通信机房配套设备技术规范第一分册 240V直流供电系统技术规范V1.0 China Unicom Telcom Station Ancillary Equipments Technical Specifications Part 1: 240V DC Power Supply System Technical Specification(V1.0) 中国联通公司发布

目次 目次.............................................................................. I 前言............................................................................. II 240V直流供电系统技术规范V1.0 (1) 1 适用范围 (1) 2 规范性引用文件 (1) 3 名词和术语 (1) 4 总则 (2) 5 环境要求 (2) 5.1 240V高频开关电源设备 (2) 5.2 蓄电池组温度范围要求 (3) 5.3 机房洁净度要求 (3) 5.4 设备使用地点 (3) 6 系统组成 (3) 7 设备配置 (4) 7.1 设备配置原则 (4) 7.2 高频整流模块的配置 (4) 7.3 直流配电设备的配置 (5) 7.4 各级开关选择及配置 (5) 8 240V直流设备主要技术要求 (6) 8.1 交流输入 (6) 8.2 直流输出 (6) 8.3 整流模块 (6) 8.4 蓄电池管理功能 (8) 8.5 系统总体技术要求 (8) 8.6 绝缘监察 (8) 8.7 保护功能 (9) 8.8 系统电磁兼容性 (10) 8.9 系统可靠性 (10) 9 导线的选择和布放 (10) 9.1 导线的选择 (10) 9.2 导线的布放 (11) 10 监控系统要求 (11) 10.1 监控系统要求 (11) 10.2 告警系统要求 (12) 11 接地与安全要求 (12) 11.1 接地要求 (12) 11.2 安全要求 (12)

240V高压直流

通信用 240V 高压直流(HVDC)供电系统 技术应用指导意见
V 3.1 (报批稿)
中国电信集团公司 2010 年 8 月

目 1

2 3 4
5
6
7
概述...........................................................................................................................................3 1.1 基本概况...................................................................................................................3 1.2 技术特点...................................................................................................................7 1.3 适用范围...................................................................................................................9 1.4 应用目标...................................................................................................................9 规范性引用文件.......................................................................................................................9 术语和定义.............................................................................................................................10 规划设计要求.........................................................................................................................13 4.1 使用环境条件.........................................................................................................13 4.2 系统标准电压.........................................................................................................13 4.3 系统组成.................................................................................................................14 4.4 系统容量配置.........................................................................................................15 4.5 蓄电池组配置.........................................................................................................15 4.6 系统采用悬浮方式供电.........................................................................................16 4.7 保护接地方式.........................................................................................................16 4.8 直流配电.................................................................................................................17 4.9 末端设备配电及控制方式.....................................................................................18 系统设备技术要求.................................................................................................................19 5.1 系统总体技术要求.................................................................................................19 5.2 系统保护功能要求.................................................................................................21 5.3 告警性能要求.........................................................................................................22 5.4 防雷性能要求.........................................................................................................22 5.5 安全性能要求.........................................................................................................22 5.6 系统电磁兼容性要求.............................................................................................24 5.7 系统音响噪声要求.................................................................................................24 5.8 可靠性指标要求.....................................................................................................24 5.9 有效使用年限要求.................................................................................................24 5.10 监控模块功能要求.................................................................................................24 5.11 整流模块功能要求.................................................................................................25 5.12 交流配电功能要求.................................................................................................26 5.13 直流总输出屏要求.................................................................................................27 5.14 机房直流配电屏要求.............................................................................................27 5.15 直流电源列柜要求.................................................................................................28 5.16 设备外观与结构要求.............................................................................................28 5.17 包装与标志.............................................................................................................29 IT 设备对 HVDC 的适应性要求...........................................................................................29 6.1 采用单相交流 220V 供电的 IT 设备 ....................................................................29 6.2 采用三相交流 380V 供电的 IT 设备 ....................................................................29 6.3 IT 设备对 HVDC 的适应性的测试和处理方法...................................................29 工程管理及验收、割接要求.................................................................................................30 7.1 系统设备安装基本原则.........................................................................................30 7.2 系统设备安装要求.................................................................................................30 7.3 工程验收测试项目和要求.....................................................................................30
1

数据中心的高压直流之路教程文件

数据中心的高压直流之路 1.引言 传统的数据中心大都通过UPS来实现掉电保护,通常所有IT负载都要经过UPS来供电,假定实际运行UPS的平均效率为90%(虽然目前UPS最高效率是可以达到95%以上,但我们知道UPS的效率和负载率有关,如左下图所示,随着负载率的提升,效率才会变高,那么正常情况20%-40%负载率下很难会达到最高效率点。根据在运行UPS的实际测试数据,绝大多数情况下的效率不高于90%),那么每100度电,经过UPS这个环节就白白损耗掉10%。不仅如此,我们还需要考虑UPS散发出来的热量需要额外的空调带走,按数据中心典型PUE为1.8来算,那么UPS环节带来的总能耗达18%,很不节能。 (a)UPS效率和负载率的关系(b)传统机房的能耗分布我们还知道UPS设备的拓扑结构比较复杂,因此其单机可靠性一直不是很高。为了解决单点故障问题,通常会引入2N,甚至2*(N+1)的冗余配置,那么这种情况下,虽然一定程度上提升了整个系统的可靠性,但带来的问题其实不少。首先,投资成本双倍增加,而且占用了很多机房的宝贵空间,并增加了运维的复杂度。其次,同前面解释过的一样,UPS系统的负载率在2N情况下会比较低,此时UPS的效率也很低,额外增加了不少电费开销并浪费了很多宝贵的能源。最后,单机UPS的容量可能不够大,那么往往会采用并机模式,同样由于UPS自身结构的复杂性,且并机要求幅度、频率、相位等同,加上并机板自身也为单故障点,并机风险较大。 很多实际发生的案例表明在市电电网正常情况下,但因UPS自身故障引起机房掉电情况。UPS是大容量危险设备,其内部电容等元件寿命只有五年,因此电容击穿、漏液短路等危险也时有发生,轻则造成系统宕机,重则导致机房着火,而且出了事故,第一时间现场无法处理,严

高压直流电源系统-解决方案001

通信数据中心机房 直流供电系统解决方案广东志成冠军集团有限公司

前言 传统的中心服务器机房的供电方式是:(交-直-交)-(交-直)的多级变换结构,交-直-交是UPS 系统。长期的运行证明本方案有:变换级数多,可靠性低、效率低;设备利用率低、投资大、占地大、运营费用高;部分设备输入功率因数低,谐波污染大等诸多弊端。为此人们提出降低变换级数的直流直供、电池直挂方案。即(交-直-)-(直)的变换。本方案的优点是五级变换减少为三级,大大提高了系统的可靠性,大大提高了系统的效率,大大提高了设备利用率。带来了投资成本低、占地少、运行费用低、可靠性高、节能环保等诸多好处。已有的实验局运行表明:该方案可为用户带来:可靠性提高200%,运营费用降低15%,占地面积节省33%,投资成本节省20%,设备利用率由35%提高到90%。从理论上讲服务器输入交流电和输入直流电是一样的。对元器件的要求也是一样的。而且直流输入省去了服务器电源的APFC变换,更是提高效率,提高可靠性,无任何任何不良影响。只需要人们改变一下使用习惯。 志成冠军集团公司根据多年电源研发经验,针对客户需求,响应国家政策,投入人力、物力为通信系统设计了高压直流供电方案:高压直流供电系统。该系统有240VDC、400VDC两种电压等级,配合交流配电柜、直流配电柜、交直流配电柜组成多种系统。针对小功率数据中心设计了融交流配电、直流配电、整流功能为一体的一体化高压直流系统。高压直流电源系统采用最新电力电子技术成果,最新数字控制技术,最新三电平拓扑结构,最新软开关技术,最新监控技术、网络技术、视频技术、电池管理技术、可靠性技术、智能化管理理念等。系统效率高、功率因数高、功率密度高、可靠性高、电磁干扰小。属通信系统的一类设备。满足节能、环保要求的绿色电源。 高压直流电源系统简介 CPHV-400-25A CPHV-240-40A电源系统是志成冠军集团集多年开发和网上运行经验,采用DSP 技术、为满足核心网供电需求而设计的高可靠、高功率密度、高性能全数字化分立式通信电源整流模块,适用于大中小型交换局、数据中心、移动交换局及移动汇接局等场合。该系统由整流柜、交流配电柜及直流配电柜组成,单柜容量达300A(400VDC),并可通过并机扩容方式实现600A(400VDC)容量。系统特点: ?三相三线制宽交流输入电压工作范围。 ?超大系统容量,低输入电流谐波,高功率因数。 ?完善的交、直流侧防雷设计。 ?整流模块采用全面软开关技术及休眠节能技术,高效节能。 ?完善的电磁兼容设计,符合CE、YD/T 983-1998等标准。 ?整流模块无损伤插拔技术,即插即用,更换时间小于1min ?智能化电池管理,有效提高蓄电池组性能及使用寿命

相关主题
文本预览
相关文档 最新文档