当前位置:文档之家› 浅谈脉冲间隔调制解调

浅谈脉冲间隔调制解调

浅谈脉冲间隔调制解调
浅谈脉冲间隔调制解调

浅谈脉冲间隔调制解调

【摘要】为能够实现室内可见光通信调制解调,依据室内可见光通信的一些特点,制定出了传空双头脉冲间隔调制解调的诸多方法。首先针对双头脉冲间隔调制原理,设计出了该调制的符号结构,一方面符号不设置保护时隙,另一方面符号长要固定。其次在上述的基础上给出了这种调制和解调方式的实现系统。系统主要依靠FPGA器件来实现,并利用传空方式来完成信息传输,而且设计出了VHDL语言实施的算法流程,最后制定出调制解调系统并实施实验验证。区别于其他系统,这种调制解调系统的最大优势是无需同步信号,实验结果也同样表明该调制解调方式能够非常有效地应用于可见光的通信。

【关键词】可见光通信;传空脉双头冲间隔调制;脉冲间隔调制;系统设计

目前,室内可见光通信是光无线通信的研究焦点,它以大功率白光LED为光源,发送肉眼不可见的闪烁信号来保证正常通信。通信应用的调制解调方式也就成为了通信的关键技术。目前,光无线通信一般应用的调制方式有:脉冲位置调制、开关键控调制、数字脉冲间隔调制。其中数字脉冲间隔调制与脉冲位置调制相比较,它显著缩小了符号长度,而且增强了传输容量和频带利用率,并且无需同步,信号带宽的利用率也比较高。

1.SDH-PIM的原理

传空双头脉冲间隔调制(SDH-PIM)的原理就是把1个m位二进制数据流映射为2(m-1)+2个时隙的信号,调制手段是由2种不同的引导,其后跟着间隔信息,而且间隔信号为传空信号,由此被称作传空双头脉冲间隔调制。头信号由传空和高电平信号组合而成,宽度是2Ts,它的类型决定了位置信息。假设k 为m 是由二进制数据表示的十进制数,如果k小于2(m-1),头信号被定义成H1,头信号的传空号宽度是Ts/2,高电平的宽度则为3Ts/2,头信号和传输信息位之间的间隔为kTs;如果k大于或等于2(m-1),头信号是H2,头信号的传空号宽度是3Ts/2,高电平宽度则为Ts/2,头信号和传输信息位之间的间隔为(2m-1-k)。不管是以哪种头信号为引导,传输间隔的空号终结后会传输给高电平,符号的长度固定是2(m-1)+2。正是依靠头信号的这种特点,因此能够编程找到1个完整的SDH-PIM 符号而且不需要提取位同步和符号同步信号。头信号除此外还隐藏了位置信息,这个对接收装置的要求相比而言会较高。室内可见光通信应用LED作光源而且兼顾了照明的功能,SDH-PIM舍去了激光通信应用的冗余保护时隙,因此,这有利于增强信息的传输速率。

2.系统的总体设计

通信系统的调制解调的硬件实现形式有多种多样,既可以采用单片机来实现,也可以采用DSP来实现。

本系统硬件主要依靠SDH-PIM 调制发送模块与SDH-PIM接收解调模块组

PWM (脉冲宽度调制)原理与实现

PWM (脉冲宽度调制)原理与实现 1、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<

其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语 音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大

脉冲宽度调制技术的具体应用

脉冲宽度调制 目录[隐藏] 一、脉冲宽度调制基本原理 二、脉冲宽度调制具体过程 三、脉冲宽度调制的优点 四、脉冲宽度调制控制方法 五、脉冲宽度调制相关应用领域 六、脉冲宽度调制技术的具体应用 一、脉冲宽度调制基本原理 二、脉冲宽度调制具体过程 三、脉冲宽度调制的优点 四、脉冲宽度调制控制方法 五、脉冲宽度调制相关应用领域 六、脉冲宽度调制技术的具体应用 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最 广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技 术发展的主要方向之一。 [编辑本段] 一、脉冲宽度调制基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可

脉冲宽度调制

脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 PWM之所以要配置这么多的寄存器是(表中只有少部分不用配置),应因为基本上是定时器不仅有PWM输出还有间隔定时器、方波输出、外部事件计数器、分频器、输入脉冲间隔测量、输入信号的高/低电平宽度的测量、延迟计数器、单触发脉冲输出功能。 首先配置PER0中的TAU0EN为1,允许输入时钟的供应。再用TPS0来分频得到CK01、CK00这两个时钟(在选择的通道0和通道1是的时钟时可以选择一个时钟作为两个时钟,当然也可以一个通道一个时钟)。 接下来是控制定时器单元启停的TE0、TS0、TT0,其中TE0 也就是说在这里我们不用配置。 TS0和TSH0寄存器是触发寄存器,用于初始化定时器/计数器寄存器0n (TCR0n)并开始各通道的计数操作。(启用) TT0和TTH0寄存器为用于停止各通道的计数操作的触发寄存器。(停用) 接下来是控制输出寄存器TOE0、TO0、TOL0、TOM0,其中TOE0寄存器用于允许或禁止各通道的定时器输出。TO0寄存器是各通道的定时器输出的缓冲器寄存器。TOL0寄存器是用于控制各通道定时器输出电平的寄存器。TOM0寄存器用于控制各通道的定时器输出模式。(这里我们选择TOM0的TOM01为1:从属通道输出模式)

PWM(脉冲宽度调制Pulse Width Modulation)原理

1、 PWM原理 2、调制器设计思想 3、具体实现设计 一、 PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<

其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语 音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大

单片机PWM(脉冲宽度调制)原理与实现

、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs< (1) 其中,x{t}是离散化的语音信号;Ts是采样周期;是未调制宽度;m是调制指数。 然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t = k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波xp(t)可以表示为: (2) 其中,。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语音信号x(t)加上一个直流成分以及相位调制波构成。当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,直到最大值,然后变为对奇数序列计数,变化为由大到小。如图3例子。 奇偶序列的产生方法是将计数器的最后一位作为比较数据的最低位,在一个计数周期内,前半个周期计数器输出最低位为0,其他高位逐次增大,则产生的数据即为偶数序列;后半个周期输出最低位为1,其余高位依次减小,产生的数据为依次减小的偶序列。具体电路可以由以下电路图表示: 三、8051中的PWM模块设计:

浅谈脉冲间隔调制解调

浅谈脉冲间隔调制解调 【摘要】为能够实现室内可见光通信调制解调,依据室内可见光通信的一些特点,制定出了传空双头脉冲间隔调制解调的诸多方法。首先针对双头脉冲间隔调制原理,设计出了该调制的符号结构,一方面符号不设置保护时隙,另一方面符号长要固定。其次在上述的基础上给出了这种调制和解调方式的实现系统。系统主要依靠FPGA器件来实现,并利用传空方式来完成信息传输,而且设计出了VHDL语言实施的算法流程,最后制定出调制解调系统并实施实验验证。区别于其他系统,这种调制解调系统的最大优势是无需同步信号,实验结果也同样表明该调制解调方式能够非常有效地应用于可见光的通信。 【关键词】可见光通信;传空脉双头冲间隔调制;脉冲间隔调制;系统设计 目前,室内可见光通信是光无线通信的研究焦点,它以大功率白光LED为光源,发送肉眼不可见的闪烁信号来保证正常通信。通信应用的调制解调方式也就成为了通信的关键技术。目前,光无线通信一般应用的调制方式有:脉冲位置调制、开关键控调制、数字脉冲间隔调制。其中数字脉冲间隔调制与脉冲位置调制相比较,它显著缩小了符号长度,而且增强了传输容量和频带利用率,并且无需同步,信号带宽的利用率也比较高。 1.SDH-PIM的原理 传空双头脉冲间隔调制(SDH-PIM)的原理就是把1个m位二进制数据流映射为2(m-1)+2个时隙的信号,调制手段是由2种不同的引导,其后跟着间隔信息,而且间隔信号为传空信号,由此被称作传空双头脉冲间隔调制。头信号由传空和高电平信号组合而成,宽度是2Ts,它的类型决定了位置信息。假设k 为m 是由二进制数据表示的十进制数,如果k小于2(m-1),头信号被定义成H1,头信号的传空号宽度是Ts/2,高电平的宽度则为3Ts/2,头信号和传输信息位之间的间隔为kTs;如果k大于或等于2(m-1),头信号是H2,头信号的传空号宽度是3Ts/2,高电平宽度则为Ts/2,头信号和传输信息位之间的间隔为(2m-1-k)。不管是以哪种头信号为引导,传输间隔的空号终结后会传输给高电平,符号的长度固定是2(m-1)+2。正是依靠头信号的这种特点,因此能够编程找到1个完整的SDH-PIM 符号而且不需要提取位同步和符号同步信号。头信号除此外还隐藏了位置信息,这个对接收装置的要求相比而言会较高。室内可见光通信应用LED作光源而且兼顾了照明的功能,SDH-PIM舍去了激光通信应用的冗余保护时隙,因此,这有利于增强信息的传输速率。 2.系统的总体设计 通信系统的调制解调的硬件实现形式有多种多样,既可以采用单片机来实现,也可以采用DSP来实现。 本系统硬件主要依靠SDH-PIM 调制发送模块与SDH-PIM接收解调模块组

脉冲宽度调制(PWM)技术原理

一、PWM技术原理 由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。 二、正弦波脉宽调制(sPwM) 1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。度正比于该曲线函数值的矩形脉冲。若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图5 3所示;这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。sPwM方式的控制方法可分为多种。从实现的途径可分为硬件电路与软件编程两种类型;而从工作原理上则可按调制脉冲的极性关系和控制波与载波间的频率关系来分类。按调制脉冲极性关系可分为单极性sPwM和双极性sPwM两种。 3.双极性sPwM法双极性控制则是指在输出波形的半周期内,逆变器同一桥臂中的两只元件均处于开关状态,但它们之间的关系是互补的,即通断状态彼此是相反交替的。这样输出波形在任何半周期内都会出现正、负极性电压交替的情况,故称之为双极性控制。与单极性控制方式相比,载波和控制波都变成了有正、负半周的交流方式,其输出矩形波也是任意半周中均出现正负交替的情况 4.sPwM生成方法正弦脉宽调制波(sPwM)的生成方法可分为硬件电路与软件编程两种方式。按照前面讲述的PWM逆变电路的基本原理和控制方法,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对功率开关器件的通断进行控制,就可以生成SPWM波形。但这种模拟电路结构复杂,难以实现精确的控制。微机控制技术的发展使得用软件生成的SPWM波形变得比较容易,因此,目前SPWM波形的生成和控制多用微机来实现。本节主要介绍用软件生成SPWM波形的几种基本算法。

PWM(脉冲宽度调制)原理与实现

(2) PWM (脉冲宽度调制)原理与实现 1、 PWM 原理 2、 调制器设计思想 3、 具体实现设计 一、 PWM (脉冲宽度调制 Pulse Width Modulation )原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样 值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一 个周期为Ts 的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数 否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 H 谁制泉理国 Lb )関制的渥形酣 通过图1b 的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻 tk 时的语 音信号幅度值。因而,采样值之间的时间间隔是非均匀的。 在系统的输入端插入一个采样保 持电路可以得到均匀的采样信号,但是对于实际中 tk-kTs<

^(0 = — 其中,兀。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语 音信号x(t)加上一个直流成分以及相位调制波构成。当兀心时,相位调制部分引起的 信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。 二、数字脉冲宽度调制器的实现: 实现数字脉冲宽度调制器的基本思想参看图2。 请坏计救器—时钟仁号 u 比君睜一殊冲劇匣韻槪汝 再疗器 RI2歆芋毗神竜嚏谓蕭器同构唱 图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一 个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时, 比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能 信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。 二谜制码十逍舉龜 n o o o o0 0 0 □ 1 02 V 0 m 04 ? fe 1■ If V 1 M 0 02B 1 1 T [ 030 1 1 M 1$1 1 I t o a29 ■* f * 0 0 10!5 o o g i i J 0 0 0 <1 11 图3 为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大

脉冲宽度调制简介

简介 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 编辑本段基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 编辑本段具体过程 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:1、设置提供调制方

位置比较脉冲调制输出

位置比较脉冲调制输出 在Turbo PMAC 系统中PMAC2型伺服IC 有自动脉冲宽度调制(PWM )和脉冲频率调制(PFM )两种电路。有些情况下,这些也不能提供所需要的频率和/或脉冲宽度范围。然而,对于一个备用的编码器通道,它可能使用位置比较输出的自动增加功能得到一个灵活的脉冲宽度或脉冲频率调制信号。 这个技术使用通道内部的PFM 电路,以固定比率增加通道编码器的计数。然后,通过调整A 和B 比较寄存器之间的距离,我们可以控制脉冲宽度,通过调整自动增加的值,我们可以控制脉冲频率。 分析 计数器频率是时钟频率的一个简单函数,这个时钟频率就是PFM 电路的时钟频率 (PFMCLK )并且这个指令值在PFM 寄存器里。默认的9.8304 MHz PFMCLK 频率几乎适合大多数应用。等式需要16位的PFM 指令值(使用24位字的高16位,与标准的M-变量定义一样)得到一个指定的计数器频率是: PFMCLK counter PFM f f C *216= 如果希望写整个的24位PFM 指令寄存器,比如在MACRO 站点,仅将以上等式中的216用224替代。 比较电路的输出频率是计数器频率和比较电路自动增加位置值的函数。根据给定的输出频率得到需要的自动增加值的等式是: output counter comp f f P =? 比较输出的占空比是A 和B 比较寄存器之间的距离和自动增加值的比例。根据给定的占空比(表示成百分比)和自动增加值得到这个距离的等式是: 100 %DutyCycle P AB comp comp ?=? 注意的是当写A 和B 比较寄存器时,它们必须是在当前计数值的两侧;否则自动增加功能将不能正确工作。 简单设置和编程 以下的设置和程序部分可以用于实现这个功能。在这个示例中,我们设置一个计数器频率是500kHz ,它给我们一个占空比1%的分辨率或比较好的5kHz 的脉冲频率。 注意的是实现一个特定脉冲配置的指令可以在一个运动程序或一个PLC 程序里执行;它们甚至可以作为在线指令发送。通常它们将被嵌入到一个运动子程序的传递参数。

脉冲位置调制光谱切片传输中英文翻译

Pulse position modulation for spectrum-sliced transmission Proponents of ultra-wideband (UWB) technology promise todeliver large amounts of data with very lowpower spectral density. The ultra-wideband radio concept is very attractive as it promises to open large amounts of spectrum to a variety of user sand at the same time it claims little interfere nice between users. Unlike conven tional wire less communications systems that are carrier based,UWB-based communications is baseband .It use sase ries of short pulses that spread thee nergy of thes ignal from near DC to a few GHz. One typical technique is to as sign a window in time and shif the position of the pulse with in that window. This is classical pulse position modulation. With band width restrictions effectively removed, UWB promises to speed upwire less data trans ferrates. Some pub lished work has addressed the issue of how many users can the UWB channel support[2][3].This work considered one type of capacity-the capacity interms on the number of users. The capacity was derived from signal-to-no is eratio (SNR)consi derations. Acer tain SNR is required to achieve a specified biterr or probability(BEP).The no is eflo or raises with the number of users. A more fund amentalty peofcapacity is the well known Shannon capacity in bits/s. Our go a list odevelopanunderstanding of thero leofvar iouspara me terso nthe Shannoncapac it yo fUW B commun ications.The well known Shannon!s form ulC=Wlog(l+SNR),where SNR is the 2 signal-to-noiseratio and Wist hechannel band width, predicts the channel capacity Cfor an additive white Gaussiannoise (AWGN) channel with continuousal uedinput sand outputs. This express iondoesnot apply to communications with PPM signals. PP mis a modul ation with discret e-valuedi nputsan dcon tinu ous-val uedoutput s.Further more,P Pmsignalsa reorthogo nal,whichi mposesa naddition alconst raintont hecapacityc alcul ations. Newcapacitycal culations arerequi red,which htakeint oaccountthes econstrain ts.PPMcap acitywas studiedint hecontex tofwireles sinfra reda nd optic alcha nnels[4].The capacityo fPPM modul ationservesas thestarti ngpointtow hichUWB- speci ficcons traintsar eadded.Thec onstraints arethepow erspectr umdensityl imitation underF CCPar t15r ulesand thes preadingra tiocons train t.Sincegiga hertzunoc cupiedslice sofbandwidth arenotavailable atmic rowavef requencies,underFCCreg ulations,U Wbradiomust betreat eda ss p uriousint erferenc etoallother communicat I

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术。

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术。 通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM 型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用 的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合 现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。[编辑本段] 一、脉冲宽度调制基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽P WM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 [编辑本段] 二、脉冲宽度调制具体过程

PWM-(脉冲宽度调制)原理与实现

射频CMOS电路分析与设计 院部:信息工程学院 班级:13电子信息工程 姓名:方贤超 学号:21306021009

PWM (脉冲宽度调制)原理与实现 1、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中

tk-kTs<

相关主题
文本预览
相关文档 最新文档