当前位置:文档之家› 有关高炉炼铁节能减排技术的相关讨论 陈峥

有关高炉炼铁节能减排技术的相关讨论 陈峥

有关高炉炼铁节能减排技术的相关讨论  陈峥
有关高炉炼铁节能减排技术的相关讨论  陈峥

有关高炉炼铁节能减排技术的相关讨论陈峥

摘要:随着环境污染的日益严重,可持续发展的节能减排理念如今被社会各行

业奉为圭臬,特别是对于高炉炼铁行业,受化石燃料资源的日趋匮乏的限制,多

年来该行业一直处于缓慢发展的阶段。在节能减排理念的引导下,高炉炼铁行业

急需更换新技术,进而实现行业优化改革,本文结合国内外高炉炼铁生产的实践

经验,对行业内已经取得效果的高炉炼铁节能减排优良技术进行总结分析,借此

希望能够为我国的高炉炼铁行业的未来发展、减轻企业生产成本压力提供可操作

的思路。

关键词:高炉炼铁;节能减排;技术

引言

我国的高炉炼铁水平在改革开放后实现了飞跃式的发展,2013年炼钢产量突

破7亿吨大关,达到世界高炉炼钢总产量的一半以上,事实证明我国的高炉炼钢

行业已经走在了世界前列。但正因为我国高炉炼钢产量近年来呈现递增趋势,带

动了国际原材料和化石燃料价格的上涨,最终陷入了成品钢铁滞销和出口利润降

低的困境。因此,为改变当前高炉炼铁行业的颓势,节能减排技术的推广成为有

效途径,也被炼铁界所日益重视。

一、高炉煤气回收利用技术

高炉煤气与普通的家用燃气有所不同,其自身带有的化学毒素和烟尘对环境

破坏十分严重,但热值却能达到3000kJ/m3左右,若能加以利用回收,不失为一

种具备可观价值的二次能源。高炉煤气回收技术在国外炼铁界有一定的历史,例

如美国和日本的高炉炼铁工厂都曾经大量应用过此技术,但在我国只有鞍钢开发

过类似高炉煤气回收处理设备。与传统的高炉煤气被释放到高空中逸散相比较,

这种技术存在不少优点,当高炉正常运作时,铁矿石和焦炭需要经过传送带被送

入高温高压的容器内,但在冶炼和布料过程中,高炉内部的压力必须通过炉顶的

泄压装置释放高炉煤气,再经充压后才能继续工作。

经过大量的实验和数据表明,当高炉称料罐内的高炉煤气即将放出时,在低

压差的条件下,打开均压放散阀门或开启上料阀,基本上能回收绝大部分的高炉

煤气,若是再安装一个负抽压装置,即可全部回收高炉煤气。目前这种技术在国

外已经成型运用,但在国内还需要进一步的实验完善。

二、高炉干法除尘技术

通过研究近二十年来的高炉炼铁企业管道事故,不难发现其中绝大多数的事

故发生都是因管道腐蚀引起的,比如某企业建设的一座炼铁高炉,在该高炉运行

的第十年,也就是还未达到设计使用寿命时,其高炉煤气排放管道便出现大规模

腐蚀现象,最后该企业被迫采用管线外部封闭的措施。在事故处理后,有专家学

者发现,近年来我国进口铁矿石比重直线上升,国外的铁矿石中Cl元素含量较多,导致高炉煤气排放中所产生的水蒸气混合Cl和SO2元素,便生成盐酸和次硫酸两种腐蚀性极强的化学物质,近年来这种管道腐蚀现象愈发严重。在德国炼铁界,

则有专家提出干法除尘的概念,该技术不仅能减少炼钢企业污水排放、增加排风

温度,甚至还有人实际核算过,运用高炉干法除尘技术至少可以降低炼铁成本每

吨15到20元人民币。但是对于生产工序不同的企业,可以采用以下两种不同的

方法。

1.化学沉淀法。对于一些采用布袋除尘设备的厂家,建议在出口部位放置一

个喷雾装置,通过喷洒石灰水将Cl和SO2转化为CaCl和CaCO3,为了沉淀转化

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

浅谈高炉操作

浅谈高炉操作 摘要:高炉操作是一项生产实践与理论性很强的工艺流程。本文介绍了高炉冶炼对原燃料(精料)的要求和高炉冶炼的四大基本操作制度(装料制度、送风制度、热制度、造渣制度)以及冷却制度的内容与选择;也介绍了高炉的炉前操作对高炉冶炼的影响,高炉操作的出铁口维护等内容;同时,还阐述了高炉冶炼的强化冶炼技术操作如高炉的高压操作,富氧喷煤操作(富氧操作、喷煤粉操作、富氧喷煤操作),高风温操作(风温对高炉的影响和风温降焦比等)等操作细节。本文介绍的内容对高炉冶炼都很重要,望与高炉的实际情况结合,减少高炉操作失误,从而使高炉冶炼取得更好的经济技术指标。 关键词:基本操作制度、冷却制度、炉前操作、强化冶炼 绪论:中国是世界炼铁大国,2007年产铁4.894亿吨,占世界49.5%,有力地支撑我国钢铁工业的健康发展。进入21世纪以来,我国钢铁工业高速发展,新建了大批大、中现代化高炉。在当前国内外市场经济竞争更加激烈的情况下,各企业都面临如何进一步降低生产成本的问题。在高炉炼铁过程中,如何操作,改善操作,保持炉况稳定进行,降低消耗,提高经济效益是高炉工作者的一项重要任务。在遵循高炉冶炼基本规则的基础上,根据冶炼条件的变化,及时准确地采取调节措施。 一.高炉炼铁以精料为基础 高炉炼铁应当认真贯彻精料方针,这是高炉炼铁的基础.,精料技术水平对高炉炼铁技术指标的影响率在70%,高炉操作为10%,企业现代化管理为10%,设备运行状态为5%,外界因素(动力,原燃料供应,上下工序生产状态等)为5%.。高炉炼铁生产条件水平决定了生产指标好坏。因此可见精料的重要性。 1.精料方针的内容: ·高入炉料含铁品位要高(这是精料技术的核心),入炉矿含铁品位提高1%,炼铁燃料比降低1.5%,产量提高2.5%,渣量减少30kg/t,允许多喷煤15 kg/t。 原燃料转鼓强度要高。大高炉对原燃料的质量要求是高于中小高炉。如宝钢要求焦炭M40为大于88%,M10为小于6.5%,CRI小于26%,CSR大于66%。一般高炉M40要求为大于

高炉炼铁节能浅谈

高炉炼铁节能浅谈 班级: 姓名: 学号:

摘要高炉炼铁节能工作应从三个主要方面着手:(1)加强生产操作和维护的管理,通过技术改造和技术创新,全面推进炼铁技术进步和节能环保工作;(2)重视高炉建设阶段工作,通过多方案比较,采用先进工艺技术及节能技术,包括工艺参数优化和设备选型精细化;(3)关注炼铁上下游工序衔接,选择合理的技术方案。 关键词高炉技术进步节能 1 前言 中国钢铁工业能耗占全国能源消耗的13%~14%。炼铁系统能耗在综合能耗中所占的比例为70%~75%。我国吨钢综合能耗与世界先进水平相比,约高出100 kgce/t。炼铁系统节能将成为我国钢铁工业21世纪技术进步的重点工作之一[2]。 高炉炼铁节能工作是一个复杂的系统性工程,既要有全面的前瞻性规划,也要有全方位的细致工作,需要较大的资金投入,同时也要解决好生产过程节能与环保以及企业经济效益的协调和统筹等方方面面的问题。 本文就有关高炉炼铁工艺几个环节中节能问题提出一些思考。 2 关注高炉炼铁上下游工序衔接环节的节能工作 2.1 高炉矿槽与烧结厂烧结矿筛分以及贮运工序衔接 降低烧结矿返矿率。减少烧结矿在运输环节的破碎率、配合高炉操作增加小矿的利用率。减少烧结矿的重烧率,降低烧结能耗,同时有利于提高烧结矿铁品位、减少厂际之间的往返运输量。烧结矿分级工作尽量在烧结厂进行,以利提高筛分效率,提高烧结矿成品率。成品烧结矿中的大部分不经过成品烧结矿槽,直接送高炉矿槽,减少烧结矿入槽过程破碎。烧结厂成品烧结矿槽作为储存和调剂生产不平衡之用。 2.2 焦化厂干熄焦焦粉及除尘灰用于高炉喷吹 高炉喷吹原煤质量要求较高,时有喷吹原煤供应紧张的情况,焦化干熄焦炉生产过程产生焦粉和除尘粉煤(CDQ粉——COKE DRY QUENCHING)品质可满足高炉喷吹煤的要求。有一些钢铁企业将CDQ粉作为废料外销。鞍钢在十年前已将CDQ粉作为喷吹原煤使用,武钢也于近期采用,年使用量~15万t。 干熄焦装置生产过程中产生的焦粉,其特点是小颗粒状,装卸料过程没有扬尘,物料成分接近焦炭,哈氏可磨性指数低(HGI36%),主要粒度组成在1mm以上;武钢CDQ粉工业分析数据:固定碳~86%,灰分~12%,挥发分~1.2%。 2.3 实现铁钢无缝对接

降低高炉炼铁燃料比的技术措施

仅供参考[整理] 安全管理文书 降低高炉炼铁燃料比的技术措施 日期:__________________ 单位:__________________ 第1 页共12 页

降低高炉炼铁燃料比的技术措施 钢铁产业节能减排的工作重点是在炼铁系统。由于炼铁系统的能耗占钢铁联合企业总能耗的70%左右。节能减排的工作思路是:首先要抓好减量化用能,体现出节能要从源头抓起;其次是要进步能源利用效率;第三是进步二次能源回收利用水平。降低高炉炼铁燃料比就是体现出企业节能工作是要从源头抓起,对企业的节能工作是有着重大意义。 1.降低炼铁燃料比是进步高炉利用系数的正确途径 炼铁学理论上是:高炉利用系数=冶炼强度÷燃料比。也就是说,进步利用系数有两个办法。一个是进步冶炼强度,另一个是降低燃料比。我国中小高炉实现高利用系数主要是采用进步冶炼强度的办法。采用配备大风机,大风量操纵高炉,进行高冶炼强度生产,来实现高利用系数。这种做法就带来高炉的能耗高,不符合钢铁产业要节能降耗的工作思路,应当予以纠正。目前大型高炉吨铁所消耗的风量在1200m3以下,宝钢为950m3左右。而一些小高炉的吨铁风耗是在1400m3左右,甚至有大于1500m3的现象。燃烧1kg标准煤要2.5m3的风,鼓风机产生1m3风要消耗0.85kg标准煤。大风量,高冶炼强度操纵的高炉,燃料比就要升高。所以说小高炉的燃料比要比大高炉高30~50kga。 钢铁产业要实现"十一五"期间GDP能耗要降低20%,主要工作方向就是要在降低炼铁燃料比上下功夫!由于高炉炼铁工序的能耗要占联合企业总能耗的50%左右。 2.高炉炼铁燃料比的现状 国际先进水平的炼铁燃料比是在500kg/t以下,领先水平是在 450kg/t左右。2007年我国重点钢铁企业高炉炉炼铁的燃料比为529kg /t,首钢为464kg/t,宝钢为484kg/t,太钢为491kg/t,武钢为 第 2 页共 12 页

炼铁工序能耗现状和节能

我国炼铁工序能耗现状和节能 王维兴 (中国金属学会) 1、钢铁工业能耗现状 据统计,我国钢铁工业能耗占全国能源总耗的16.2%左右,GDP 值占全国3.2%。2011年前5个月重点钢铁企业吨钢综合能耗600.18 kgce/t,比去年同期下降1.01‰ 表1 2011年前5个月重点钢铁企业各工序能耗情况单位:kgce/t 说明:〈1〉因国家将电力析标系数从0.404kgce/度调整为 0.1229kgce/度,故造成约17%误差,使能耗指标失去连 续性。

〈2〉2010年全国重点钢铁企业产钢5.40亿吨,比上年同期增长11.09%,但重点大中型企业总能耗2009年度比去 年同期仅增长6.81%,说明全行业为节能做出了贡献。 〈3〉我国有一批企业专业工序能耗达到或接近国际水平。 2011年前5个月度工序能耗较低单位: 烧结工序:湘钢(40.04)。新余(42.16). 宣钢(42.24) 太钢(45.23) 重钢(46.54) 成钢(46.42) 宝钢八一 (40.79) 衡管(47.00) 三钢(47.18) 武钢(47.86)。 焦化工序: 建龙(61.29) 湘钢(62.83)新余(74.33)柳 钢(82.49) 太钢(82.78) 鞍钢(82.29)沙钢(84.11) 三 明(89.41) 南钢(89.58) 安钢(93.68)武钢(94.69). 炼铁工序:。涟钢(336.77),宣钢(362.27) 太钢(353.81) 邯钢(364.25),天铁(370.71),新余(374.98) 国丰(375.69) 冷 水江(382.70) 重钢(383.89) 衡管 (384.04),日照(384.19) 杭钢(384.33),建 龙(384.34) 张店(384.88). 〈4〉从表1可看出各企业之间的最高值与最低值工序能耗 水平差距很大,说明我国炼铁系统节能的潜力是很 大的。 〈5〉我国已经掌握相关专业先进的节能工艺、技术、装备、 以及操 作技术。本人认为,不必再向国外购买相关节能技术

炼钢生产流程详细讲解

钢铁生产工艺主要包括:炼铁、炼钢、轧钢等流程。 (1)炼铁:就是把烧结矿和块矿中的铁还原出来的过程。焦炭、烧结矿、块矿连同少量的石灰石、一起送入高炉中冶炼成液态生铁(铁水),然后送往炼钢厂作为炼钢的原料。 (2)炼钢:是把原料(铁水和废钢等)里过多的碳及硫、磷等杂质去掉并加入适量的合金成分。 (3)连铸:将钢水经中间罐连续注入用水冷却的结晶器里,凝成坯壳后,从结晶器以稳定的速度拉出,再经喷水冷却,待全部凝固后,切成指定长度的连铸坯。 (4)轧钢:连铸出来的钢锭和连铸坯以热轧方式在不同的轧钢机轧制成各类钢材,形成产品。 炼钢工艺总流程图

炼焦生产流程:炼业是将焦煤经混合,破碎后加入炼焦炉经干馏后产生热焦碳及粗焦炉气之制程。

烧结生产流程:烧结作业系将粉铁矿,各类助熔剂及细焦炭经由混拌、造粒后,经由布料系统加入烧结机,由点火炉点燃细焦炭,经由抽气风车抽风完成烧结反应,高热之烧结矿经破碎冷却、筛选后,送往高炉作为冶炼铁水之主要原料。 高炉生产流程:高炉作业是将铁矿石、焦炭及助熔剂由高炉顶部加入炉,再由炉下部鼓风嘴鼓入高温热风,产生还原气体,还原铁矿石,产生熔融铁水与熔渣之炼铁制程。

转炉生产流程:炼钢厂先将熔铣送前处理站作脱硫脱磷处理,经转炉吹炼后,再依订单钢种特性及品质需求,送二次精炼处理站(RH真空脱气处理站、Ladle Injection盛桶吹射处理站、VOD真空吹氧脱碳处理站、STN搅拌站等)进行各种处理,调整钢液成份,最后送大钢胚及扁钢胚连续铸造机,浇铸成红热钢胚半成品,经检验、研磨或烧除表面缺陷,或直接送下游轧制成条钢、线材、钢板、钢卷及钢片等成品。 连铸生产流程:连续铸造作业乃是将钢液转变成钢胚之过程。上游处理完成之钢液,以盛钢桶运送到转台,经由钢液分配器分成数股,分别注入特定形状之铸模,开始冷却凝固成形,生成外为凝固壳、为钢液之铸胚,接着铸胚被引拔到弧状铸道中,经二次冷却继续凝固到完全凝固。经矫直后再依订单长度切割成块,方块形即为大钢胚,板状形即为扁钢胚。此半成品视需要经钢胚表面处理后,再送轧钢厂轧延.

浅谈高炉理论煤气流速

摘要本文介绍了高炉理论煤气流速的计算、影响因素及应用,为高炉合理强化冶炼提供理论基础。 关键词高炉强化冶炼理论煤气流速 Abstract This article introduces the calculation, influencing factors and application of coal gas flow rate of blast furnace. And all provide the base for strengthening smelting reasonably of blast furnace. Keywords blast furnace strengthening smelting coal gas flow rate of blast furnace 前言 高炉强化冶炼以后,单位时间内产生的煤气量增加,煤气在炉内的流速增大,煤气穿过料柱上升的阻力上升,高炉炉内向上运动的煤气与向下运动的炉料之间的矛盾越来越突出,如何避免矛盾的爆发成为高炉技术工作者的重要任务,技术工作者先后提出了风量、炉腹煤气量等衡量标准。本文利用理论煤气流速衡量高炉强化幅度,介绍了理论煤气流速的计算、影响因素及应用,理论煤气流速综合考虑了原燃料质量、操作参数及炉型特点对高炉强化幅度的影响,为高炉合理强化冶炼提供理论基础。 1理论煤气流速理论 1.1炉缸煤气量 炉缸煤气量是衡量高炉强化程度的重要参数,随高炉强化幅度提高,炉内料柱实际通过的煤气量增加。计算炉缸煤气量: 公式 1[1] :炉缸煤气量,m3/t;:吨铁入炉风量,m3/t;:鼓风湿度,%;:富氧率,,%;:煤比,Kg/t;:煤粉中水分含量,%;:煤粉的H含量,%;:煤粉燃烧率,%。 1.2理论燃烧温度 适宜的理论燃烧温度须满足高炉正常冶炼所需的炉缸温度和热量,保证液态渣铁充分加热和还原反应的顺利进行。计算理论燃烧温度: 公式 2 :理论燃烧温度,℃;: 1Kg碳氧化成CO时放出的热量,KJ/Kg;:风口前碳素燃烧率,%;:入炉总碳量,Kg/t;:1Kg焦炭在1500℃时带入炉缸的物理热,KJ/Kg;:焦比,Kg/t;:焦炭的碳含量,%;:煤粉的碳含量,%;:在时大气的比热容,KJ/m3.℃;:热风温度,℃;:在时氧气的比热容,KJ/m3.℃;:煤粉在高炉的分解热,KJ/Kg;:水分在高炉的分解热,KJ/Kg;:炉缸煤气在时的比热容,KJ/m3.℃。 1.3理论煤气流速 理论煤气流速以炉缸煤气量为基础,假设风口前区域产生的煤气全部被加热至理论燃烧温度,之后通过炉缸整个横截面向上流出,计算炉缸煤气流出时的流速,以表征高炉的强化幅度。计算理论煤气流速: 公式 3 :理论煤气流速,m/s;:高炉产量,t/日;:炉料空隙系数;:炉缸横截面积,m2;:热风压力,KPa。 2理论煤气流速影响因素

高炉炼铁工序能耗的计算方法

高炉炼铁工序能耗计算方法 发布时间:2011-9-5 来源:中国钢铁企业网作者:王维兴阅读:【收藏此页】【打印】【复制 网址】【字号:大中小】 【中国钢铁企业网/报道】日前,中国钢铁企业网特邀专家顾问王维兴就高炉炼铁工序能耗计算方法作了以下解析: 1.高炉炼铁工序能耗计算统计范围 原燃料供给:矿槽卸料、称量料斗和计量、料车或皮带上料、仪表显示和控制、照明等用电;空调用电、冬季取暖用蒸汽等能源用量。 高炉本体:焦炭(包括小块焦)、煤粉、电力、蒸汽、压缩空气、氧气、氮气、水(新水、软水等)等。 渣铁处理:炉渣处理用电和水,冲渣水余热要进行回收利用。 鼓风:分电力鼓风或气动鼓风。鼓风能耗一般占炼铁总能耗的10%。1m?风需要用能耗0.030kgce/ m?.正常冶炼条件下,高炉消耗1吨燃料,需要2400m?的风量。 热风炉:要求漏风率≤2%、漏风损失应≤5%、总体热效率≥80%、风温大于1200℃,寿命大于25年。 烧炉用高炉煤气折标煤系数0.1143kgce/m3; 转炉煤气折标煤系数0.2286kgce/m3; 焦炉煤气折标煤系数0.6kgce/m3。 热风炉用电力和其它能源工质:蒸汽、压缩空气、水等。 煤粉喷吹:煤粉制备干燥介质,宜优先采用热风炉废气; 用电力、氮气、蒸汽、压缩空气、空调和采暖用能等。 设计喷煤能力要大于180kg/t. 碾泥:用电力和其它能源工质。 除尘和环保:主要是电力(大企业环境保护用电力占炼铁用电的30%左右)、水等。, 铸铁机:电力、水等。 扣除项目:回收利用的高炉煤气,热值按实际回收量计算; TRT余压发电量(电力0.1229kgce/kwh) 2.炼铁工序能耗计算方法

降低高炉炼铁燃料比技术措施方案

整体解决方案系列 降低高炉炼铁燃料比技术 措施 (标准、完整、实用、可修改)

编号:FS-QG-32785降低高炉炼铁燃料比技术措施Technical Measures to Reduce the Blast Furnace Ironmaking Fuel Ratio 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目 标管理科学化、制度化、规范化,特此制定 钢铁产业节能减排的工作重点是在炼铁系统。由于炼铁系统的能耗占钢铁联合企业总能耗的70%左右。节能减排的工作思路是:首先要抓好减量化用能,体现出节能要从源头抓起;其次是要进步能源利用效率;第三是进步二次能源回收利用水平。降低高炉炼铁燃料比就是体现出企业节能工作是要从源头抓起,对企业的节能工作是有着重大意义。 1.降低炼铁燃料比是进步高炉利用系数的正确途径 炼铁学理论上是:高炉利用系数=冶炼强度÷燃料比。也就是说,进步利用系数有两个办法。一个是进步冶炼强度,另一个是降低燃料比。我国中小高炉实现高利用系数主要是采用进步冶炼强度的办法。采用配备大风机,大风量操纵高炉,进行高冶炼强度生产,来实现高利用系数。这种做法就带来高炉的能耗高,不符合钢铁产业要节能降耗的工作思路,

应当予以纠正。目前大型高炉吨铁所消耗的风量在1200m3以下,宝钢为950m3左右。而一些小高炉的吨铁风耗是在1400m3左右,甚至有大于1500m3的现象。燃烧1kg标准煤要2.5m3的风,鼓风机产生1m3风要消耗0.85kg标准煤。大风量,高冶炼强度操纵的高炉,燃料比就要升高。所以说小高炉的燃料比要比大高炉高30~50kga。钢铁产业要实现"十一五"期间GDP能耗要降低20%,主要工作方向就是要在降低炼铁燃料比上下功夫!由于高炉炼铁工序的能耗要占联合企业总能耗的50%左右。 2.高炉炼铁燃料比的现状 国际先进水平的炼铁燃料比是在500kg/t以下,领先水平是在450kg/t左右。20xx年我国重点钢铁企业高炉炉炼铁的燃料比为529kg/t,首钢为464kg/t,宝钢为484kg/t,太钢为491kg/t,武钢为488kg/t,鞍钢为500kg/t,最高的企业达到673kg/t。这说明,我国已把握了先进的高炉炼铁技术,但是炼铁企业发展不平衡,尚有较大的节能潜力。 高炉炼铁的燃料比是:进炉焦比+喷煤比+小块焦比。喷煤比是不计算量换比。这样企业之间进行对比才公道科学。

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

降低高炉炼铁燃料比的技术措施

降低高炉炼铁燃料比的技术措施 钢铁产业节能减排的工作重点是在炼铁系统。由于炼铁系统的能耗占钢铁联合企业总能耗的70%左右。节能减排的工作思路是:首先要抓好减量化用能,体现出节能要从源头抓起;其次是要进步能源利用效率;第三是进步二次能源回收利用水平。降低高炉炼铁燃料比就是体现出企业节能工作是要从源头抓起,对企业的节能工作是有着重大意义。 1.降低炼铁燃料比是进步高炉利用系数的正确途径 炼铁学理论上是:高炉利用系数=冶炼强度÷燃料比。也就是说,进步利用系数有两个办法。一个是进步冶炼强度,另一个是降低燃料比。我国中小高炉实现高利用系数主要是采用进步冶炼强度的办法。采用配备大风机,大风量操纵高炉,进行高冶炼强度生产,来实现高利用系数。这种做法就带来高炉的能耗高,不符合钢铁产业要节能降耗的工作思路,应当予以纠正。目前大型高炉吨铁所消耗的风量在1200m3以下,宝钢为950m3左右。而一些小高炉的吨铁风耗是在1400m3左右,甚至有大于1500m3的现象。燃烧1kg标准煤要2.5m3的风,鼓风机产生1m3风要消耗0.85kg标准煤。大风量,高冶炼强度操纵的高炉,燃料比就要升高。所以说小高炉的燃料比要比大高炉高30~50kga。钢铁产业要实现“十一五”期间GDP能耗要降低20%,主要工作方向就是要在降低炼铁燃料比上下功夫!由于高炉炼铁工序的能耗要占联合企业总能耗的50%左右。 2.高炉炼铁燃料比的现状 国际先进水平的炼铁燃料比是在500kg/t以下,领先水平是在450kg/t左右。2007年我国重点钢铁企业高炉炉炼铁的燃料比为529kg/t,首钢为464kg/t,宝钢为484kg/t,太钢为491kg/t,武钢为488kg/t,鞍钢为500kg /t,最高的企业达到673 kg/t。这说明,我国已把握了先进的高炉炼铁技术,但是炼铁企业发展不平衡,尚有较大的节能潜力。 高炉炼铁的燃料比是:进炉焦比+喷煤比+小块焦比。喷煤比是不计算量换比。这样企业之间进行对比才公道科学。但是,个别企业没有计进小块焦用量,失往了企业的能源平衡。

钢铁行业生产工艺流程

钢铁行业生产工艺流程 钢铁生产工艺主要包括:炼铁、炼钢、铸钢、轧钢等流程。 1. 炼铁 铁矿石的品种分为磁铁矿Fe3O4、赤铁矿Fe2O3、褐铁矿2Fe2O3.3H2O、菱铁矿FeCO3。铁矿石中除铁的化合物外,还含有硅、锰、磷、硫等的化合物(统称为脉石)。铁矿石刚开采出来时无法直接用于冶炼,必须经过粉碎、选矿、洗矿等工序处理,变成铁精矿、粉矿,才能作为冶炼生铁的主要原料。 将铁精矿、粉矿,配加焦炭、熔剂,烧结后,放在100米高的高炉中,吹入1200摄氏度的热风。焦炭燃烧释放热量,6个小时后温度达到1500度,将铁矿融化成铁水,不完全燃烧产生的CO将氧从铁水(氧化铁)中分离出来,换句话说CO作为还原剂将铁从铁水(氧化铁)中还原出来。熔剂,包括石灰石CaCO3、荧石CaF2,其作用是与铁矿石中的脉石结合形成低熔点、密度小、流动性好的熔渣,使之与铁液分离,以便获得较纯净的铁水。铁水即生铁液,然后被送往炼钢厂作为炼钢的原料。 宝钢炼铁车间由两座4063立米大型高炉组成,预留有第三座高炉的建设场地。全车间年产生铁600万吨(最终产量可达650万吨)。向炼钢车间热送576.6万吨铁水,钢锭模铸造车间热送6.78万吨,其余16.62万吨铁水送铸铁机铸块。全车间分两期建设,1号高炉计划1982年4季度投产,2号高炉计划1984年投产。全车间约占地572,000平米,采用半岛式布置,1、2高炉中心距370米,原料、燃料均用胶带运输机分别由原料场,烧结车间,炼焦车间送入矿槽、焦槽。筛下粉矿、碎焦亦由胶带运输机运出,转送烧结车间。铁水输送采用320吨鱼雷式混铁车。高炉煤气灰、垃圾、废铁的… 2. 炼钢 炼钢就是把原料(铁水)里过多的碳及硫、磷等杂质去掉并加入适量的合金成分。 最早的炼钢方法出现在1740 年,将生铁装入坩锅中,用火焰加热溶化炉料,之后将溶化的炉料浇铸成钢锭。1856 年,英国人亨利-贝塞麦发明了酸性空气底吹转炉炼钢法,第一次解决了铁水直接冶炼钢水的难题,从而使钢的质量得到提高,但此法不能脱硫,目前己被淘汰。

高炉操作节能技术

高炉操作节能技术 1、科学布料节能 怎样解决煤气流和炉料运动之间的矛盾? 通过合理的布料制度和送风制度,可以科学地解决煤气流和炉料逆行运动的矛盾,使煤气流分布合理,炉况稳定顺行,实现节焦增产的作用。 高炉炼铁为什么要选择装料制度? 选择装料制度的目的就是要达到炉喉径向矿石和焦炭的合理控制,已实现合理的煤气流分布,保持高炉稳定顺行,煤气的能量得到充分利用,达到高炉炼铁高产、节能、长寿的结果。科学的装料制度可以实现高精度煤气流分布,有较好的节能效果。 怎样评价煤气流分布科学合理? 煤气流分布有三种类型:边缘发展型、双峰型和中心发展型。随着炼铁原燃料质量的改善,高炉操作水平的提高,从控制边缘与中心气流均发展的“双峰”式煤气流分布向边缘煤气CO2含量略高于中心的“平峰”式煤气曲线。综合煤气中CO2含量从16%~18%发展为18%~22%。宝钢4000M3级高炉达到23%以上。 如何实现合理布料? 使用无料钟炉顶设备可以灵活布料,进行多种形式布料,达到理想效果。采用环形布料(单环或多环),并要使用溜槽倾角的多角档位数。小于1000M3高炉一般选用5~7个角位,1000~2000M3高炉一般选用8~10个角位,大于2000M3高炉一般选用10~12个角位。不同容积的高炉,需要确定不同焦炭平台宽度和厚度,中心漏斗的焦炭量和滚向中心的矿石量。使用大矿批量上料之后,高炉内的焦批层高要在0.5M左右,宝钢4000M3级高炉焦层厚度在800~1000mm。 料线提高后对布料起到什么作用? 料线提高后,炉料堆尖向中心移动,有疏松边缘煤气流的作用。料线深度与上部炉型、炉料性能等有关,一般为1~2米。 合理煤气流分布时,炉顶温度在什么水平? 煤气流分布没有一个固定的模式,随着高炉生产条件的变化和技术进步的需求而要不断调整。希望边缘煤气CO2含量要高于中心,而且差距较大的“展翅”型煤气分布曲线。高炉中心煤气温度在500℃以上,边缘要大于100℃。 2、高风温节能 风闻升高100℃对高炉炼铁有什么影响? 热风温度升高100℃会使风口前理论燃烧温度升高60℃,炉内压差升高5kPa;基础风温在950℃时,可节焦20kg/t,基础风温在1050~1150℃时,可节焦10kg/t。风温升高100℃,可允许多喷吹煤粉约30kg/t。 用低热值高炉煤气烧炉如何实现高风温? 采用蓄热式燃烧技术,将助燃空气和煤气预热到500℃以上,再去烧热风炉,是可以实现1200℃以上的高风温。

炼铁工艺与操作讲述

学习领域(课程)标准 学习领域18:炼铁工艺与操作 适用专业:冶金专业 学习领域代码:02043 学时:60 学分:4 制订人: 审核:

《炼铁工艺与操作》学习领域(课程)标准 一、学习领域(课程)综述 (一)学习领域定位 “炼铁工艺与操作”学习领域由施工员岗位及岗位群的“炼铁工艺学”行动领域转化而来,是构成冶金技术专业框架教学计划的专业学习领域之一,其定位见表一: 理》、《机械基础》等学习领域基础上,该学习领域的实践性很强,是学生就业的主要工作领域,对学生毕业后工作具有重要的作用。 (二)设计思路 本学习领域立足于职业能力的培养,从学习领域内容的选择及排序两个方面重构知识和技能。 在学习领域内容的选择上,根据炼铁工岗位及其岗位群“高炉炼铁、设备维护及设计工艺方案”这一典型工作任务对知识和技能的需要,以从业中实际应用的经验和策略的习得为主、以适度够用的概念和原理的理解为辅。以行动为导向,基于工作过程的系统化,构建理论与实践一体化的学习领域内容。以工作任务为载体设计学习情境,每一学习情境都设计为完成一个分部炼铁工作任务,体现一个系统化的完整的工作过程。 在学习领域内容的排序上,遵循认知规律,由易到难地设计学习情境,同时兼顾工作过程的先后顺序。 (三)学习领域(课程)目标 1. 方法能力目标: 培养学生谦虚、好学的能力;

树立学生勤于思考、做事认真的良好作风和良好的职业道德。 熟练掌握高炉炼铁生产工艺,掌握炼铁原料及评价, 掌握高炉炼铁的原理 熟练掌握高炉强化冶炼的途径、方法及途径。 2. 社会能力目标: 培养学生的沟通能力及团队协作精神; 培养学生分析问题、解决问题的能力; 培养学生勇于创新、敬业乐业的工作作风; 培养学生的质量意识、安全意识; 培养学生语言表达能力。 3. 专业(职业)能力目标: 掌握高炉原料及其要求,能够识别、运用原料,具备原料的准备和处理能力; 熟悉高炉冶炼产品及其标准; 掌握高炉冶炼原理,能够选择合理操作制度,进行高炉生产; 掌握炼铁工艺计算和高炉现场操作工艺计算; 根据完成的工作进行资料收集、整理和存档等技术资料整理能力; 通过强化训练,可以考取炼铁工职业资格证书。 二、学习领域(课程)描述 学习领域描述包括学习领域名称、学期、参考学时、学习任务和学习领域目标等,见表二: 表二学习领域的描述

高炉炼铁工序能耗计算方法

高炉炼铁工序能耗计算方法 日前,中国钢铁企业网特邀专家顾问王维兴就高炉炼铁工序能耗计算方法作了以下解析: 1.高炉炼铁工序能耗计算统计范围 原燃料供给:矿槽卸料、称量料斗和计量、料车或皮带上料、仪表显示和控制、照明等用电;空调用电、冬季取暖用蒸汽等能源用量。 高炉本体:焦炭(包括小块焦)、煤粉、电力、蒸汽、压缩空气、氧气、氮气、水(新水、软水等)等。 渣铁处理:炉渣处理用电和水,冲渣水余热要进行回收利用。 鼓风:分电力鼓风或气动鼓风。鼓风能耗一般占炼铁总能耗的10%。1m?风需要用能耗0.030kgce/ m?.正常冶炼条件下,高炉消耗1吨燃料,需要2400m?的风量。 热风炉:要求漏风率?2%、漏风损失应?5%、总体热效率?80%、风温大于1200?,寿命大于25年。 烧炉用高炉煤气折标煤系数0.1143kgce/m?; 转炉煤气折标煤系数0.2286kgce/m?; 焦炉煤气折标煤系数0.6kgce/m?。 热风炉用电力和其它能源工质:蒸汽、压缩空气、水等。 煤粉喷吹:煤粉制备干燥介质,宜优先采用热风炉废气; 用电力、氮气、蒸汽、压缩空气、空调和采暖用能等。 设计喷煤能力要大于180kg/t. 碾泥:用电力和其它能源工质。

除尘和环保:主要是电力(大企业环境保护用电力占炼铁用电的30%左右)、水等。, 铸铁机:电力、水等。 扣除项目:回收利用的高炉煤气,热值按实际回收量计算; TRT余压发电量(电力0.1229kgce/kwh) 2.炼铁工序能耗计算方法 炼铁工序能耗=(C+I+E-R)?T 式中:T-合格生铁产量,铸造铁产量要用折算系数进行计算(见表1); C-焦炭(干全焦,包括小块焦)用量。折热量,28435kJ。标煤量0.9714kgce/t 焦炭. I-喷吹煤折热量,20908kJ ; 折标煤量0.7143kgce/t原煤。 E-加工能耗(煤气、电、耗能工质等)折标煤量: 煤气折标煤系数见热风炉栏目。电力折标煤系数0.1229kgce/kwh.. 耗能工质折标煤系数:氧气0.1796kgce/m?;氮气0.0898 kgce/kwh. 压缩空气0.040 kgce/m?,新水0.257 kgce/kwh 软水0.500 kgce/m?,蒸汽0.12 kgce/kwh. R-回收高炉煤气、电力折热量. 高炉煤气折标煤系数0.1143kgce/Nm? 电力折标煤系数0.1229kgce/kwh。 3.高炉炼铁工序能耗设计指标 2010年国家建设部和质量监督局公布《钢铁企业节能设计规范》(GB50632-2010)中提 出不同容积高炉工序能耗的要求,具体内容如下:

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 [导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图: [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中, 定期从铁口、渣口放出。 高炉冶炼工艺--炉前操作

高炉炼铁综合利用煤炭能源

浅谈高炉炼铁对煤炭能源的综合利用 高炉炼铁首先要进行铁矿石烧结,随着国家对环保的要求越来越高,用于烧结的能源不能直接使用煤炭,应选用洁净的天然气或煤气,而天然气资源紧张,价格也高,一般炼铁企业只能选择煤气烧结。 炼铁高炉的产能不同,用煤气量也不同,以产量480立方高炉为例,每天需要约33万方荒煤气,13亿卡热量。而用什么工艺制煤气,是粗放型还是集约型、是单一利用还是综合利用、是低效产出还是高效产出却有文章可作。经过我们多年的研究,高炉炼铁行业可以采用煤炭—煤气、焦油—兰炭—焦炭—炼铁,这种对煤炭吃干渣净,综合利用煤炭能源的优化方案。 具体讲,还是以480立方高炉为例,其工艺路线是: 1、先建一个可产出33万方富余煤气的兰炭炉(具体参数要经过仔细计算),煤种以临汾附近的煤为好。 2、煤炭经低温干馏产生荒煤气、焦油,和兰炭。一部分煤气回炉自燃,用于干馏的热源,富余的煤气用于烧结铁矿石,副产品焦油外卖。 3、将兰炭粉碎,根据指标配煤及添加粘结剂,冷压成型烘干,低温干馏后成为炼铁用的3级焦,自己炼铁用。 至此,炼铁用的煤气和焦炭都有了,且无污染,当然经

济效益更可观。 对以上方案经济效益分析: 按照该工艺流程,经济效益分为两段计算: 1、把每吨550元的烟煤原煤,干馏中得到富余荒煤气700立方,价值210多元,煤焦油80kg,价值240元,兰炭550kg,价值385元,计835元,干馏兰炭的成本每吨25元,企业吨煤获利:835-550-25=260元。 2、把价值每吨700元的兰炭经配煤添加粘结剂成型制成炼铁用的3级焦炭,生产成本每吨130元,合计每吨成本830元,而三级焦炭价格每吨950元,一吨差价120元。 从以上分析可以看出,高炉炼铁如做好煤炭综合利用的大文章,炼铁的成本可大大降低,经济效益显著提高。 另一方案可参考 采用当地烟煤煤末造气。取得煤气,副产品即无烟块煤和焦油,大约13万吨左右做出10万吨左右无烟块煤和7-8000吨煤焦油,6千万方左右煤气(热值1750大卡、2300大卡)。 10万吨左右无烟块煤用于单段炉合成氨造气或单段炉工业用制作煤气。 如有不妥,请指正。 三门峡中兴节能环保科技有限公司 二〇一四年八月四日

高炉炼铁能耗与节能分析

高炉炼铁能耗与节能分析 发布时间:2008-8-21 来源: 中国钢铁企业网本网专家顾问:王维兴李忠号:大中 小】 核心提示:据统计,2005年我国生产原煤21.9亿吨(居世界第一),消费21.4亿吨原煤;生产原油1.81亿吨(居世界第六),消费原油3.0亿吨;生产天然气500亿m3(居世界第十四),消费500亿m3;全年发电24747亿千瓦时(居世界第二)。 1.我国钢铁工业能耗现状 据统计,2005年我国 生产原煤21.9亿吨(居世界第一),消费21.4亿吨原煤; 生产原油1.81亿吨(居世界第六),消费原油3.0亿吨; 生产天然气500亿m3(居世界第十四),消费500亿m3; 全年发电24747亿千瓦时(居世界第二)。 2005年我国能源消费结构是:煤炭为68.7%,油气为24%,水电+核电为7.3%。 2004年我国钢铁工业能源消耗占全国能源总消费量的15.18%,其能源消费结构是:煤炭69.9%,石油类3.2%,天然气0.5%,电力26.4%。 2.钢铁工业节能情况 按不变价格计算,2005年我国万元GDP能耗比1980年下降64%。改革开放以来,累积节约和少用超过10亿吨标准煤,以能源消费翻一番支持了GDP值翻两番。 1980~2005年,我国大中型钢铁企业吨钢可比能耗从1285Kgce/t降到714Kgce/t,节约571Kgce/t,降低了44.43%。这说明,我国钢铁工业的节能步伐是与我国经济发展中的节能力度是同步进行,也说明了钢铁工业节能工作取得巨大成绩。 据统计2006年前三季度,全国产钢3.08亿吨,比上年度同期增长18.49%,但全国重点大中型钢铁企业总能耗为14535万吨标煤,比上年度降低6.8%。这说明,我国钢铁工业节能工作还在深化发展。 2000年,工业发达国家吨钢可比能耗平均值在642Kgce/t。2005年,我国重点大中型钢铁企业吨钢可比能耗值为714Kgce/t。经对比分析可看出,我国钢铁工业的能耗水平与工业发达国家相比,尚高出11.2%。 3.我国钢铁工业各工序能耗情况

高炉节能降耗

高炉节能降耗 摘要:高炉节能的措施一是增加廉价的热源,二是降低热消耗或减少热损失。高炉节能的途径和方向主要是以顺行为基础,以低热消耗或减少热损失为手段; 以能源的二次回收利用获得节能最大化。 1 概述 目前的国际、国内的经济环境和钢铁行业产能过剩的现状,给钢铁企业的生存和发展带来的巨大的压力,节能降耗是企业的经济效益最大化和竞争力不断增强的有效手段,高炉节能的措施一是增加廉价的热源。二是降低热消耗或减少热损失。高炉节能的途径和方向,主要是以顺行为基础,以低热消耗或减少热损失为手段。 2 增加廉价热源 2.1 提高热风温度 高炉内热量来源于两方面,一是风口前碳素的燃烧放出的化学热,二是热风带入的物理热。后者增加,前者减少,焦比即可降低,碳素燃烧放出的化学热不能在炉内全部利用。高炉内的热量有效利用率随冶炼操作水平而变化,一般为80%左右。提高热风温度是降低焦比和强化冶炼的重要措施,采用喷吹技术后,使用高风温更为迫切。高风温能为提高喷吹量和喷吹效率创造条件。据统计,风温在950℃~1350℃之间,每提高100℃可降低焦比8—20kg,增加产量2%~3%。提高风温还可加快风口前焦炭的燃烧速度,热量更集中于炉缸,使高温区域下移,中温区域扩大,有利于间接还原发展,直接还原度降低,有利于降低焦比。 2.2 提高煤比 提高煤比和提高置换比,可以降低焦比,利用焦炭和煤的差价获得经济效益,富氧高风温大喷煤量技术,可实现高炉喷煤比在200kg/t铁以上。高炉喷吹煤粉是炼铁系统结构优化的中心环节,可以实现节焦增产、炼铁环境友好的效果,同时可降低生铁成本。提高煤比后煤气量增大,初始煤气分布发生变化,为保证两道合适的煤气流,在适当开放中心,抑制边缘的同时,防止中心过吹和边缘过重,给顺行带来困难,在实际的操作当中煤比的提高限度应当根据焦炭质量、富养率等因素来确定,以保证合理的理论燃烧温度和煤气流的分布,避免热制度、造渣制度和煤气分布的失常来破坏高炉的顺行,提高煤比的措施有以下几点:(1)提高热风温度:热风温度升高l00℃,可使炉缸理论燃烧温度升高60℃,允许多喷30~40kg/t煤粉。 (2)进行富氧鼓风:富氧率提高1%,炉缸理论燃烧温度升高40~50℃,允许多喷煤粉20~30kg/t。

高炉炼铁论文

高炉炼铁论文 时间:2010-11-12 08:12:40|浏览:112次|评论:0条 [收藏] [评论] [进入论坛] 本文针对高炉炼铁工艺的生产现状进行了其技术性研究,使其高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。实现渣铁分离。已熔化的渣… 本文针对高炉炼铁工艺的生产现状进行了其技术性研究,使其高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。实现渣铁分离。已熔化的渣铁之间及与固态焦炭接触过程中,发生诸多反应,最后调整铁液的成分和温度达到终点。故保证炉料均匀稳定的下降,控制煤气流均匀合理分布是高质量完成冶炼过程的关键。 关键词: 固态焦炭渣铁分离炉料均匀煤气流分布 绪论 高炉是炼铁的专用设备。虽然近代技术研究了直接还原、熔融技术还原等冶炼工艺,但它们都不能取代高炉,高炉生产是目前获得大量生铁的主要手段。高炉生产是可持续的,他的一代寿命从开炉到大修的工作日一般为7-8年,有的已达到十年或十年以上。高炉炼铁具有规模大、效率高、成本低等诸多优势,随着技术的发展,高炉正朝着大型化、高效化和自动化迈进。 1.1我国钢铁工业生产现状 近代来高炉向大型化发方向发展,目前世界上已有数座5000立方米以上容积的高炉在生产。我过也已经有4300立方米的高炉投入生产,日产生铁万吨以上,日消耗矿石等近2万吨,焦炭等燃料5千吨。这样每天有数万吨的原、燃料运进和产品输出,还需要消耗大量的水、风、电气,生产规模及吞吐量如此之大,是其他企业不可比拟的。 1.2加入世贸对我国钢铁经济的影响 钢铁工业是人类社会活动中占有着极其重要的地位,对发展国民经济起着极其重要的作用。无论工业、农业、交通、建筑及国防均离不开钢铁。一个国家的钢铁生产水平,就直接反映了这个国家的科学技术发展和人民的生活水平。那么自中国加入世贸组织之后,自2001年底以来,全球钢铁价格已上涨2倍,提升了该行业的盈利水平。同期,由所有上市钢铁公司股价构成的全球钢铁股价格综合指数,表现超过所有上市公司平均股价表现近4倍。2003年,中国钢铁净进口量(进口减去出口)约为3500万吨。但今年,预计中国钢铁净出口量大约为5000万吨。假设这种趋势持续下去,中国钢铁公司出口量的上升,的确有可能影响全球钢铁行业的前景。中国从2006 年开始,从钢净进口国转变为净出口国,2007 年中国粗钢净出口量占中国粗钢产量的11.27%,占全球除中国外粗钢产量的6.47%。今年9 月受美国金融危机的影响,国内钢材出口量减少为667 万吨,较8 月份高点回落101 万吨。奥巴马上台后誓言要实施自己的金融新政,力争让美国经济在任期内重新好转。而积极的新政,无疑也会为中国钢铁出口带来新的消费希望。 1.3唐钢不锈钢高炉的情况介绍 唐钢不锈钢高炉现共有四座炼铁高炉分别有两座450t、两座550t高炉炼铁设备,其中两座550t高炉是由唐钢设计院主持设计的。不锈钢高炉现今以持续使用五年以上,日产量高,出铁效率高,并且在三号高炉中使用了TRT自动化控制系统,使得在随后的生产过程中,高炉出铁高效化,自动化迈进。 2唐钢不锈钢扩大生产规模化的可行性研究 2.1唐钢不锈钢生产规模能力

相关主题
文本预览
相关文档 最新文档