当前位置:文档之家› 新理解矩阵 全

新理解矩阵 全

新理解矩阵 全
新理解矩阵 全

新理解矩阵1

前边我承诺过会写一些关于自己对矩阵的理解。其实孟岩在《理解矩阵》这三篇文章中,已经用一种很直观的方法告诉了我们有关矩阵以及线性代数的一些性质和思想。而我对矩阵的理解,大多数也是来源于他的文章。当然,为了更好地理解线性代数,我还阅读了很多相关书籍,以求得到一种符合直觉的理解方式。孟岩的blog已经很久没有更新了,在此谨引用他的标题,来叙述我对矩阵的理解。

当然,我不打算追求那些空间、算子那些高抽象性的问题,我只是想发表一下自己对线性代数中一些常用工具的看法,比如说矩阵、行列式等。同时,文章命名为“理解矩阵”,也就是说这不是矩阵入门教程,而是与已经有一定的线性代数基础的读者一起探讨关于矩阵的其他理解方式,仅此而已。我估计基本上学过线性代数的读者都能够读懂这篇文章。

首先,我们不禁要追溯一个本源问题:矩阵是什么?

我们不妨回忆一下,矩阵是怎么产生的。矩阵可以看成是一个个向量的有序组合,这说明矩阵可以类比向量;但是向量又是怎么产生的?向量则是一个个数字的有序组合,这又把我们的研究方向指向了“数字是什么”这个问题上。比如,数字1是什么?它可以代表1米,可以代表1千克,也可以代表1分钟、1摄氏度甚至1个苹果。它为什么有这么多的表示意义?答案很简单,因为在本质上,它什么都不是,它就是数字1,一个记号,一个抽象的概念。正因为它抽象,它才可以被赋予各种各样直观的意义!回到矩阵本身,我们才会明白,矩阵的作用如此之大,就是因为书本上那个很枯燥的定义——矩阵就是m行n列的一个数表!它把矩阵抽象出来,让它得到了“进化”。它是一个更一般化的概念:一个向量可以看作一个矩阵,甚至一个数都可以看成一个矩阵,等等。

代数方面的理解

当然,上述说法是含糊的,我们还是需要确切知道它究竟有什么用?这可以从代数和几何的角度来分析,因为做到数形结合才是最完美的。首先我们知道数学最基本的元素就是数字,严格来说是自然数,如0,1,2,...;有了数字,我们就可以做到很多东西。但是数字是单一的,而我们很多时候都要批量处理一些类似的运算,比如同时要计算1+2,1+3,2+3,4+5这四个算式。不论是从记录还是从研究的角度来说,分开研究它们都是比较繁琐的。于是一种“批量”的记号产生了,我们记为(1,1,2,4)+(2,3,3,5),用两个不同记号记录它们,比如

A =(1,1,2,4),

B =(2,3,3,5),我们就可以将它记为A +B 。这样不论在研究还是记录方面都能够给我们方便。于是一个我们称之为“向量”的东西产生了,也就是说,从代数的角度来讲,向量是为了研究批量运算而产生的。但是向量并没有解决所有的批量运算的问题。比如3元一次方程组

a11x1+a12x2+a13x3=b1

a21x1+a22x2+a23x3=b2

a31x1+a32x2+a33x3=b3

单单用向量我们还是没有办法很好地研究这一类问题。于是我们就要想法子创造出一些新的记号,由于左边的系数的具有一定的排列顺序和统一的形式,我们不妨把它们单独写出来

[a11,a12,a13]

[a21,a22,a23]

[a31,a32,a33]

并用一个简单的符号A来表示它,然后把未知数和右边的常数都分别写成向量形式

x=[x1,x2,x3]T和b=[b1,b2,b3]T(多加了上标T表示列向量)。我们期待上面的方程组可以写成一个简单的形式

Ax=b

由此我们可以定义一个3阶方阵乘以一个3维列向量的乘法了,这是一种纯粹的定义,是为了方便我们记录和研究的定义。在此基础上,我们就可以研究更多的东西,比如矩阵乘矩阵会得到什么?

同样,这里要研究的矩阵都是指n阶方阵这个最核心的东西,我们要先把核心问题研究透彻,不然一开始就考虑所有的繁杂的情况,容易让我们陷入迷惘中而不知所措。

在研究一般乘法之前,我们先来了解一下关于运算定律问题。我们知道在实数中,加法满足结合律和交换律,乘法满足结合律、交换律和分配律。哪些定律可以迁移到矩阵乘法中的呢?交换律是无法先验的,它是个定义问题,我可以定义它成立也可以定义不成立,但是为了运算的方便,我们还是希望它满足更多地运算定律,所以我们先来考虑结合律,希望它能够满足这一定律。也就是说

(AB)x=A(Bx)

其中Bx已经是我们所熟知的运算(由定义而来),它将得到一个列向量,所以我们也可以轻易算出A(Bx),从直观上来讲,AB应该也是一个n阶方阵,我们可以先把它设出来,然后与列向量x进行运算,最后把两边的结果一一对应起来,就得到了AB这个n阶方阵中各个元素的表达式。我们最终可以发现,它就是我们书本上定义的表达式。

以2阶方阵为例,令A为

[a,b]

[c,d]

B为

[e,f]

[g,h]

AB为

[p,q]

[r,s]

并令x=[x,y]T,那么(AB)x就等于

[px+qy,rx+sy]T

而Bx=[ex+fy,gx+hy]T,那么A(Bx)=[aex+afy+bgx+bhy,cex+cfy+dgx+dhy]T

那么根据各个元素的对应,就得到p=ae+bg,q=af+bh,r=ce+dg,s=cf+dh。这就完成了2阶方阵乘法的定义。

现在我们就可以从代数的角度来讲,矩阵是为了简化批量线性运算的一个“终极武器”!这就是矩阵的一个比较直观和有用的代数意义。

如果根据我们这个定义去考虑交换律,我们会发现矩阵一般不符合交换律。这不能不说是一个遗憾。但是没关系,它服从结合律这一个事实,已经赋予了这个工具极大的力量。比如线性方程组Ax=y,我们有By=B(Ax)=(AB)x,如果我们想办法找到一个矩阵B,使得AB=I,那么就很棒了,因为我只要用矩阵B作用于向量y就可以得到方程组的解了,事实上这样的矩阵B是存在的,这就是逆矩阵。要是没有结合律,这一切都免谈!

由于这是实数基本运算(线性运算)的“批量版”,那么我们就可以很自然地把实数的一些公式延伸为矩阵版(只要不是涉及到交换律就行)。比如,在实数中,我们有公式

11?x=1+x+x2+x3+...≈1+x

那么我们求矩阵的逆阵时,也有类似的公式

(I?A)?1=I+A+A2+A3+...≈I+A

其中I是单位矩阵,A是一个“比较小”的矩阵。至于“比较小”怎么定义,现在还说不清楚,可以认为是矩阵的行列式值比较小。类似的,根据

1+x????√≈1+12x

也能够相应地给出(I+12A)2≈I+A,这是求矩阵“平方根”的一个近似公式。

得益于我们定义的矩阵乘法,批量的运算可以直接用单个量的运算公式进行,不用我们煞费苦心、绞尽脑汁地构思新的公式。这就是矩阵的强大所在!它在解决很多线性问题时有着奇迹般的美妙,最简单的例子莫过于线性方程组Ax=y的解为y=A?1x,解答方程组的时候就好像求解一元方程那样有简单的形式!还有一些关于指数的定义等等,以后在应用时会把它介绍的。它们都好像非常精美的“艺术品”!

下一回,我们将从几何角度来理解矩阵。当然,这里边的绝大多数内容在孟岩的文章里头都已经提到了,我只是重提旧论而已,希望读者不会厌烦。

新理解矩阵2

上一篇文章中我从纯代数运算的角度来讲述了我对矩阵的一个理解,可以看到,我们赋予了矩阵相应的运算法则,它就在代数、分析等领域显示出了巨大作用。但是纯粹的代数是不足够的,要想更加完美,最好是找到相应的几何对象能够与之对应,只有这样,我们才能够直观地理解它,以达到得心应手的效果。

几何理解

我假设读者已经看过孟岩的《理解矩阵》三篇文章,所以更多的细节我就不重复了。我们知道,矩阵A

[a11,a12]

[a21,a22]

事实上由两个向量[a11,a21]T和[a12,a22]T(这里的向量都是列向量)组成,它描述了一个平面(仿射)坐标系。换句话说,这两个向量其实是这个坐标系的两个基,而运算y=Ax则是告诉我们,在A这个坐标系下的x向量,在I坐标系下是怎样的。这里的I坐标系就是我们最常用的直角坐标系,也就是说,任何向量(包括矩阵里边的向量),只要它前面没有矩阵作用于它,那么它都是在直角坐标系下度量出来的。

(事实上,单位矩阵I是默认的直角坐标系,这一说法并非总是成立的,但是我们现在寻求直观的理解方式,我们就用最简单的东西来实行。)太多的文字未必能够把问题说清楚,我们需要一张图来解释一下:

图上所用的矩阵A是

[3,2]

[1,3]

这构成了一个仿射坐标系,在这个坐标系下,有一个向量x=[2,2]T,它在直角坐标系下测得的坐标为[10,8]T,现在我们不难发现,直接用矩阵乘法来计算,有

Ax=[3?2+2?2,1?2+3?2]T=[10,8]T

正是我们所期待的!

为什么会有这样的特点?其实这源于我们对矩阵乘法的定义,反过来,如果我们用这样的几何方式来定义矩阵乘法,那么我们也将得到在书本上了解到的矩阵乘法计算公式。更高阶的矩阵也可以作同样的类比。推导过程只是一道很简单的练习题,读者不妨自己动笔尝试一下?

现在我们又回到孟岩文章上的说法了,对于矩阵作用于一个向量(对应的一个点),我们既可以看作点没有变,只不过是坐标系从直角坐标系变换为仿射坐标系而已;另一方面,我们也可以看做矩阵把直角坐标系的一个A'点“运动”(变换)到了A点。这两种说法都行,正如孟岩所说的“运动是相对的”。更正确地讲,两种说法都要同时被提及,才算是最好的理解。矩阵是一个点到另外一个点的变换,变换的方式就是坐标系的变换。

当然,上面只讨论了矩阵乘以向量的乘法,那么矩阵乘以矩阵呢?比如AB,我们就可以看作是矩阵B给出了一个坐标系,但是这个坐标系的各个分量是在A坐标系下测量得到的,而A是在直角坐标系下测量得到的,所以要把B的各个分量(列向量)与矩阵A作乘法后,才得到了这个仿射坐标系在直角坐标系下的“像”。这很直接地导致了矩阵乘以矩阵的计算公式,也很显然地回答了“为什么n阶方阵只有与n阶方阵相乘才有意义”,因为两者要在同一空间中测量,才能够完整而唯一地把测量值确定下来。正如,在n+1维的空间中讨论n个n 维向量是没有意义的,因为在n+1维空间中的观测者看来,它们只不过是一个“面”,多出的一个维度可以随意变化;在n维空间中讨论n+1维向量就更没有意义了,因为维度根本就不够用。

有了这个直观的几何意义,很多问题看起来几乎都是显然的了,比如那些行列式问题,还有相似矩阵等等,这将在下回谈到。

张量介绍

我们已经大概了解到,数字的有序组合产生了向量,向量的有序组合产生了矩阵。这样两个新构造出来的对象,作用一个比一个大。那么有人会联想到:矩阵的有序组合,就可以产生一个“立方阵”,它的功能会不会更加强大?更一般的,n维立方阵呢?这种联想是有道理的,数学上也有这样的研究对象,它就是张量。

最通俗的说法,n阶张量就是一个n维立方阵,所以0阶张量就对应一个数,向量、矩阵分别对应1阶和2阶张量,我们所说的三维立方阵,就是3阶张量啦。当然,张量属于很高深

的数学理论,它的性质和作用不可能这么简单就说清楚了。回想当年,爱因斯坦就是用张量分析作为工具,建立起他那伟大的广义相对论的。如果有机会的话,我们一定会重新造访它。接下来,我们还是回到矩阵问题,谈谈矩阵的行列式。

新理解矩阵3

亲爱的读者朋友们,科学空间版的理解矩阵已经来到了BoJone认为是最激动人心的部分了,那就是关于行列式的叙述。这部分内容没有在孟岩的文章中被谈及到,是我自己结合了一些书籍和网络资源而得出的一些看法。其中最主要的书籍是《数学桥》,而追本溯源,促进我研究这方面的内容的是matrix67的那篇《教材应该怎么写》。本文包含了相当多的直观理解内容,在我看来,这部分内容也许不是正统的观点,但是至少在某种程度上能够促进我们对线性代数的理解。

大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。

行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数来达到这个目的,这个函数就是矩阵的行列式。让我们来反思一下,矩阵可逆意味着什么呢?之前已经提到过,矩阵是从一个点到另外一个点的变换,那么逆矩阵很显然就是为了把它变换回来。我们还说过,“运动是相对的”,点的变换又可以用坐标系的变换来实现。但是,按照我们的直觉,不同的坐标系除了有那些运算上的复杂度不同(比如一般的仿射坐标系计算点积比直角坐标系复杂)之外,不应该有其他的不同了,用物理的语言说,就是一切坐标系都是平权的。那么给出一个坐标系,可以自然地变换到另外一个坐标系,也可以自然地将它变换回来。既然矩阵是这种坐标系的一个描述,那么矩阵不可逆的唯一可能性就是:

这个n阶矩阵的n个列向量根本就构不成一个n维空间的坐标系。

也就是说,它没有资格成为一个坐标系!

(用专业术语说,这n个向量是线性相关的。)

那么我们就想办法为某个n阶矩阵A构造一个函数|A|,当|A|为0时,就意味着这个矩阵没有资格成为一个坐标系,也就是说它不可逆。

先设A=[\vec{c_1},\vec{c_2},...,\vec{c_n}],其中\vec{v_i}是各个列向量。我们想想,哪些情况下矩阵A显然没有资格成为一个坐标系?

1、显然,能否构成一个坐标系,与每一个向量\vec{v_i}都息息

相关,那么|A|应该是每一个向量\vec{v_i}的函数才能满足要求。

2、简单起见,我们函数最好是线性的,也就是说

A=[\vec{c_1},...,\vec{v_i},...,\vec{c_n}],A[Math Processing

Error],那么[Math Processing Error]

3、构成n维坐标系需要n个独立的向量,如果矩阵A的n个向量

中有两个相同的,那么它自然无法构成坐标系,也就是说此时

|A|=0;

4、为了确定适当的缩放因子,也为了满足我们的直观感受,我们

规定|I|=1。

让人意外的是,就凭以上三个性质,就可以确定唯一一个函数|A|了,那个函数就是我们课本给出的行列式计算公式!当然,推导过程有点复杂,在这里不给出了,有兴趣的朋友可以用二阶和三阶矩阵演算一下,然后类比就行了。

让我们再回想一下课本是怎么介绍行列式的:首先是线性方程组给出行列式的计算公式,然后再证明行列式有各种各样的性质,比如“把其中一行乘上5,行列式的值也乘上5”等等。这与上面的说法(这其实也是标准的线性代数讲述方式)相比,未免有点本末倒置的味道。因为行列式本身就是由那些性质来定义的,我们又何必要用行列式的计算公式来反推那些什么性质呢?除了锻炼计算能力,我真的看不出有什么作用。

上面的内容还有一个非常直观的几何理解方式:

三维空间中三个向量能够构成一个仿射坐标系的充要条件是什么?很简单,这三个向量必须不共面!因此,推广到n维空间,很显然有:

n个向量可以构成一个坐标系就意味着这些向量不共面!

当然,n维空间中的面不是指二维平面,而是n-1维的东西,它与n维体积相对。

还可以换一种说法

n个向量可以构成一个坐标系就意味着这些向量构成的一个n维平行立体(联想我们的平行六面体)体积不为0!

注意注意,这里涉及到了体积,为0与否关系到矩阵可逆性,这与行列式同出一辙。这个n维体积是否和行列式有关呢?我们不妨分析一下矩阵A所构成的n维立体的体积V一些性质:

1、很明显,每一个向量\vec{v_i}也是每一条边长,那么V应该

是每一个向量\vec{v_i}的函数;

2、当某个向量变为原来的\alpha倍,那么体积也应该变成原来的

|\alpha|倍,加负号是因为向量是可以反向延伸的,但体积一定是

正数;

3、有两个向量相同时,意味着这些向量“共面”,这时体积自然为

0;

4、单位的n维立方体体积自然是1.

出人意料,这些性质几乎与行列式一一对应,除了第2点那个\alpha要加绝对值之外。那么,这些性质最终迫使这个n维立体的体积为V=ABS(|A|),为了不引起混乱,我用了ABS表示绝对值。

这真的是一个非常棒的事实,行列式有如此明显的几何意义,它可以用来求体积(二阶矩阵的时候就是平行四边形的面积)!这就不难解释我们一开始在解析几何课程上学到的平行六面体体积公式为什么是这样子的了。它完全就可以撇开什么点乘、叉乘而独立得到!还有很多例子,读者在学习到相关的知识时必然会感受到。但另一方面,这也反映了我们教材的糟糕:要是用我们讲述行列式的方式,我们要花多大功夫才能证明行列式就是体积?

新理解矩阵4

这篇文章估计是这个系列最后一篇了,也许以后会继续谈到线性代数,但是将会独立开来讲述。本文主要讲的是相似矩阵的一些事情,本文的观点很是粗糙,自己感觉都有点模糊,因此请读者细细阅读。在孟岩的文章里头,它对矩阵及其相似有了一个非常精彩的描述:“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组

基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述

这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线

性变换的描述,但又都不是线性变换本身。

上述所有这些同一个线性变换的描述的矩阵互为相似矩阵。孟岩还提到那个相似矩阵的公式可以用一种非常直观的方式来证明,可是就没有后文了。我没有跟他联系过,但是我一直也在寻求这方面的直观理解。在翻阅了许多书籍之后,终于有了一个自己比较满意的答案。也许读者会感到意外的是,促使我得到这个理解的,不是数学著作,而是一本偏向物理的数《群论与量子力学的对称性》。

Part1

首先来一个比较物理的理解:矩阵A描述了向量x到向量y的一个运动,即y=Ax;但是,这仅仅是在直角坐标系下测量的,在一个新的坐标系P之下,假设测量结果为y′=Bx′。

根据我们在前边给出的矩阵几何理解,在P坐标系下测量的x′,在直角坐标系测量为x,可以表示成Px′=x;同理有Py′=y。代入就得到:Py′=APx′,可以稍稍改成Py′=P(P?1AP)x′,

换句话说,在P坐标系下,从x′到y′的运动用矩阵B=P?1AP表示,这就是A的一个相似矩阵!所以说,一族相似矩阵,只不过是同一个线性变换在不同坐标系下的一个测量结果而已。

Part2

其实,相似矩阵还有一个相对直观的几何立体模型。我们知道一个矩阵A由n个列向量组成,它实际上给出了n维空间的一个n维平行方体(类比二维的平行四边形和三维的平行六面体)。而矩阵I实际上给出了一个n维单位方体。假设他们两个存在某种对应关系。

而矩阵A在新坐标系P下的测量结果为P?1A,即A=P(P?1A);而I在P的测量结果为

I=P(P?1),也就是说,在新坐标系下,P?1与P?1A具有对应关系。那么新坐标系下的单位方体对应什么呢?那就是

P?1→P?1P=I

P?1A→P?1AP

也就是说新坐标系下的单位方体对应着相似矩阵所描述的n维方体!

这压根儿就是配对原则嘛!

这就不难理解为什么相似矩阵的行列式值都相同了。行列式的几何意义就是体积,虽然矩阵A代表的立方体经过坐标变换后体积变了,但是单位方体的体积实则也变啦,也就是说,新坐标系下一切标度都变化了,但是从“数格子”的角度来说,格子数目是没有变化的,所以体积也就没有变化了。

伟大的矩阵

在物理学,几乎每一个领域都广泛地用到了矩阵,但是,与矩阵联系最紧密的学科当数量子力学。很多人都知道,量子力学有三种等价表达形式,一种是薛定谔的波动方程(就是我现在学习的),一种是海森堡的矩阵力学,最后一种是天才的费曼的路径积分。话说当年海森堡在构思量子力学时,线性代数这门课程已经发展得很丰富了,但他自己并没有学习到。不过他自己却“发明”了一个自称为“能量表格”的东西,用来作为描述他构思的工具。最后当他把论文提交给导师玻恩时,玻恩毫不客气地跟他说:“你这个新的能量表格,就是数学家早已研究过的矩阵。”呵呵,让人惊讶,矩阵力学的创始人居然不知矩阵为何物。后来海森堡补习了矩阵的知识,并和导师合作发表了矩阵力学的成果。

最近我看量子力学和狭义相对论的内容,发现两者的描述方式其实在很大程度上已经得到了统一,大家都是先讲一下基础知识,然后讲一下线性代数、群论等知识。最后都基本上归结为用矩阵和群论知识来分析了。我想这也是为了物理学统一描述的需要吧。让我觉得一点意外的是,这种综合的抽象模式,反倒让我感觉容易上手了。也许正是因为我是个数学爱好者吧。

最后总结一下我的这几篇《新理解矩阵》

这几篇文章很粗糙、放肆,很不成熟,甚至某些观点不一定正确,因为直观理解会给人一

种以偏概全的感觉,忽略掉了抽象的巨大作用。但是我想只有在有了直观认识之后,才可

以更熟练地运用它;更加全面的认识,也在这种直观的效果下慢慢感悟,慢慢积累起来的,

我想数学史上线性代数知识的发展历程也是相似的,既然如此,我们为什么不按照历史的

发展方式来学习它呢?

新理解矩阵5

在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表

了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,

甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何

意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了

部分错误,故发此文,与大家分享。

一个n阶矩阵A可以看成是n个n维列向量x1,x2,...,x n的集合

A=(x1,x2,…,x n)

从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这n个向量可以建立一个平行n维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。

让我们考虑矩阵A的行列式det A,我们知道det A有如下性质:

行列式性质

1、行列式是x1,x2,…,x n的一个函数,即det A=f(x1,x2,…,x n);

2、(线性1)行列式的某一列乘上常数α,则行列式的值也乘上α,即f(x1,…,αx i,…,

x n)=αf(x1,…,x i,…,x n);

3、(线性2)将行列式的某一列写成两列之和,那么行列式也相应地成为两个行列

式之和,即f(x1,…,x i,…,x n)=f(x1,…,y i,…,x n)+f(x1,…,z i,…,x n),其中x i=y

i+z i,性质二和三表明f是关于每个向量的线性函数;

4、(反对称)只要有两列相同,那么行列式值为0,即f(…,x,…,x,…)=0;

5、(归一)单位矩阵的行列式为1,即f(I)=1。

一个惊人的事实是,行列式可以由上面五条性质唯一确定!即由上面五条性质就可以唯一确

定一个函数f,这个函数就是矩阵的行列式。

从几何的角度来看,用这n个向量,可以生成n维空间的一个平行n维体。让我们来考虑这个平行n维体的体积V。只在第一卦限讨论,那么体积具有下面的性质(只在第一卦限讨论,限保证了所有的向量和因子都是正数。)

体积性质

1、体积是这n个向量的一个函数V(x1,x2,…,x n);

2、将某个向量乘以α,也就是把它的长度变为来说的α倍,那么体积也增大α倍,即

V(x1,…,αx i,…,x n)=αV(x1,…,x i,…,x n);

3、体积是可加的,即V(x1,…,x i,…,x n)=V(x1,…,y i,…,x n)+V(x1,…,z i,…,x n),

其中x i=y i+z i;这点需要稍加验证,但它的确是正确的。

4、只要有两个向量重合,那么体积自然为0,即V(…,x,…,x,…)=0;比如在三

维空间中的一个立体,有两条边重合,那么说明这个立体已经压缩为一个面了,面

的体积自然为0。

5、由单位矩阵I构成的平行n维体是一个n维的单位立方体,它的体积自然是1,

即V(I)=1。

比较行列式和体积的性质,可以发现它们是完全相同的,所以在第一卦限中的平行n维体的体积就是对应矩阵的行列式!如果将其放到所有卦限中,那只不过是体积概念的推广(允许为负数)。因此,我们不妨这样定义:体积就是行列式。

事实上,负体积的引入具有重要意义,它是现在的“外微分”的基础之一。外微分一个典型的用处是它可以把高斯积分公式、斯托克斯积分公式等统一起来。它使微分的理论和形式更完整统一。

新理解矩阵6

学过线性代数的朋友都知道,方阵和非方阵的一个明显不同是,对于方阵我们可以计算它的行列式,如果不是方阵的话,就没有行列式这个概念了。在追求统一和谐的数学系统中,为什么非方阵却没有行列式?也许对于这个问题最恰当的回答是——因为不够美。对于非方阵,其实也可以类似地定义它的行列式,定义出来的东西,跟方阵的行列式具有同样的性质,比如某行乘上一个常数,行列式值也就乘以一个常数,等等;而且还可以把其几何意义保留下来。但是,非方阵的行列式是不够美的,因为对于一个一般的整数元素的方阵,我们的行列式是一个整数;而对于一个一般的整数元素的非方阵,却导致了一个无理数的行列式值。另外,一个也比较重要的原因是,单单是方阵的行列式也够用了。综合以上两个理由,非方阵的行列式就被舍弃不用了。

非方阵的行列式不够漂亮

n阶方阵的行列式是每个向量的线性函数,它代表着向量之间的线性相关性;从几何上来讲,它就是向量组成的平行n维体的(有向)体积。我们当然期望非方阵的行列式也保留这些性

质,因为只有这样,方阵行列式的那些运算性质才得以保留,比如上面说的,行列式的一行

乘上一个常数,行列式值也乘上一个常数。我们考虑m\times n的矩阵,其中m

将它看成是m个n维向量的组合。最简单的,我们先考虑1\times2矩阵的行列式,也就是

二维向量(a,b)的行列式。

我们已经知道,2\times2矩阵的行列式的绝对值,就是这两个向量所围成的平行四边形的面

积。类似地,二维向量(a,b)的行列式的绝对值,就等于该向量自身的长度了,也就是\det

(a,b)=\sqrt{a^2+b^2},对于有理的a,b,大多数情况都会出现无理的行列式值,这是不协调的。因为它是线性的函数,有理数的线性运算导致无理数,却是不大舒服的。

类似的,可以考虑2\times3矩阵

\boldsymbol{A}=\left(\begin{array}{*{20}{c}}a&b&c\\d&e&f\end{array}\right)

的行列式。按照几何意义,它的行列式的模就是这两个向量所围成的平行四边形的面积。我们可以利用叉积来计算这个面积,但为了更一般化,我们利用正交化的方法来计算它。

以向量\boldsymbol{x}_1=(a,b,c)为出发点,选取

\boldsymbol{e}_1=\frac{(a,b,c)}{\sqrt{a^2+b^2+c^2}}

那么\boldsymbol{x}_1=\left|\boldsymbol{x}_1\right|\boldsymbol{e}_1。对

\boldsymbol{x}_2=(d,e,f)正交化,得到

\boldsymbol{x}_2-\left\langle{\boldsymbol{e}_1,\boldsymbol{x}_2}

\right\rangle\boldsymbol{e}_1

\boldsymbol{e}_2=\frac{\boldsymbol{x}_2-\left\langle

{\boldsymbol{e}_1,\boldsymbol{x}_2}

\right\rangle\boldsymbol{e}_1}{\left|\boldsymbol{x}_2-\left\langle

{\boldsymbol{e}_1,\boldsymbol{x}_2}\right\rangle\boldsymbol{e}_1\right|}

得到

\boldsymbol{x}_2=\left|\boldsymbol{x}_2-\left\langle

{\boldsymbol{e}_1,\boldsymbol{x}_2}

\right\rangle\boldsymbol{e}_1\right|\boldsymbol{e}_2+\left\langle

{\boldsymbol{e}_1,\boldsymbol{x}_2}\right\rangle\boldsymbol{e}_1

因此,行列式的模,也就是两个向量所形成的平行四边形的面积等于

\left|\det\boldsymbol{A}\right|=\left|\boldsymbol{x}_1\right|\cdot

\left|\boldsymbol{x}_2-\left\langle{\boldsymbol{e}_1,\boldsymbol{x}_2}

\right\rangle\boldsymbol{e}_1\right|

最后的表达式出现了两个模,表明两个根号,随便挑个具体例子就可以验证,即使

\boldsymbol{A}的元素全部是整数,也得不到有理数。这体现了非方阵行列式的不美之处。

方阵的行列式就够了

由于非方阵的行列式不够美,那么我们干脆弃之不用了。可是,这样会不会产生什么“副作用”?也就是说,会不会有哪些地方,非用到非方阵的行列式不可?事实上,至少就我目前的认识来说,答案是没有。

比如说判断m个n维行向量的线性相关性,我们是这样做的:第一种方法,利用初等变换,看变换后的矩阵的秩是否为m;如果嫌第一种方法步骤太多,第二种方法相对来说干脆一点,就是检验删除任意n-m列后,剩下的方阵行列式是否为0,如果存在一个不为0,就说明线性无关了。所以说,方阵的行列式够用了。

如果要求面积、体积怎么办?事实上,用的就是类似\left|\boldsymbol{x}_1\right|\cdot

\left|\boldsymbol{x}_2-\left\langle{\boldsymbol{e}_1,\boldsymbol{x}_2}

\right\rangle\boldsymbol{e}_1\right|的公式,这公式不难理解,也不难记忆。由于它带有不可化简的根号,因此,也就没有简单的计算公式了。

最后,一个比较核心的限制了非方阵行列式使用的原因是,非方阵的行列式应用不多。方阵的行列式可以用来求各种因子,比如重积分的坐标变换中的雅可比行列式,等等,这些由于方阵的可逆性,这些行列式都是有直接的应用意义的。相比之下,非方阵没有可逆的说法,所以非方阵的行列式应用也就很窄了。

理解矩阵,矩阵背后的现实意义

理解矩阵,矩阵背后的现实意义作者:郭博 这是很早以前已经看过的,最近无意中又把保存的文章翻岀来时,想起很多朋友问过矩阵,虽对 矩阵似懂非懂,但却很想弄懂它,希望这几篇文章能帮你一下,故转之: 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说, 在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍 逆序数这个前无古人,后无来者”的古怪概念,然后用逆序数给岀行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题一一把这行乘一个系数加到另一行上,再把那一列减过 来,折腾得那叫一个热闹,可就是压根看不岀这个东西有嘛用。大多数像我一样资质平庸的学生 到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太无厘头 了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰 回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的 岀场一一矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰 的一幕!自那以后,在几乎所有跟学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对 于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血 流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国外皆然。 瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:"如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”然而按照现行的国际标准,线性代 数是通过公理化来表述的,它是第二代数学模型,…,这就带来了教学上的困难。”事实上,当 我们开始学习线性代数的时候,不知不觉就进入了第二代数学模型”的畴当中,这意味着数学的 表述方式和抽象性有了一次全面的进化,对于从小一直在第一代数学模型”即以实用为导向的、 具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shif t,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研 和应用工作,但对于很多这门课程的初学者提岀的、看上去是很基础的问题却并不清楚。比如说: 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩 阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什 么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每 一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如 此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不

矩阵的物理意义

矩阵的物理意义 如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。” * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗? * 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思? * 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么? 今天先谈谈对线形空间和矩阵的几个核心概念的理解。首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。 总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。 我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动, 事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。 因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。下面我们来看看线性空间。线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是: 1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗? 2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的?

矩阵的基本概念

§1 矩阵及其运算 教学要求:理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点: 一、矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写 字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常 用小写字母其元素表示,其中下标都是正整数, 他们表示该元素在矩阵中的位置。比如,或 表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。

当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个阶方阵的主对角线上的元素 都是,而其余元素都是零,则称为单位矩阵,记为,即: 。如一个阶方阵的主对角线上(下)方的元 素都是零,则称为下(上)三角矩阵,例如,是 一个阶下三角矩阵,而则是一个阶上三角 矩阵。今后我们用表示数域上的矩阵构成的集合, 而用或者表示数域上的阶方阵构成的集合。 二、矩阵的运算 1、矩阵的加法:如果是两个同型矩阵(即它们具 有相同的行数和列数,比如说),则定义它们的和 仍为与它们同型的矩阵(即),的元素为和 对应元素的和,即:。

给定矩阵,我们定义其负矩阵为:。这样我们 可以定义同型矩阵的减法为:。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律: ( 1)交换律:; ( 2)结合律:; ( 3)存在零元:; ( 4)存在负元:。 2 、数与矩阵的乘法: 设为一个数,,则定义与的乘积仍 为中的一个矩阵,中的元素就是用数乘中对应的 元素的道德,即。由定义可知:。容易验证数与矩阵的乘法满足下列运算律: (1 ); (2 ); (3 ); (4 )。

读《理解矩阵》的一点心得及整理归类

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没

矩阵的定义及其运算规则

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

矩阵乘法的法则

第六节.矩阵乘法的法则 教学目标: (1)通过几何变换,使学生理解矩阵乘法不满足交换律(但并不是绝对的)。 (2)通过实例,了解矩阵的乘法满足结合律。 教学重点:理解矩阵乘法不满足交换律。 教学难点:从图形变换的角度理解矩阵的乘法不满足交换律。 教学过程: 一、引入:对上节课的练习的讨论: 已知三角形ABC 的三个顶点的坐标分别为:A (0,0),B (2,0),C (2,2), 先将三角形作以原点为中心的反射变换(变换矩阵为?? ????--1001) ,再以x 轴为基准,将所得图形压缩到原来的一半(变换矩阵为??? ? ??? ?21001 ),试求:(1)这连续两次变换所对应的变换矩阵U ; 问:U=??????--1001????????21001=??? ?????--21001 U=????????21001??????--1001=??? ? ????--21001 问题:矩阵的乘法是否满足交换律呢? 2、例题 例1.已知矩阵A 、B ,计算AB 及BA ,并比较他们是否相同,能否从几何变换的角度给予解释? (1)A=???? ??2001,B=?? ????-0110; (2)A=??? ?????21001 ,B=??? ???1003。 解:(1)AB=???? ??2001??????-0110=??? ???-0210,BA=??????-0110? ?????2001=?? ????-0120 显然,AB ≠BA 。 从几何变换的角度,AB 表示先作反射变换(变换矩阵为B ),后作伸缩变换(变换矩阵为A );而BA 表示先作伸缩变换(变换矩阵为A ),后作反射变换(变换矩阵为B )。当连续进行一系列变换时,交换变换次序得到的结果,一般说会不相同。仍以正方形(顶点分别为A(0,0),B(1,0),C(1,1),D(0,1))为例,如下图:

第一讲 矩阵的概念、运算

第一讲 Ⅰ 授课题目(章节): §2.1 矩阵的概念; §2.2 矩阵的计算 Ⅱ 教学目的与要求: 理解矩阵概念; 掌握矩阵的线性运算、乘法、转置及其运算规律。 Ⅲ 教学重点与难点: 矩阵的乘法 Ⅳ 讲授内容: §2.1 矩阵 定义2.1 由n m ?个数),,2,,1;,,2,1(n j m a ij =排成的m 行n 列的数表 mn m m n n a a a a a a a a a 21222 21112 11 称为m 行n 列矩阵,简称n m ?矩阵.为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作 ??????? ??=?mn m m n n n m a a a a a a a a a A 212222111211 两个矩阵B A ,,如果都是m 行n 列的,称它们是同型矩阵。否则,称它们是不同型的。 n 行n 列的矩阵n n A ?称为n 阶矩阵(或n 阶方阵) ,简记为n A 。 只有一行的矩阵)(21n a a a A =称为行矩阵,又称行向量.只有一列的矩阵 ?????? ? ??=n b b b B 21 称为列矩阵,又称列向量. 定义2.2 如果)()(ij ij b B a A ==与是同型矩阵,并且它的对应元素相等 ,即

),,2,1;,,2,1(,n j m i b a ij ij === 那么就称矩阵A 与B 相等,记作B A =. 元素都是零的m 行n 列矩阵称为零矩阵,记作n m O ?,简记为O .不同型的零矩阵是 不同的. ??????? ??=100010001 n I 称为n 阶单位矩阵,简记作I .这个矩阵的特点是:从左上角到右下角的直线(叫做主对角线)上的元素都是1,其它元素都是0. §2.2 矩阵的运算 1. 矩阵的加法 定义2.3 设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B , 规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2. 数与矩阵相乘: 定义2.4 数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3. 矩阵与矩阵相乘: 定义 2.5 设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩阵,那么规定矩阵

理解矩阵(个人认为这是关于矩阵最精彩的理解,推荐~~)

理解矩阵(个人认为这是关于矩阵最精彩的理解,推荐~~)来源:曾雅文的日志 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本

矩阵的概念和运算

1。4 矩阵的概念和运算 教学要求 : (1) 掌握矩阵的加减、数与矩阵相乘的运算。 (2) 会矩阵相乘运算掌握其算法规则 ( 以便演示算法规则及行列间的对应关系〉 教学内容: 前面介绍了利用行列式求解线性方程组,即Cramer 法则。但是Cramer 法则有它的局限性: 1.0 2. D ≠?? ?所解的线性方程组存在系数行列式(行数=列数) 同学们接下来要学习的还是关于解线性方程组,即Cramer 法则无法用上的-――用“矩阵”的方法解线性方程组。本节课主要学习矩阵的概念。 一.矩阵的概念 123123123 23124621x x x x x x x x x -+=?? -+-=-??+-=? 它的系数行列式 1 232 4601 1 1 D -=--=- 此时Cramer 法则失效,我们可换一种形式来表示: 123124621111A ?-? ?=--- ? ?-?? 这正是“换汤不换药”, 以上线性方程组可用这张“数表”来表示,二者之间互相翻译。 这种数表一般用圆括号或中括号括起来,排成一个长方形阵式,《孙子兵法》中说道:长方形阵为矩阵。 123246111A -?? ?=-- ? ?-?? 这也是矩阵,是由以上线性方程组的系数按照原来顺序排列而成,称为“系数矩阵” 而“A ”多了一列常数列,称为以上方程组的“增广矩阵”。 注意:虽然D 和A 很相像,但是区别很大。D 是行列式,实质上是一个数,而A 是一张表格,“数是数,表是表,数不是表,表也不是数”,这是本质意义上不同。况且,行列式行数必须与列数相同,矩阵则未必。 关于以上线性方程组我们后面将介绍。 更一般地,对于线性方程组:

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

新理解矩阵(1-6全)

新理解矩阵1 前边我承诺过会写一些关于自己对矩阵的理解。其实孟岩在《理解矩阵》这三篇文章中,已经用一种很直观的方法告诉了我们有关矩阵以及线性代数的一些性质和思想。而我对矩阵的理解,大多数也是来源于他的文章。当然,为了更好地理解线性代数,我还阅读了很多相关书籍,以求得到一种符合直觉的理解方式。孟岩的blog已经很久没有更新了,在此谨引用他的标题,来叙述我对矩阵的理解。 当然,我不打算追求那些空间、算子那些高抽象性的问题,我只是想发表一下自己对线性代数中一些常用工具的看法,比如说矩阵、行列式等。同时,文章命名为“理解矩阵”,也就是说这不是矩阵入门教程,而是与已经有一定的线性代数基础的读者一起探讨关于矩阵的其他理解方式,仅此而已。我估计基本上学过线性代数的读者都能够读懂这篇文章。 首先,我们不禁要追溯一个本源问题:矩阵是什么? 我们不妨回忆一下,矩阵是怎么产生的。矩阵可以看成是一个个向量的有序组合,这说明矩阵可以类比向量;但是向量又是怎么产生的?向量则是一个个数字的有序组合,这又把我们的研究方向指向了“数字是什么”这个问题上。比如,数字1是什么?它可以代表1米,可以代表1千克,也可以代表1分钟、1摄氏度甚至1个苹果。它为什么有这么多的表示意义?答案很简单,因为在本质上,它什么都不是,它就是数字1,一个记号,一个抽象的概念。正因为它抽象,它才可以被赋予各种各样直观的意义!回到矩阵本身,我们才会明白,矩阵的作用如此之大,就是因为书本上那个很枯燥的定义——矩阵就是m行n列的一个数表!它把矩阵抽象出来,让它得到了“进化”。它是一个更一般化的概念:一个向量可以看作一个矩阵,甚至一个数都可以看成一个矩阵,等等。 代数方面的理解 当然,上述说法是含糊的,我们还是需要确切知道它究竟有什么用?这可以从代数和几何的角度来分析,因为做到数形结合才是最完美的。首先我们知道数学最基本的元素就是数字,严格来说是自然数,如0,1,2,...;有了数字,我们就可以做到很多东西。但是数字是单一的,而我们很多时候都要批量处理一些类似的运算,比如同时要计算1+2,1+3,2+3,4+5这四个算式。不论是从记录还是从研究的角度来说,分开研究它们都是比较繁琐的。于是一种“批量”的记号产生了,我们记为(1,1,2,4)+(2,3,3,5),用两个不同记号记录它们,比如 A =(1,1,2,4), B =(2,3,3,5),我们就可以将它记为A +B 。这样不论在研究还是记录方面都能够给我们方便。于是一个我们称之为“向量”的东西产生了,也就是说,从代数的角度来讲,向量是为了研究批量运算而产生的。但是向量并没有解决所有的批量运算的问题。比如3元一次方程组 a11x1+a12x2+a13x3=b1 a21x1+a22x2+a23x3=b2

浅谈矩阵计算

浅谈矩阵计算 一丶引言 矩阵是高等代数学中的常见的工具。在应用数学,物理学,计算机科学中都有很大的作用。研究矩阵的计算,可以简化运算,并深入理解矩阵的性质。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,发展也是历久弥新,拉丁方阵和幻方在史前年代已有人研究。 作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。 矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。 矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。 无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。 二、矩阵的介绍与基本运算 由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m ×n矩阵。只有一行的矩阵A=(a1,a2…a n)称为行矩阵或行向量,只有一列的矩阵称为列矩阵或列向量。矩阵计算的合适出发点是矩阵与矩阵的乘法。这一问题在数学上虽然简单,但从计算上来看却是十分丰富的。矩阵相乘可以有好几种不同的形式,还将引入矩阵划分的概念,并将其用来刻画计

企业战略管理里矩阵的意义

企业战略管理里矩阵的意义 最近一些朋友问我,企业为什么要实施矩阵管理?我想从项目管理、绩效管理与知识管理三个方面来回答这个问题。 一,项目管理。企业可以被看作是一个饥渴的生物体,而它的食物就是它所接洽的每一个项目。每一个项目从市场中来,到企业中去,通过企业的作业,成为最终的作品,为市场和企业都带来了新鲜的营养。在此期间,矩阵管理为每个“项目”提供了有效的“消化过程”,使得企业不会因“消化不良”而“缺乏营养”,也不会因“吃错喝高”而“上吐下泻”,这就是矩阵管理为企业的项目管理所带来的“理顺作用”。 二,绩效管理。没有懒惰的员工,只有低效的管理。绩效管理机制就像是企业的开胃药,让所有的“组织机能”都加快地运作起来。然而,这味开胃药却需要一个“药引”——团队。员工就像是企业中的“细胞”,而“细胞”只有形成“器脏”,即团队矩阵,组织才能有所作为,绩效管理机制才能施展作业。因此,实施绩效管理机制有两大前提:第一,目标管理。德鲁克曾说过,没有目标的机构,不能称之为组织。然而目标管理,不是想当然,不是凭感觉,而是靠组织的战略性思维文化。第二,团队管理。团队化的实际操

作包括团队构成、团队责任、团队合作、团队考核与团队学习。这些战略性的组织安排都要产生于矩阵模式之上才会发生应有的功效。 三,知识管理。知识管理是一个开始进入人力资源中层管理难度的、跨专业、跨行业的研究课题(由于涉及领域越发广泛,前两项与之相比只是人力资源的初级管理)。知识管理,是建立学习型企业的过程,是个人发展与组织成长的途径,是激发企业凝聚力、形成企业文化的重要手段,是组织实现经久不衰神话的、变革管理的前提。然而,实现这一切的前提,是人。是以人为本的、健康的组织形态。因此,作为一切中层次和高层次人力资源管理的基石,矩阵管理,从一开始就起着决定性的作用。 综上所述,矩阵管理是强健企业的生命力的基础,是加速企业“新陈代谢”的绩效管理与目标管理的硬件,是实现深层次组织发展的必要的前提。

矩阵特征值的意义

矩阵特征值的意义 数学里面的特征值和特征矩阵到底有什么用,它的物理意义在于什么?? 矩阵的特征值要想说清楚还要从线性变换入手,把一个矩阵当作一个线性变换在某一组基下的矩阵,最简单的线性变换就是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比,这样的一些非零向量就是特征向量,其实我们更关心的是特征向量,希望能把原先的线性空间分解成一些和特征向量相关的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中在研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理! 特征值时针对方阵而言的。 两个向量只有维数相同时才能考虑相等的问题,才能有和、有差。 引入特征值与特征向量的概念 ? 引例 在一个n 输入n 输出的线性系统y=Ax 中,其中 ? 我们可发现系统A 对于某些输入x ,其输出y ? 恰巧是输入x 的 倍,即 ;对某些输入,其输出与输入就不存在这种按比例放大的关系。 ??????? ??=??????? ??=??????? ??=n n nn n n n n y y y y x x x x a a a a a a a a a A M M L L L L L L L 2121212222111211,,λx y λ=

? 例如,对系统 ,若输入 ? 则 ? ? 若输入 ,则 ? 所以,给定一个线性系统A ,到底对哪些输入,能使其输出按比例放大,放大倍数 等于多少?这显然是控制论中感兴趣的问题。 基于此给出特征值与特征向量的概念: ? 定义 设A 是一个n 阶方阵,若存在着一个数 和一个非零n 维向量x ,使得 则称 是方阵A 的特征值,非零向量x 称为A 对应于特征值 的特征向量,或简称为A 的特征向量 ???? ??=4312A ? ?? ? ??=31x x Ax y 5315155314312=???? ??=???? ??=???? ?????? ??==???? ??=52x x Ax y λ≠???? ??=???? ?????? ??==269524312λx Ax λ=λλ

浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用 摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天, 数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。我们在学习数学知识的同时,不能忘记把数学知识应用于生活。在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。 关键词:线性代数矩阵实际应用 Abstract:From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform. Keywords: linear algebra matrix practical application

深入理解矩阵——矩阵革命(完全版)

矩阵革命-理解矩阵 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们

矩阵,矩阵背后的现实意义

这是很早以前已经看过的,最近无意中又把保存的文章翻出来时,想起很多朋友问过矩阵,虽对矩阵似懂非懂,但却很想弄懂它,希望这几篇文章能帮你一下,故转之: 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:”如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不

相关主题
文本预览
相关文档 最新文档