当前位置:文档之家› 模拟量输出电路

模拟量输出电路

模拟量输出电路
模拟量输出电路

文件编号:INVT0_013_0005_CBB_01

CBB规范

模拟量输出电路

(VER:V1.0)

拟制:华时间:2009-05-26

批准:时间:

文件评优级别:□A优秀□B良好□C一般

1 功能介绍

目前许多单片机本身都不具备模拟量输出(DAC)功能,但可以输出PWM信号,本电路实现了将频率为10K,幅值为5V的PWM信号转换成0~10V电压或者0~20mA电流的模拟量信号输出。

2 详细原理图

工作原理说明:

(1)输入频率为10K,幅值为5V的PWM信号,经过元件R1、C1、R2、C3二阶低通滤波后转换成0~5V的电压信号;

(2)运放U1A是一个同相放大器,对输入信号放大(1+R6/R5)倍,所以输出电压Uout 对应0~10V;

(3)虚线框内部分构成了一个恒流源,电流大小就是Iout=Uout*R7/R8/R13;

(4)通过短接片跳线可以选择输出电流或者电压信号。

3 器件功能

?电阻R1、R2及电容C1、C3构成二阶RC低通滤波器,将输入PWM信号转换成对应电压。?U1A为同相输入运算放大器;

?U1B构成了一个恒流源;

?二极管D1,对端子信号进行电压钳位,防止电压过高或者过低,起保护作用;

?电容C2、C4为芯片TL082的滤波电容;

?C5、C6,输出电压滤波,减少电压纹波作用;

? Q1、Q2三极管,增加电流驱动能力; ? R9、R11,三极管基极限流电阻。 4 参数计算

4.1 运算放大器:

选择常用TL082。

4.2 电阻R1、电容C1、电阻R2、电容C3:

构成二阶低通滤波电路,必须满足截止频率远远小于输入的PWM 频率,这里电阻我们选用22K ,兼顾到响应速度,电容C1选用0.1uF 电容,为了更好地稳定运算输入端电压,电容C3这里选用1uF 电容。滤波积分时间常数为:

3121C C R R ???=μμ1.012222???K K =7mS

符合使用要求。 4.3 电容C2、C4:

芯片电源滤波电容,选择常用的0.1uF 电容。 4.4 电容C5、

滤波作用,直接与外端输出端子相连,一方面减少输出电压纹波,另一方面也可以抑制外部输入的干扰信号。这里选用0.1uF/100V 电容。 4.5 电容C6:

滤波电容,抑制电压纹波,选择1uF/50V 电容。 4.6 电阻R5、R6的选取:

0~5V 的信号通过同相放大器放大到0~10V 输出,放大倍数为(1+R6/R5),输入信号0~5VPWM 信号需要转换成0~10V 输出。考虑到输入的PWM 信号有可能会略低于5V ,所以放大倍数稍大于2,这里R5选择9.1K ,R6选择10K 。 4.7 恒流源电路,电阻R7、R8、R10、R11、R13:

典型的恒流源电路,由图可知:

)87/(7*)2_(2_R R R U Uout U U +-+=+ )1210/(10*1_R R R U U +=-

对于运放有-≈+U U ,所以有:

)1210/(10*1_)87/(8*2_)87/(7*R R R U R R R U R R R Uout +≈+++

我们取电阻R8=R10,R7=R12,则有:

8/12*2_1_R R Uout U U =-

当R13<

13

812R Uout

R R I out ?

=

这里我们R13取100欧姆,R12=R7=20k ,R8=R10=100k ,因为Uout 范围为0~10V ,所以输出电流Iout 对应为0~20mA 。

4.8二极管D1:

由于此处二极管的电流和工作电压小,此处选公司的优选器件MMBD7000LT1。

4.9三极管Q1、Q2:

由于运放驱动电流有限,通过三极管起增加驱动电流作用,此处选公司的优选器件MMBT4401L,由于三极管电流上升有一定时延,在这用两组并联可加快响应速度和电流驱动能力。

4.10电阻R9、R11:

三极管基极电阻,选择1K电阻即可。

5 器件可靠性分析(可选)

此电路已大批量应用于我司产品,各项目测试指标正常,目前未反馈故障情报。

6 电路测试数据(可选)

8 关键器件资料

模拟量输入输出

第六章模拟量输入输出 *模拟通道的组成 调理电路,模拟开关MUX(多路复用)sample/holder S/H 采样保持器SHA (sample/holder—S/H )* 转换接口电路 简单I/O 扩展:输入缓冲/输出锁存,同步转换(R f G d) 基准地(Reference Ground)电压基准源(Reference Voltage Source)(g )*ADC/DAC 线性转换关系X Di it l A l x-x 0X-X 0= 微机系统与接口X:Digital,x:Analog x 1-x 0X 1-X 0

应用: 生产过程微机控制系统结构 I /O 通道信号调理 连续模拟信号 过 程 传感器检测/控制 操作台I/O 接口A/D 输入调理模拟量对 象变送器微I/O 接口D/A V/I 变换打印机⌒被执行机构机主数字量控对 象 传感器执行机构机电平变换功放驱动I/O 接口I/O 接口DI DO 显示器∪ 传感执行 频率、其他微机系统与接口 传感、执行I/O 接口变换信号处理

模拟量I/O 接口 模拟量的概念(信号连续量):DC-V(mv)/mA(V)典型:信号采样/复原-信号处理 控制、监控-自动化系统 转换输入:V/F(P389:AD650)?计数器;输出:计数器?F/V(LM331);PWM 调宽(时间):易于光电隔离 F/V 模 T/C 8253/脉冲 频率 V/F 拟 信 8254MPU 号 ADC/DAC 微机系统与接口V/I 数字量

模拟量转换与I/O 通道 1.模数转换--ADC 数模转换--DAC Analog to Digital Converter/Digital to Analog Converter 22. 模入与模出通道的组成:输入通道: (高精度测量,1%~0.05%,可分时采样,同步采样) Vref 调理放大MUX S/H ADC 数字量 (MPU) 传感器Multiplexer :(6.4)多路转换器(开关,(模拟)多路(电子)开关 1-N,N-1,N 选一):N 路入一路输出:巡回扫描/分时转换;S l /H ld (65)Sample/Holder :(6.5)捕捉后保持信号(电容)Voltage reference:电压基准源 输出通道:(精度,同步输出,输出保持--动态扫描) 复习:运算放大器放大执行DAC V/I 调理数字量 (MPU)微机系统与接口驱动机构 Vref MUX, S/H

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。 1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。

对输入、输出模拟量的PLC编程的探讨及编程实例解析

对输入、输出模拟量的PLC编程的探讨及编程实例解析

————————————————————————————————作者: ————————————————————————————————日期:

对输入、输出模拟量的PLC编程的探讨及编程实例解析 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。比如有3个温度传感变送器: (1)、测温范围为0~200,变送器输出信号为4~20ma (2)、测温范围为0~200,变送器输出信号为0~5V (3)、测温范围为-100 ~500,变送器输出信号为4~20ma (1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V 对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:

对输入、输出模拟量的PLC编程实例解析

对输入、输出模拟量的PLC编程的探讨及编程实例解析 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难 的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对, 编出的程序肯定是错误的。比如有3个温度传感变送器: (1)、测温范围为0~200,变送器输出信号为4~20ma (2)、测温范围为0~200,变送器输出信号为0~5V (3)、测温范围为-100 ~500,变送器输出信号为4~20ma (1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:

上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。编程者依据正确的转换公式进行编程,就会获得满意的效果。 二、变送器与模块的连接

4~20mA电流模拟量输入RS485数据采集模块

M-IF16C用户手册V1.1 基于Modbus的16路电流型模拟量输入模块 1 产品简介 M-IF16C(基于Modbus的16路电流型模拟量输入模块)作为通用型模拟量量采集模块广泛应用于冶金、化工、机械、消防、建筑、电力、交通等工业行业中,可接入16路温度、湿度、液位、压力、流量、PH值等传感器输出的0~20mA 或4~20mA模拟量信号。支持标准的Modbus RTU 协议,并具有通讯超时检测功能,可同其它遵循Modbus RTU 协议的设备联合使用。 1.1 系统概述 M-IF16C模块的原理框图如图1.1所示,模块主要由电源电路、模拟量输入采样电路、隔离RS485收发电路及MCU等部分组成。采用高速ARM处理器作为控制单元,拥有隔离的RS485通讯接口,具有ESD、过压、过流保护功能,避免了工业现场信号对模块通讯接口的影响,使通讯稳定可靠。 图1.1 原理框图 1.2 主要技术指标 1)系统参数 供电电压:5~40VDC,电源反接保护 功率消耗:0.5W

工作温度:-10℃~60℃ 存储温度:-40℃~85℃ 相对湿度:5%~95%不结露 2)模拟量输入参数 输入路数:16路单端输入 正常输入范围:0~20mA,4~20mA 最大输入范围:0~21mA 隔离电压:2500VDC 输入电阻:120Ω ADC分辨率:12位 采样精度:0.5% 采样速率:100次/s 3)通讯接口 通讯接口:RS485 接口,隔离1500VDC,±15kV ESD 保护、过流保护 隔离电压:1500V 通讯协议:Modbus RTU 协议 波特率:1.2k,2.4k,4.8k,9.6k,19.2k,38.4k,57.6k,115.2k 通讯数据格式:1个起始位,8个数据位,无、奇或偶校验,1个或2个停止位 1.3 外形及尺寸 外壳材料:ABS工程塑料 尺寸大小:145mm(长) * 90mm(宽) * 40mm(高) 安装方式:标准DIN35导轨安装和螺钉安装 模块外形如图1.2所示,安装尺寸如图1.3所示。

模拟量输出电路

文件编号:INVT0_013_0005_CBB_01 CBB规范 模拟量输出电路 (VER: 拟制:华时间:2009-05-26 批准:时间: 文件评优级别:□A优秀□B良好□C一般

1 功能介绍 目前许多单片机本身都不具备模拟量输出(DAC)功能,但可以输出PWM信号,本电路实现了将频率为10K,幅值为5V的PWM信号转换成0~10V电压或者0~20mA电流的模拟量信号输出。 2 详细原理图 工作原理说明: (1)输入频率为10K,幅值为5V的PWM信号,经过元件R1、C1、R2、C3二阶低通滤波后转换成0~5V的电压信号; (2)运放U1A是一个同相放大器,对输入信号放大(1+R6/R5)倍,所以输出电压Uout 对应0~10V; (3)虚线框内部分构成了一个恒流源,电流大小就是Iout=Uout*R7/R8/R13; (4)通过短接片跳线可以选择输出电流或者电压信号。

3 器件功能 电阻R1、R2及电容C1、C3构成二阶RC 低通滤波器,将输入PWM 信号转换成对应电压。 U1A 为同相输入运算放大器; U1B 构成了一个恒流源; 二极管D1,对端子信号进行电压钳位,防止电压过高或者过低,起保护作用; 电容C2、C4为芯片TL082的滤波电容; C5、C6,输出电压滤波,减少电压纹波作用; Q1、Q2三极管,增加电流驱动能力; R9、R11,三极管基极限流电阻。 4 参数计算 4.1 运算放大器: 选择常用TL082。 4.2 电阻R1、电容C1、电阻R2、电容C3: 构成二阶低通滤波电路,必须满足截止频率远远小于输入的PWM 频率,这里电阻我们选用22K ,兼顾到响应速度,电容C1选用电容,为了更好地稳定运算输入端电压,电容C3这里选用1uF 电容。滤波积分时间常数为: 3121C C R R ???=μμ1.012222???K K =7mS 符合使用要求。 4.3 电容C2、C4: 芯片电源滤波电容,选择常用的电容。 4.4 电容C5、 滤波作用,直接与外端输出端子相连,一方面减少输出电压纹波,另一方面也可以抑制外部输入的干扰信号。这里选用100V 电容。 4.5 电容C6: 滤波电容,抑制电压纹波,选择1uF/50V 电容。 4.6 电阻R5、R6的选取:

什么叫模拟量

什么叫模拟量 ?什么又叫开关量? 点击次数:1081发布时间:2009-7-18 16:10:05 什么叫模拟量?什么又叫开关量?他们两者有什么区别?这都是本文所要讨论的。 众所周知,在控制系统中有两个常见的术语,“模拟量”和“开关量”。不论输入还是输出,一个参数要么是模拟量,要么是开关量。 模拟量:控制系统量的大小是一个在一定范围内变化的连续数值。比如温度,从0~100度,压力从0~10Mpa,液位从1~5米,电动阀门的开度从 0~100%,等等,这些量都是模拟量。 开关量:该物理量只有两种状态,如开关的导通和断开的状态,继电器的闭合和打开,电磁阀的通和断,等等。 对控制系统来说,由于CPU是二进制的,数据的每位只有“0”和“1”两种状态,因此,开关量只要用CPU内部的一位即可表示,比如,用“0”表示开,用“1”表示关。而模拟量则根据精度,通常需要8位到16为才能表示一个模拟量。 最常见的模拟量是12位的,即精度为2-12,最高精度约为万分之二点五。当然,在实际的控制系统中,模拟量的精度还要受模拟/数字转换器和仪表的精度限制,通常不可能达到这么高。 开关量仅有两种相反的工作状态,例如高电平和低电平,继电器线圈的通电和断电,触电的接通和断开,PLC可以直接输入和输出开关量信号.有的PLC(例如西门子的S7系列)将开关量称为数字量.模拟量是连续变化的物理量,例如电压,温度,压力和转速等PLC,不能直接处理模拟量,需要用模拟量输入模块中的A/D转换器,将模拟量转换为与输入信号成正比的数字量.PLC中的数字量(例如PID控制器的输出)需要用模拟量输出模块中的D/A转换器将它们转换为与相应数字成比例电压或电流,供外部执行机构(例如电动调节阀或变频器)使用.

S7-300PLC模拟量输入输出量程转换教程

S7-300/400 PLC模拟量输入/输出的量程转换 SLC A&D CS March, 2005

1模拟量输入/输出量程转换的概念 (3) 2S7-300/400 PLC模拟量输入/输出模板 (3) 2.1需要使用的模板 (3) 2.2涉及的信号类型 (3) 3STEP 7中模拟量输入/输出的编程 (3) 3.1FC105/FC106在哪里 (3) 3.2FC105/FC106功能描述 (5) 3.2.1FC105功能描述 (5) 3.2.2FC106功能描述 (5) 3.3FC105/FC106参数定义 (6) 3.3.1FC105 的参数定义 (6) 3.3.2FC106的参数定义 (6) 3.4例子程序 (7) 3.4.1FC105例子程序 (7) 3.4.2FC106例子程序 (8)

1模拟量输入/输出量程转换的概念 实际的工程量,如压力、温度、流量、物位等要采用各种类型传感器进行测量。传感器将输出标准电压、电流、温度、或电阻信号供PLC采集,PLC的模拟量输入模板将该电压、电流、温度、或电阻信号等模拟量转换成数字量——整形数(INTEGER)。在PLC程序内部要对相应的信号进行比较、运算时,常需将该信号转换成实际物理值(对应于传感器的量程)。而经程序运算后得到的结果要先转换成与实际工程量对应的整形数,再经模拟量输出模板转换成电压、电流信号去控制现场执行机构。这样就需要在程序中调用功能块完成量程转换。 如一个压力调节回路中,压力变送器输出4-20mA DC信号到SM331模拟量输入模板, SM331模板将该信号转换成0-27648的整形数,然后在程序中要调用FC105将该值转换成0-10.0(MPa)的工程量(实数),经PID运算后得到的结果仍为实数,要用FC106转换为对应阀门开度0-100%的整形数0-27648后,经SM332模拟量输出模板输出4-20mA DC信号到调节阀的执行机构。 本文主要讨论S7-300/400 PLC编程中模拟量的量程转换。 2S7-300/400 PLC模拟量输入/输出模板 2.1需要使用的模板 使用西门子S7-300/400 PLC进行模拟量输入/输出需要使用的模板: S7-300系列PLC:SM331系列模拟量输入模板;SM332系列模拟量输出模板;SM334/335系列模拟量输入/输出模板。 S7-400系列PLC:SM431系列模拟量输入模板;SM432模拟量输出模板。 目前常用的模板规格型号参见模板手册,请链接到如下网址下载模板手册: S7-300: https://www.doczj.com/doc/da13448151.html,/WW/view/en/8859629 S7-400: https://www.doczj.com/doc/da13448151.html,/WW/view/en/1117740 2.2涉及的信号类型 电压,电流,温度,电阻。 3STEP 7中模拟量输入/输出的编程 3.1FC105/FC106在哪里 在编程界面下,在Program elements中的Libraries下的Standard Library下的TI-S7 Converting Blocks中就可以找到,见下图:

模拟量输入检测电路

CBB规范 模拟量输入检测电路 (VER:V1.0) 拟制:华时间:2010-05-27 批准:时间: 文件评优级别:□A优秀□B良好□C一般

1 功能介绍 本电路实现输入电压0~10V 或者电流0~20mA 的模拟量信号转换为CPU 可以直接测量的0~3.3V 电压信号。 2 详细原理图 +15 -15 +3.3 +15 AI1 AI1-AD AI1:外部模拟量输入 (0-10V/0-20mA) AI1-AD: 输出信号(0-3.3V) 1、2短接:选择(0-10V) 2、3短接:选择(0-20mA) +- U1A TL08232 1 8 4 C10.1u C40.1u D2 MMBD7000LT1 1 2 3 D1 MMBD7000LT1 1 2 3 C2 1u/50V L1 10uH 1 2 R210k R110k R520k R3100R720k R4 6.8k R63.3k C31n/2kV C51n R91k R81k J1 PIN-3 123J1/U-DJ1短接片 1 工作原理说明: 外部模拟量信号从AI1端口输入,首先经过安规电容C3和电感L1,可有效防止线路上的浪涌电流电压进入后端电路。如果输入的是电流信号,需将SW1开关拨到ON 端,电流流过电阻R8和R9,在电阻R1端可得到0~10V 的电压信号,如果外部电压过高(超过15V)或者过低(少于0V),二极管D1可以发生钳位作用,保证电压在-1V~16V 之间。 输入信号接到运放TL082的同相端,电压跟随输出到R4端口,电压幅值不变仍然是0~10V ,电阻R4和R6构成分压关系输出0~3.3V 的电压信号。二极管D2同样是起电压钳位作用,保证输出电压在-0.3~3.6V 之间,有效保护CPU 。 3 器件功能 磁珠L1,防止浪涌输入,提高抗干扰能力; 电容C3,安规电容防止浪涌电压,保护后端电路; 功率电阻R1~R6,降压限流,防止PC1流过大电流损坏; 电阻R1及电容C2,对输入信号进行RC 滤波; 二极管D1~D2,对信号进行电压钳位,防止电压过高或者过低; 电容C1、C4、C5,滤波电容,对电路正常工作影响不大; 电阻R8、R9,短接片J1,输入为电流信号时J1短接2,3脚,电流流过R8、R9并产生对 应的电压信号; 电阻R3限流电阻,此电阻大小影响运放的输出能力; 电阻R4、R6,将运放端输出的信号进行分压输出。 4 参数计算 在设计电路参数时,应兼顾以下因素:1、对外部输入信号进行抗干扰处理;2、输入信

第六章模拟量输入输出与数据采集卡

第六章模拟量输入输出与数据采集卡 通过本章的学习,使考生掌握D/A,A/D转换的原理和典型芯片,在此基础上了解工业控制计算机常用模板的组成和应用。 要求: (1)了解D/A转换的工作原理和8位,12位D/A转换芯片;D/A转换器与总线的连接和应用方法。 (2)了解A/D转换器的工作原理和指标,熟悉A/D转换的典型芯片和多路转换器,采样保持器的工作原理。 (3)了解数据采集卡的组成和指标及其应用方法,了解工控机配套模板的概况。 一、重点提示 本章重点是D/A,A/D转换器的工作原理,与总线的连接方法。 二、难点提示 本章难点是利用这些芯片和多路开关、采样保持器组成数据采集卡的应用方法。 考核目的:考核学生对微型计算机的模拟通道的构成及工作原理的掌握。 1.数模转换器D/A (1)D/A转换的指标和工作原理 / (2)典型D/A转换器芯片 (3)D/A转换器与总线的连接 2.模数转换器A/D (1)A/D转换器的工作原理(双积分和逐次逼近型A/D转换),A/D转换器主要指标 (2)典型A/D转换器芯片(ADC0809及.12位A/D芯片)的功能和组成,与总线的连接 3.多路开关 (1)数据采集系统对多路开关的要求 (2)几种多路开关芯片 (3)几种多路开关的主要技术参数 4.采样保持器 (1)采样保持器的工作原理 (2)常用的采样保持器芯片 5.数据采集卡的组成及其应用 本章知识结构如下: (一)D/A转换接口 D/A转换器的作用是将二进制的数字量转换为相应的模拟量。D/A转换器的主要部件是电阻开关网络,其主要网络形式有权电阻网络和R-2R梯形电阻网络。 集成D/A芯片类型很多,按生产工艺分有双极型、MOS型等;按字长分有8位、10位、

PIC单片机模拟量输入与输出

第6章模拟量输入与输出 6.1 A/D转换的应用 例6.1 A/D转换初始化程序 //A/D转换初始化子程序 void adinitial( ) { ADCON0 = 0x51;//选择A/D通道为RA2,打开A/D转换器 //在工作状态,且使AD转换时钟为8t osc ADCON1 = 0X80;//转换结果右移,及ADRESH寄存器的高6位为"0" //且把RA2口设置为模拟量输入方式PIE1 = 0X00; PIE2 = 0X00; ADIE = 1;//A/D转换中断允许 PEIE = 1;//外围中断允许 TRISA2=1;//设置RA2为输入方式 } 6.1.2 程序清单 下面给出一个调试通过的例程,可作为读者编制程序的参考。 117

该程序中用共用体的方式把A/D转换的10位结果组合在一起。有关共用体的详细资料请参考本书相关章节。 # include union adres {int y1; unsigned char adre[2]; }adresult;//定义一个共用体,用于存放A/D转换的结果 unsigned char i; unsigned int j; //系统各I/O口初始化子程序 void initial() { TRISD=0X00;//D口为输出 i=0x00; } //A/D转化初始化子程序 void adinitial() { ADCON0=0x51;//选择A/D通道为RA2,打开A/D转换 118

//在工作状态,且使A/D转换时钟为8t osc ADCON1=0X80;//转换结果右移,及ADRESH寄存器的高6位为"0" //且把RA2口设置为模拟量输入方式PIE1=0X00; PIE2=0X00; ADIE=1;//A/D转换中断允许 PEIE=1;//外围中断允许 TRISA2=1;//设置RA2为输入方式 } //延时子程序 void delay() { for(j=5535;--j;) continue; } //报警子程序 void alarm() { i=i^0xFF;//通过异或方式每次把i的各位值取 119

模拟量采样

沈阳工程学院 课程设计 单片机原理及应用 课程设计题目:模拟量采样 系别自动控制工程系班级电自101 学生姓名蒋德林学号 28 指导教师李贞王德君职称教授、副教授 起止日期:12年06月25日起——至12年06月29日止

沈阳工程学院 课程设计任务书 课程设计题目:模拟量采样 系别自动控制工程系班级电自101 学生姓名蒋德林学号 28 指导教师李贞王德君职称教授、副教授 课程设计进行地点:单片机实验室(F207) 任务下达时间:2012 年06 月08日 起止日期: 12年06月25日起——至12年06月29日止 教研室主任王健 2012年 06月 07日批准

一、设计目的 通过课程设计使学生更进一步掌握单片机原理及应用课程的有关知识,提高应用单片机解决问题的能力,加深对单片机应用的理解。通过查阅资料,结合所学知识进行软、硬件的设计,使学生初步掌握应用单片机解决问题的步骤及方法。为以后学生结合专业从事单片机应用奠定基础。 二、设计的原始资料及依据 8051单片机 ,C51单片机 ,51单片机 ,单片机实验与实践 三、设计的主要内容及要求 (1)用发光二极管显示采样结果,并随采样值变化. (2)再用一个发光二极管:当所有采样的模拟量大于3V时,发光管亮,否则灭. 四、对设计说明书撰写内容、格式、字数的要求 1.课程设计说明书(论文)是体现和总结课程设计成果的载体,一般不应少于3000字。 2.学生应撰写的内容为:目录、正文、参考文献等。课程设计说明书(论文)的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。应做到文理通顺,内容正确完整,书写工整,装订整齐。 3.说明书(论文)手写或打印均可。手写要用学校统一的课程设计用纸,用黑或蓝黑墨水工整书写;打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。 4. 课程设计说明书(论文)装订顺序为:封面、任务书、成绩评定表、目录、正文、总结、参考文献。 五、设计完成后应提交成果的种类、数量、质量等方面的要求; 提交课程设计说明书一份。在说明书中要有设计原理、硬件电路接线图、设计的程序及必要注释等。 六、时间进度安排;

三菱FX系列模拟量的处理

三菱FX2N系列模拟量输入输出模块在水箱控制系统方面的应用...... 1.概述 模拟量输入模块(A/D模块)是把现场连续变化的模拟信号转换成适合PLC内部处理的数字信号。输入的模拟信号经运算放大器放大后进行A/D转换,再经光电藕合器为PLC 提供一定位数的数字信号。FX2N系列常用的PLC模拟量输入/输出模块如图所示。 此主题相关图片如下,点击图片看大图: 模拟量输出模块(D/A模块)是将PLC处理后的数字信号转换成相应的模拟信号输出,以满足生产过程现场连续控制信号的需求。模拟信号输出接口一般由光电隔离、D/A转换、信号驱动等环节组成。 2.模拟量输入/输出单元 以三菱公司的F2-6A模块为例,来说明模拟量输入输出单元模块的有关情况。F2-6A是三菱公司F1、F2系列PLC的扩展单元,为8位4通道输入、2通道输出的模拟量输入输出单元模块。F2-6A模块与F1、F2系列PLC连接示意图如下:

此主题相关图片如下,点击图片看大图: 3.A/D转换、D/A转换 1)模数转换(A/D)模块:将现场仪表输出的(标准)模拟量信号0-10mA、4-20mA、1 -5VDC等转化为计机可以处理的数字信号数模转换(D/A)模块:将计算机内部的数字信号转化为现场仪表可以接收的标准信号4-20mA等。如:12位数字量(0-4095)→4-20 mA;2047对应的转换结果:12mA。 2)A/D转换(A/D、AI)的作用。 3)D/A转换(D/A、AO)的作用。 4.几种常见模拟量输入/输出模块简介: 1)模拟量输入模块FX-4AD。FX-4AD为4通道12位A/D转换模块,根据外部连接方法及PLC指令,可选择电压输入或电流输入,是一种与F2-6A相比具有高精确度的输入模块。 2)热电偶温度传感器模拟量输入模块FX-4AD-TC。FX-4AD-TC是4通道热电偶温度传感器模拟量输入模块。 3)模拟量输出模块FX-2DA。FX-2DA为2通道12位D/A转换模块,每个通道可独立设置电压或电流输出。FX-2DA是一种与F2-6A相比具有高精确度的输出模块。 三菱FX2N系列模拟量输入输出模块在水箱控制系统方面的应用

PLC模拟量编程实例

对输入、输出模拟量的PLC编程实例解析 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅就是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式就是不一样的,如果选用的转换公式不对,编出的程序肯定就是错误的。比如有3个温度传感变送器: (1)、测温范围为 0~200 ,变送器输出信号为4~20ma (2)、测温范围为 0~200 ,变送器输出信号为0~5V (3)、测温范围为-100 ~500 ,变送器输出信号为4~20ma (1)与(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)与(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也就是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)与(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:

上面推导出的(2-1)、(2-2)、(2-3)三式就就是对应(1)、(2)、(3)三种温度

传感变送器经过模块转换成数字量后再换算为被测量的转换公式。编程者依据正确的转换公式进行编程,就会获得满意的效果。 二、变送器与模块的连接 通常输出4~20ma电流信号的传感变送器,对外输出只有 +、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。下右图粉色虚线框内为EM235 模块第一路模拟输入的框图,它有3个输入端,其A+与A-为A/D转换器的+ - 输入端,RA与A-之间并接250Ω标准电阻。A/D转换器就是正逻辑电路,它的输入就是0~5V电压信号,A-为公共端,与PLC的24V电源的负极相连。 那么24V电源、传感变送器、模块的输入口三者应如何连接才就是正确的?正确的连线就是这样的:将左图电源负极与传感器输出的负极连线断开,将电源的负极接模块的A-端,将传感器输出负极接RA端,RA端与A+端并接一起,这样由传感器负极输出的4~20ma电流由RA流入250Ω标准电阻产生0~5V 电压并加在A+与A-输入端。 切记:不可从左图的24V正极处断开,去接模块的信号输入端,如这样连接,模块就是不会正常工作的。 对第(2)种电压输出的传感変送器,模块的输入应设置为0~5V电压模式,连线时,变送器输出负极只连A+,RA端空悬即可。 三、按转换公式编程: 根据转换后变量的精度要求,对转换公式编程有二种形式:1、整数运算,2、实数运算。

模拟量输入输出讲解

对输入、输出模拟量的PLC 编程的探讨及编程实例解析 对于初学PLC 编程的人来说,模拟量输入、输出模块的编程要比用位变量进 行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转 换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块 进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定 是错误的。比如有3个温度传感变送器: (1) 、测温范围为0~200 ,变送器输出信号为4?20ma (2) 、测温范围为0~200 ,变送器输出信号为0?5V (3) 、测温范围为 —100 ~500 ,变送器输出信号为4?20ma (1)和(2) 二个温度传感变送器,测温范围一样,但输出信号不同,( 1) 和(3)传感变送器输出信号一样,但测温范围不同,这 3个传感变送器既使选用 相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235勺参数为依据对上述的3个 温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为 0?20ma 电流 信号,20ma 对应数子量=32000, 4 ma 对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为 0?5V 电压信号,5V 对应数字量=32000, 0V 对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助, 请见下图: 时,输出电流ITma,模块转AIW=C400H T 与AlWffi 关系曲线如上左图所示,恨 据三角形相粽定理可5lb LABM 屮 按可引h — = ..... (1-1) 由團外h 屮 CT DM AB=200 CI>=h BM=32000—6400 DM=AI^—6400 带入(1*1)式,可得; 十 “咤边….(… (32000-6400) | (2;传感藩测温T=20€°时,输出电压V=5V,模块转换数字話f 『」U AIW T AlWx ⑴传感鉄诜珞跆 T 戋糸图 (3満惑越7AIW 戋齐因 (1)偉感器测淳7-200°时,输出电療1-2Dim,模块转换数宇量AIW-3200Dj 测温T-D 0*

基于单片机的模拟量采集

绪论 随着电子产业数字化程度的不断发展,逐渐形成了以数字系统为主体的格局。A/D 转换器作为模拟和数字电路的接口,正受到日益广泛的关注。随着数字技术的飞速发展,人们对A/D转换器的要求也越来越高,新型的模拟/数字转换技术不断涌现。本文着重介绍了当前几种常用的模拟/数字转换技术;并通过对数字技术发展近况的分析,探讨了模拟/数字转换技术未来的发展趋势。 在自动化控制设备的数据采集和转换输出过程中,A/D、D/A转换往往是必不可少的,因此在很多场合要使用到A/D、D/A转换芯片。选择一款合适的A/D、D/A转换芯片显得尤为重要。传统的并行A/D、D/A转换需占用较多的I/O口,串行的A/D、D/A 转换周期长,读写复杂,可扩展性较差。I2C总线A/D、D/A转换具有接口线少,控制方式简单,通信速率较高,扩展性方便等优点,得到了广泛应用。 当前,数字处理系统正在飞速发展,在视频领域,高清晰度数字电视系统(HDTV)的出现,将广播电视推向了一个更高的台阶,HDTV的分辨率与普通电视相比至少提高了一倍。在通信领域,过去无线通信系统的设计都是静态的,只能在规定范围内的特定频段上使用专用调制器、编码器和信道协议。而软件无线电技术(SDR)能更加灵活、有效地利用频谱,并能方便地升级和跟踪新技术,大大地推动了无线通信系统的发展。在高精度测量领域,高级仪表的分辨率在不断提高,电流到达μA量级,电压到达mV甚至更低;在音频领域,各种高性能专业音频处理设备不断涌现,如DVD-Audio和超级音频CD(SACD),它们能处理更高质量的音频信号。

第1章单片机概述 单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。 单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D 转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多 单片机的应用:目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。 本设计采用的单片机是89C52,结合PCF8591P,实现模拟量的采集。

模拟量采集模块的工作原理是什么

3)I/O端的接线 输入接线 ● 输入接线一般不要太长。但如果环境干扰较小,电压降不大时,输入接线可适当长些。 ● 输入/输出线不能用同一根电缆,输入/输出线要分开。 ● 尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。 输出连接 ● 输出端接线分为独立输出和公共输出。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。 ● 由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板。 ● 采用继电器输出时,所承受的电感性负载的大小,会影响到继电器的使用寿命,因此,使用电感性负载时应合理选择,或加隔离继电器。 ● PLC的输出负载可能产生干扰,因此要采取措施加以控制,如直流输出的续流管保护,交流输出的阻容吸收电路,晶体管及双向晶闸管输出的旁路电阻保护。(4)正确选择接地点,完善接地系统 良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱 对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、 程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 ● 安全地或电源接地 将电源线接地端和柜体连线接地为安全接地。如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。 ● 系统接地 PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。接地电阻值不 得大于4Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。 ● 信号与屏蔽接地

4通道模拟量采集模块详解

4通道模拟量采集模块详解: 模拟量采集模块可采集4路差分模拟信号;模块采用高性能16位AD芯片,采集测量精度±0.1%。适用于采集工业现场的各种电压和电流信号。采用光电隔离技术,有效保障数据采集可靠及安全。所谓模拟量信号是指连续的,任何时刻可为任意一个数值的信号,例如我们常见的温度、压力、流量等信号。对于工业控制现场常见的模拟量信号,可以通过传感器获取其值的变化,为获取传感器的输出值就需要采用模拟量输入模块。采用先进的高精度集成数模转换器,分辨率高达16位,测量精度优于0.1%(典型值)。能满足测量要求较高的工业现场及安防、智能楼宇、智能家居、电力监控、过程控制等场合。产品针对工业应用设计:通过DC-DC 变换,实现测量电路和主控电路电源隔离;同时控制单元与信号采集单元采用光电隔离技术实现电气隔离,有效保障数据采集可靠及安全。模块配有瞬态抑制电路,能有效抑制各种浪涌脉冲,保护模块在恶劣的环境下可靠工作。 模拟量采集模块参数: 隔离耐压:DC2500V ESD保护:±15KV 供电范围:DC+8~+36V 功耗:小于1W 工作温度:-40℃~+80℃ 工业级V0级防火塑料外壳保障产品应用各类环境安全 安装方式:标准DIN35导轨安装 输入通道数:4路差分输入 输入范围:±20mA,±100mV,±1V,±2.5V,±5V,±10V 转换速率:20次/秒(全通道) 支持RS485/RS232 AD转换分辨率:16位 测量精度:±0.1%(典型值) 输入端过压保护,过流保护,并有低通滤波 常模抑制(NMR):60dB

共模抑制(CMR):120dB 型号信号输入类型通道数通讯接口 DAM-7011模拟量1AI RS485和RS232 DAM-7021模拟量2AI RS485和RS232 DAM-7041模拟量4AI RS485和RS232 DAM-7082模拟量8AI RS485和RS232 模拟量采集模块接线 DAM-7041模拟输入为差分输入,每个模拟输入通道都有两个接线端口,分别为模拟输入正(INn+)与模拟输入负(INn-)。电压信号与电流信号可以直接接入模块检测,采集电流需要注意的是在定货时需告知模块用于采集电流信号,这样模块在出厂时会在模块内部放置高精度电流检测电阻且出厂时用标准电流信号校准。 模拟量采集模块接口 DAM-7041配置有1路RS232与1路RS485;RS232可以直接与电脑连接;RS485可以单个与PLC 或其它主机连接,也可以多个模块组网后与PLC或其它主机连接。 RS232连接 DAM系统模块RS232接口为标准RS232接口,符合相关规范,可以直接与电脑或其它标准RS232接口连接,其连接方式为交叉连接法,即模块TX与电脑RS232的RX连接,模块RX与电脑RS232的TX连接

PLC模拟量输入输出模块

PLC模拟量输入、输出模块低成本扩展的一种方法 1 引言 可编程控制器(以下简称PLC)由于其高可靠性、编程简单、通用性强、体积小、结构紧凑、安装维护方便等特点,而在工业控制中得到了广泛应用。PLC的模块一般分为以下几大类:开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块。在工业控制中特别是过程控制领域中需要采集和控制的模拟量比较多,因而对PLC的模拟量输入、输出模块需要的较多,而模拟量输入、输出模块比较贵,增加模拟量输入、输出模块就增加了成本,降低了整个系统的性价比,限制了PLC的应用。本文提出了一种基于通讯的模拟量输入、输出模块的扩展方法力图解决这一问题。 2 基于通讯的模拟量输入、输出模块的扩展方法 (1) 模拟量输入模块扩展 这里以一路12位模拟量输入为例,模拟信号以0~5V标准电压的形式送入信号输入端,应用12位A/D转换芯片MAX187实现模数转换。MAX187是12位串行A/D,具有较高的转换速度,采样频率是75kHz,适用于较高精度的过程控制。考虑到实际工业现场中的高频干扰,在采样信号送MAX187之前还使用了低通滤波器滤波,如图1所示。

图1 低通滤波、放大器及A/D转换 MAX187具有内部参考电压,既4#管脚(REF)为4.096V,因此,A/D 转换的全量程为4.096V。而输入信号是0~5V,因此,要加一级运放把0~5V转换成0~4.096V后送入MAX187。AT89C52的P1.3和MAX187的片选端(CS)相连、AT89C52的P1.4和MAX187的串行时钟信号端(SCLK)相连、AT89C52的P1.5和MAX187的串行数据输出端(DOUT)相连。模拟量采样的值存入单片机的内存中,再由单片机的串行口传送给PLC。A/D转换的C51程序如下: #include #include sbit IC4_S = P1^4; /* AD输入端口设置*/ sbit IC4_D = P1^5; sbit IC4_C = P1^3;

相关主题
文本预览
相关文档 最新文档