当前位置:文档之家› 复变函数-第五章留数自测题

复变函数-第五章留数自测题

复变函数-第五章留数自测题
复变函数-第五章留数自测题

单元自测题五 作业号 姓名 得分

一、选择题(每题5分,共20分)

1.设z=0为函数2

z

41e z sin z -的m 级极点,则m=( ) A. 5 B. 4 C. 3 D. 2

2.0=z 是函数(1cos )

z

e z z -的( )

A. 可去奇点

B.一级极点

C.二级极点

D. 三级极点

2

13. A ..D z e z z B C -=∞是的( ) .可去奇点 二阶极点

一阶极点 .本性奇点

4.1(2)z z -在点 z =∞ 处的留数为( ) A.0 B.1 C 5.0- D. 5.0

二、填空题(每题5分,共15分)

315.0( );z e z z

-=是的阶极点 6. z=0是函数z-sinz 的__________阶零点. 7.设5

cos 1)(z z z f -=,则=]0),([Re z f s ; 三、计算题 8.(15分)利用留数计算积分dz z z z ?

=-2351

9. (15分)设0z 是)(z f 的m 阶零点,求],)()([Re 0z z f z f s '

10. (15分)利用留数理论求定积分I=dx x

?+π20sin 21

11.(20分)利用留数计算积分dz z z z z ?=-+-310)4)(1(i 1)(

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数论第一章复数与复变函数

引言 复数理论的产生、发展经历了漫长而又艰难的岁月.复数是16世纪人们在解代数方程时引入的. 1545年,意大利数学物理学家H Cardan (卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程(10)x x -的根,它求出形式的根为 5+525(15)40--=. 但由于这只是单纯从形式上推广而来引进,并且人民原先就已断言负数开平方是没有意义的.因而复数在历史上长期不能为人民所接受.“虚数”这一名词就恰好反映了这一点. 直到十八世纪,,D Alembert (达朗贝尔):L Euler (欧拉)等人逐步阐明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人民终于接受并理解了复数. 复变函数的理论基础是在十九世纪奠定的,主要是围绕..A L Cauchy (柯西),K Weierstrass (魏尔斯特拉斯)和B Riemann (黎曼)三人的工作进行的. 到本世纪,复变函数论是数学的重要分支之一,随着它的领域的不断扩大而发展成庞大的一门学科,在自然科学其它(如空气动力学、流体力学、电学、热学、理论物理等)及数学的其它分支(如微分方程、积分方程、概率论、数论等)中,复变函数论都有着重要应用. 第一章 §1 复数 教学目的与要求:了解复数的概念及复数的模与辐角; 掌握复数的代数运算复数的乘积与商﹑幂与根运算. 重点:德摩弗()DeMoiVre 公式. 难点:德摩弗()DeMoiVre 公式. 课时:2学时. 1. 复数域 形如z x iy =+或z z yi =+的数,称为复数,其中x 和y 均是实数,称为复数z 的 实部和虚部,记为Re x z =,Im y z = i =,称为虚单位. 两个复数111z x iy =+,与222z x iy =+相等,当且仅当它们的实部和虚部分别对应相等,即12x x =且12y y =虚部为零的复数可看作实数,即0x i x +=,特别地,000i +=,因此,全体实数是全体复数的一部分. 实数为零但虚部不为零的复数称为纯虚数,复数x iy +和x iy -称为互为共轭复数,记

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

复变函数第五章留数学习方法指导

第五章 留数 留数(Residue )理论是复积分理论和复级数理论相结合的产物,它既是复积分问题的延续,又是复级数应用的一种体现,它对复变函数论本身以及实际应用都有着重要的作用.例如,它能给复积分的计算提供一种有效的方法,能为解析函数的零点和极点的分布状况的研究提供一种有效的工具.另外,它还能为数学分析中一些复杂实积分的计算提供有效地帮助. 本章,我们首先引进孤立奇点处留数的定义,利用洛朗展式建立留数计算的一般方法——洛朗展式法,以及各类孤立奇点处留数计算的更细致的方法.在此基础上,再建立反映复变函数沿封闭曲线积分与留数之间密切关系的留数定理,从而有效地解决“大范围”积分计算的问题.其次,介绍留数定理的两个方面的应用.一方面建立利用留数定理计算数学分析中某些定积分和反常积分的计算方法,另一方面建立讨论区域内解析函数的零点和极点分布状况的有效方法,即幅角原理与儒歇定理. 一.学习的基本要求 1.掌握函数在其孤立奇点处的留数的概念以及函数在孤立奇点处的留数计算的一般方法,即洛朗展式法.注意函数在有限孤立奇点处的留数和孤立奇点∞处的留数在定义方面的差异以及罗郎展式法方面的差异.并能熟练地运用洛朗展式法求函数在其孤立奇点处的留数. 2.熟练掌握函数在各类有限孤立奇点处的留数的具体计算方法以及孤立奇点∞处留数的的两种具体计算方法: 洛朗展式法: 1Res ()z f z β-=∞ =-,其中1β-为()f z 在∞处的洛朗展式中1z 的系数. 化为有限点处的留数:2011Res ()Res ()z z f z f z z =∞==-. 3.了解有限可去奇点处的留数与可去奇点∞处的留数的差异,理解为什么函数在可去奇点∞处的留数一般不一定为零? 4.掌握留数定理以及含∞的留数定理(即留数定理的推广),并能熟练地运用它们计算函

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

第五章 留数(答案)

复变函数练习题 第五章 留数 系 专业 班 姓名 学号 §1 孤立奇点 孤立奇点类型的判别法 1、洛朗展开法 f(z)在点a 处的洛朗展式中, 若无负幂项,则点a 为可去奇点; 若负幂项最高次数为m ,则点a 为m 阶极点; 若负幂项为无穷多个,则点a 为本性奇点。 2、极限法 lim ()z a f z → 存在且有限,则点a 为可去奇点; 等于无穷,则 a 为极点(无法判断阶数); 不存在且不等于无穷,则a 为本性奇点。 3、判断极点的方法 1 ()()()m f z g z z a = -,g(z)在点a 解析且g(a)不等于零; 1()()lim ()lim()()() m m z a z a f z g z g z z a f z z a →→= =--,存在且有限; 1 ()()() m z a h z f z =-, h(z)在点a 解析且h(a)不等于零 一、选择题 1.函数 cot 23 z z π-在||2z i -=内奇点的个数为 [ D ] (A )1 (B )2 (C )3 (D )4 cot cos 3 (23)sin 0,()23(23)sin 2 z z z z z k k z z z ππππ=-=?=∈--Z ,

2.设()f z 与()g z 分别以z a =为可去奇点和m 级极点,则z a =为()()f z g z +的 [ C ] (A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 (对f(z)和g(z)分别进行洛朗展开并求和) 3.0z =为函数2 41sin z e z z -的m 级极点,那么m = [ C ] (A )5 (B )2 (C )3 (D ) 4 224 2 2455 32 01112!3.3=(1)sin sin sin sin 2!lim (1)1sin 2!z z z z z e z e z z z z z z z z z z z z z z →??++ ?--?=?=?++ ? ? ?++= ?? ? L L L 利用方法, 4.z =∞是函数3 2 32z z z ++的 [ B ] (A )可去奇点 (B )一级极点 (C )二级极点 (D )本性奇点 32 22 32321=32=0z z z z z z ζζζζ??++++=++ ??? 以为一阶极点 5.1z =是函数1 (1)sin 1 z z --的 [ D ] (A )可去奇点 (B )一级极点 (C )一级零点 (D )本性奇点 (将函数在z=1洛朗展开,含无穷多个负幂项) 二、填空题 1.设0z =为函数3 3 sin z z -的m 级零点,那么m = 9 。 () () 3 5 3391563 3 3 3 91sin ()()3!5!3!5!3!5! z z z z z z z z z z -=--++=-+=-+L L L 2.设0z =为函数3sin z z 的n 级极点,那么n = 2 。 三、解答题 1.下列函数在有限点处有些什么奇点如果是极点,指出它的级:

(完整版)复变函数习题答案第5章习题详解

第五章习题详解 1. 下列函数有些什么奇点?如果是极点,指出它的级: 1) ()2211 +z z 解: 2) 31z z sin 3) 1123+--z z z 4) ()z z lz 1+ 5) ()()z e z z π++112 6) 11-z e 7) () 112+z e z 8) n n z z +12,n 为正整数 9) 21z sin 2. 求证:如果0z 是()z f 的()1>m m 级零点,那么0z 是()z f '的1-m 级零点。 3. 验证:2i z π= 是chz 的一级零点。 4. 0=z 是函数()22--+z shz z sin 的几级极点?

5. 如果()z f 和()z g 是以0z 为零点的两个不恒等于零的解析函数,那么()()()() z g z f z g z f z z z z ''lim lim 00→→=(或两端均为∞) 6. 设函数()z ?与()z ψ分别以a z =为m 级与n 级极点(或零点),那么下列三个函数在a z =处各有什 么性质: 1) () ()z z ψ?; 2) ()()z z ψ?; 3) ()()z z ψ?+; 7. 函数()() 211-=z z z f 在1=z 处有一个二级极点;这个函数又有下列洛朗展开式:() ()()()345211111111-+---+=-z z z z z Λ,11>-z ,所以“1=z 又是()z f 的本性奇点”;又其中不含()1 1--z 幂,因此()[]01=,Re z f s 。这些说法对吗? 8. 求下列各函数()z f 在有限奇点处的留数: 1) z z z 212-+ 2) 4 21z e z - 3) ()32411++z z 4) z z cos

复变函数期末考试题大全(东北师大)

____________________________________________________________________________________________________ 一、填空题(每小题2分) 1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3、若01=+z e ,则z = 4、()i i +1= 5、积分()? +--+i dz z 22 22= 6、积分?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α 1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 2321- B 223i - C 223i +- D i 2 321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ?=-123z z dz B ?=-12 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β

第一章-复数与复变函数

复变函数教案 2012—2013学年度第二学期 任课教师郭城 课程名称复变函数 采用教材高教三版(钟玉泉编) 周课时数 4 数统学院数学教育专业2010 年级1班

引言 数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。 我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

复变函数与积分变换第五章留数测验题与答案

第五章 留 数 一、选择题: 1.函数 3 2cot -πz z 在2=-i z 内的奇点个数为 ( ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f 的( ) (A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数 z z e x sin 14 2 -的m 级极点,那么=m ( ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数1 1 sin )1(--z z 的( ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点 5.∞=z 是函数2 3 23z z z ++的( ) (A)可去奇点 (B )一级极点 (C ) 二级极点 (D )本性奇点 6.设∑∞ == )(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,) ([ Re k z z f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k 7.设a z =为解析函数)(z f 的m 级零点,那么='],) () ([ Re a z f z f s ( ) (A)m (B )m - (C ) 1-m (D ))1(--m 8.在下列函数中,0]0),([Re =z f s 的是( )

(A ) 2 1)(z e z f z -= (B )z z z z f 1 sin )(-= (C )z z z z f cos sin )(+= (D) z e z f z 1 11)(--= 9.下列命题中,正确的是( ) (A ) 设)() ()(0z z z z f m ?--=,)(z ?在0z 点解析,m 为自然数,则0z 为 )(z f 的m 级极点. (B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s (C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s (D ) 若 0)(=?c dz z f ,则)(z f 在c 内无奇点 10. =∞],2cos [Re 3 z i z s ( ) (A )3 2- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 1 2 i e z s i z ( ) (A )i +- 61 (B )i +-65 (C )i +61 (D )i +6 5 12.下列命题中,不正确的是( ) (A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s (B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则) ()(],)() ([Re 000z Q z P z z Q z P s '= (C )若 0z 为 )(z f 的m 级极点,m n ≥为自然数,则

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

第一章复数复变函数

第一章复数与复变函数 (Complex number and function of the complex variable) 第一讲 授课题目:§1.1复数 §1.2 复数的三角表示 教学内容:复数的概念、复数的四则运算、复平面、复数的模和辐角、复数的三角不等式、复数的表示、复数的乘方与开方. 学时安排:2学时 教学目标:1、掌握复数的乘方、开方运算及它们的几何意义 2、切实理解掌握复数的辐角 3、掌握复数的表示 教学重点:复数的乘方、开方运算及它们的几何意义 教学难点:复数的辐角 教学方式:多媒体与板书相结合. P思考题:1、2、3.习题一:1-9 作业布置: 27 板书设计:一、复数的模和辐角 二、复数的表示 三、复数的乘方与开方 参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社. 2、《复变函数与积分变换学习辅导与习题全解》,高 等教育出版. 课后记事:1、基本掌握复数的乘方、开方运算 2、不能灵活掌握复数的辐角(要辅导) 3、能灵活运用复数的三角表示进行复数的运算

教学过程:

引言 复数的产生和复变函数理论的建立 1、1545年,意大利数学家Cardan在解三次方程时,首先产生了负数开平方的思想.后来,数学家引进了虚数,这在当时是不可接受的.这种状况随着17、18世纪微积分的发明和给出了虚数的几何解析而逐渐好转. 2、1777年,瑞士数学家Euler建立了系统的复数理论,发现了复指数函数和三角函数之间的关系,创立了复变函数论的一些基本定理,并开始把它们应用到水力学和地图制图学上.用符号i表示虚数单位,也是Euler首创的. 3、19世纪,法国数学家Cauchy、德国数学家 Riemann 和Weierstrass经过努力,建立了系统的复变函数理论,这些理论知直到今天都是比较完善的. 4、20世纪以来,复变函数理论形成了很多分支,如整函数与亚纯函数理论、解析函数的边值问题、复变函数逼近论、黎曼曲面、单叶解析函数论等等,并广泛用于理论物理、弹性物理和天体力学、流体力学、电学等领域. 5、复变函数课程主要任务为研究复变数之间的相互依赖关系.其中许多概念、理论和方法是实变函数在复变函数领域内的推广和发展,在学习过程中要注意它们相似之处和不同之处的比较.

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

有答案复变函数与积分变换期末考试试卷

华南农业大学期末考试试卷(A 卷) 2007-08 学年第1学期 考试科目: 复变函数与积分变换 考试类型:(闭卷) 考试时间: 120 分钟 学号 姓名 年级专业 一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 4.34a rc ta n 3 A i π-+-的主辐角为 .a rg (3)a rg () B i i -=- 2 .rg (34)2a rg (34)C a i i -+=-+ 2 .||D z z z ?= 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. R e ()0z >表示上半平面 C. 0a rg 4 z π << 表示角形区域 D. Im ()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) .z A z e + 2 s in . 1 z B z + .ta n z C z e + .s i n z D z e + 6.在复平面上,下列命题中,正确.. 的是( ) A. c o s z 是有界函数 B. 2 2L n z L n z = .c o s s in iz C e z i z =+ .||D z = 7.在下列复数中,使得z e i =成立的是( )

复变函数期末试题

西北农林科技大学本科课程考试试题(卷) 2016-2017学年第1学期《复变函数》课程B 卷 专业班级: 命题教师:李 祯 审题教师: 学生姓名: 学 号: 考试成绩: 一、选择题(每题3分,共15分) 得分: 分 1. 下列说法正确的是( ), A .零的辐角是零 B.若c 为实常数,则c c = C. 2121z z z z +=+ D. i i 2< 2. 1,++=+=y x v y x u 则( ) A .u 是v 的共轭调和函数 是u 的共轭调和函数 和v 互为共轭调和函数 和v 不构成共轭调和函数 =1是() 21111sin -+-z z 的( ) A.本性奇点 B.可去奇点 C.极点 D.非孤立奇点 为ππ32<

4. =?=dz e z z 1 . 5. ()=+??? ? ??-?=dz z i z z 1221 三、计算题 (共50分) 得分: 分 1.解方程01=++i ie z (10分) 2.将函数 ()()211--z z 在圆环域110<-

复变函数论第四版第一章练习

复变函数论 第一章 练习题 2014-03 一、复数的表示、运算------充分掌握非零复数的三种表示及其互相转换(要善于根据不同问题选用适当的表示以简化计算);熟悉掌握复数运算,与共轭有关的等式,模的性质等,并能灵活运用。 1. 设(1)(2)(3)(3)(2) i i i z i i +--=++,求||.z 2. 将复数2 3(cos5sin 5)(cos3sin 3) i i θθθθ+-和复数tan ()2z i πθθπ=-<<分别化为指数形式和三角形式. 3. 设0,2x π <<试求复数1tan 1tan i x z i x -=+的三角形式,其中x 为实数. 4.求复数(1cos sin )n i θθ++()πθπ-<<的模和辐角. 5. 设3||),4z z i π=-= 求z . 6.已知210x x ++=,求1173x x x ++值. 7.若0,z ≠∈证22||2.z z zz -≤ 8. 试证:(1)1Re 0||1;1z z z -≥?≤+ (2)设||1,z =则|| 1.az b bz a +=+ 9. 设0,arg ,z z ππ≠-<≤ 证明|1|||1||arg z z z z -≤-+. 10.试证:满足||||2||z z ααβ-++=的复数z 存在的充要条件为||||αβ≤;求满足条件时||z 的最大值和最小值. 11. 设(1)(1)n n i i +=-,求整数n 之值. 12. 一个向量顺时针旋转 3π后对应的复数为1,求原向量对应的复数. 13. 24(49)0.z iz i ---=解方程 二、复数在几何上的应用 1. 设,x y 为实数,12,z x yi z x yi ==且有1212z z +=,则动点(,)x y 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线

复变函数期末试卷

一 . 填空 (每题2分,共10分)。 1. 设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z . 2.设c 为沿原点z =0到点z =1+i 的直线段,则=? c dz z 2 2 . 3. 函数f(z)=]1) (z 11z 1[1z 15 +++++ 在点z=0处的留数为__________________ 4. 若幂级数i z z c n n n 210+=∑∞ =在处收敛,则该级数在z =2处的敛散性为 . 5. 设幂级数 ∑∞ =0 n n n z c 的收敛半径为R ,那么幂级数 ∑∞ =-0 )12 (n n n n z c 的收敛半径为 . 二. 单项选择题 (每题2分,共40分)。 1. 复数i 25 8-2516z =的辐角为 ( ) A .arctan 2 1 B .-arctan 2 1 C .π-arctan 2 1 D .π+arctan 2 1 2. 方程1Rez 2 =所表示的平面曲线为 ( ) A .圆 B .直线 C .椭圆 D .双曲线 3.复数)5 isin -5 -3(cos z π π =的三角表示式为 ( ) A .)54isin 543(cos -ππ+ B .)5 4isin 543(cos ππ- C .)54isin 543(cos ππ+ D .)5 4isin 543(cos -ππ- 4.设z=cosi ,则 ( ) A .Imz=0 B .Rez=π C .|z|=0 D .argz=π 5.复数i 3e +对应的点在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.设w=Ln(1-i),则Imw 等于( ) A .4π - B . 1,0,k ,42k ±=ππ- C .4 π D . 1,0,k ,42k ±=+ππ 7.设函数f(z)=u+iv 在点z 0处可导的充要条件是 ( ) A. u,v 在点z 0处有偏导数 C. u,v 在点z 0处满足柯西—黎曼方程 B. u,v 在点z 0处可微 D. u,v 在点z 0处可微,且满足柯西—黎曼方程 8.若函数f(z)在正向简单闭曲线C 所包围的区域D 内解析,在C 上连续,且z=a 为D 内任一点,n 为正整数,则积分 ?+-c n a z z f 1)() (等于 ( ) A .)()!1(2)1(a f n i n ++π B .)(!2a f n i π C .)(2) (a if n π D . )(! 2) (a f n i n π 9. 设C 为正向圆周|z+1|=2,n 为正整数,则积分 ?+-c n i z dz 1)(等于 ( )

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

相关主题
文本预览
相关文档 最新文档