当前位置:文档之家› 多工况下机翼结构优化设计方法研究

多工况下机翼结构优化设计方法研究

多工况下机翼结构优化设计方法研究
多工况下机翼结构优化设计方法研究

第34卷第3期STRUCTURE & ENVIRONMENT ENGINEERING V ol.34, No.3 多工况下机翼结构优化设计方法研究

王伟 杨伟 赵锋 赵美英

(西北工业大学航空学院, 西安 710072)

摘要:从工程实际需要出发,提出了一种考虑了位移约束、应力约束与稳定性的机翼多工况优化方法。

将多工况问题转化为多约束问题,对各种约束进行合理分类,利用最大约束法对约束进行合理的消减,使用复合形法对结构进行优化。算例结果表明,所提方法可行,结果正确,对加快结构优化技术的实

际工程应用有着很高的价值。

关键词:多工况;结构优化;复合形;多约束

中图分类号:V221文献标识码: A 文章编号:1006-3919(2007)03-0018-05

Research on structure design optimization of the wing

under multiple load cases

WANG Wei YANG Wei ZHAO Feng ZHAO Mei-ying

(College of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: In order to meet the need of the engineering practice, a method was proposed in this paper for solving the question of structure design optimization of the wing subjected to the displacement、stress and stability constraints under multiple load cases. The optimization under multiple load cases was translated into the optimization under multiple constraints, and then the constraint functions were separated into some kinds according to their characteristic and cut by the maximum constraint method properly. Finally the Complex Method was used to complete the optimization. The results of the calculative examples indicate that the method presented in this paper is feasible and correct, has a significant value in accelerating the engineer realization of the structure optimization.

Key words: multiple load cases;structure optimization;complex method;multiple constraints

1 引言

飞机重量直接影响着飞机的各种性能。飞机的结构重量对飞机的重量影响更大。而结构优化可以大幅度的降低结构重量,因此在航空、航天领域,结构优化研究得到了蓬勃的发展。飞机的机翼作为一种复杂结构,针对其进行的结构优化设计的研究非常广泛。不但包括各组成元

收稿日期:2006-08-09;修回日期:2007-05-23

作者简介:王伟(1983-),男,博士研究生,主要研究方向:飞机总体设计、结构优化、布局优化等;(710072)西北工业大学1041#.

件尺寸优化、几何优化,还包括了拓扑布局优化,大大增加了设计变量的个数及其种类,在提高优化设计难度的同时也带来了巨大的优化收益。这些对于极力想降低结构重量的结构设计师无疑是个很大的诱惑。然而从工程实用的角度出发,目前机翼的结构优化的应用推广仍然存在着一个普遍的问题:目前所做的结构优化往往是在某种单一工况下进行的,其所得到的结果往往是某一给定载荷工况的最优解,对于其他载荷工况来讲未必是最优解,甚至是不可行解。而事实上很多结构特别是飞机机翼这种复杂的结构,往往都是在很多种载荷工况下进行工作的。考虑到优化设计后的结果往往是达到了各种材料失效的临界值,因此我们在单一工况下所得到的优化结果往往不适合其他的工况,在实际设计中将不敢采用。所以要想使结构优化真正的进入工程实用阶段,进行多工况结构优化设计研究势在必行。本文正是基于这个出发点,以某型机翼结构为平台,开展了对于复杂的机翼结构的多工况优化方法的研究。

2 机翼结构多工况优化模型

2.1 设计变量的选取

针对复杂的机翼结构,本文选取各组成元件的几何尺寸为设计变量,选取蒙皮与梁腹板厚度、梁缘条横截面积作为设计变量。而翼肋由于不是主要受力部件,无须进行优化。为了减少设计变量个数,降低优化问题难度,还要根据蒙皮、翼梁各自的受力特点进行分块,将各设计变量进行连接。

2.2 目标函数的选取

为了尽可能的减轻结构重量,提高材料的利用率,以提升飞行器的各种性能,选取机翼结构总重量为目标函数。即在各种载荷工况满足强度与刚度要求下,使结构重量尽可能的小。

2.3 约束函数的确定

1) 强度约束。对于杆元来说,当杆件处于拉伸状态下,许可应力一般取为材料的拉伸极限,为一常数。对于板元来说,由于其处于复杂的受力状态,每块板内的当量应力按照V on Mises 准则计算

2221/2[](3)x y x y xy σσσσστ=+?+ (1)

2) 位移约束。机翼是飞机的主升力面,内翼又处于机翼的内部,在气动载荷作用下,内翼不应产生较大的变形,特别是挠度变形可能引起机翼操纵面轴线不协调,甚至引起操纵面失效等问题。特别对于无尾飞翼式布局, 由于舵面布置在机翼上,因此机翼设计时应保证有足够的刚度。

3) 稳定性约束。机翼翼梁上缘条由于主要承受压力载荷,对其进行优化设计时还要考虑到压杆稳定性。也就是应使压杆所承受的轴向压力F 小于它的临界力[]σ?。其中, 22π[]()i i i

c E l σρ?= (2)

式中,E 为弹性模量,i l 为杆长,c 为支持系数,ρ为杆截面的回转半径,可按规范计算

或用其他工程近似计算公式求得。

为取得一个客观正确的优化结果,建立一个合理的优化模型非常重要。对于给定基本结构布局的机翼结构,取各组成元件的几何尺寸为设计变量,取机翼总重量为目标函数。即寻找一

组合适的元件几何尺寸,使得整个结构在各个载荷工况作用下,都满足所要求的刚度特性、强度要求,并且总重量最小,问题可以具体描述如下

12

121212(,,,)(,,,,,,,)T T m n n x x x A A A T T T =="""X (3) 使得 min 12

011n n i i j j i j W W A L T S ===++∑∑ (4)

s.t. 12[][],1,2,,;1,2,,,[],1,2,,()i il i jl j l L H j j j

L H

i

i i i n l p j n g g T T T A A A σσσσσ?+?≤≤==?≤=??≤??≤≤??≤≤?"""X (5) 其中1n 和2n 分别为杆元和板元数目,p 为载荷工况数目,[]i σ?和[]i σ+分别为杆元所能承载的

最大压应力和拉应力,il σ为第i 个杆单元的截面应力,jl σ为第j 个板单元的当量应力,[]j σ为最大许可当量应力,()l g X 为刚度约束性能函数,g 为许可值;L j T 与H j T 分别为杆元截面积最小

与最大取值,L i A 与H i A 分别为板元厚度的最小最大取值。

3 优化问题的具体解决

3.1 多工况转化为多约束及其约束消减策略

从以上数学模型可以看出,多工况优化问题实际上是一种多约束优化问题。对一种给定约束类别机翼结构优化问题,总的约束数目随着工况数目成正比例增加。大量的约束数目对于任何优化方法都是一个很大的困难,将使计算过与复杂,计算量太大,难以控制。因此现代结构优化为了减少约束个数,常进行合理的删减。约束缩减采用的策略有两种,一种是将同类约束化为一个约束,另一种是将所有的约束化为一个约束。采取的方法有最大约束法和

包络函数法。最大约束法是对J 个约束,

()0,(1,2,,)j g j J ≤="X (6) 采用{()}()0j g J

Max g g =≤X X 一个约束来代替,该约束不是连续可微约束。而包络函数法一般能满

足约束函数的连续可微的要求。在具体使用何种方法还要考虑到优化方法的选取,有的优化方法还要求最后的约束函数可微可导等等。本文中采用随机搜索方法中的复合形法进行求解,该方法对目标函数及约束函数没有连续、可导等要求,只要求出性能函数的结果即可,鉴于此,本文首先将同类约束化为同一约束,将各个工况下的强度约束和刚度约束各化为一类后,采用最大约束法来删减约束。令各个工况下限制点的最大位移满足位移许可值,各个工况下的应力最大值满足应力要求。此时优化问题转变为如下

求 12

121212(,,,)(,,,,,,,)T T m n n x x x A A A T T T =="""X (7) 使得 min 12

011n n i i j j i j W W A L T S ===++∑∑ (8)

s.t 12[][],1,2,,[],1,2,,()i ig i jg j g L H j j j

L H i i i i n j n g g

T T T A A A σσσσσ?+?≤≤=?≤=??≤??≤≤??≤≤?""X (9)

其中max()ig il σσ=,max()jg jl σσ=,()max(())g l g g =X X .

3.2 本文方法具体实现

对于复杂的机翼结构,进行结构优化时所需的约束函数值如最大应力、最大位移等等与设计变量之间是一种极其复杂的非线形关系,很难给出具体的表达式,为保证精度与可信度,往往是由大型有限元软件计算而得到,本文首先使用在航空航天领域广泛使用的大型有限元软件MSC.PATRAN/NASTRAN 进行有限元建模,因为是多种工况,因此针对每一个工况分别建立一个有限元模型,进而得到对应每种工况的BDF 文件,通过NASTRAN 调用与每种工况对应的该文件,就可以计算出该工况下的约束函数值。

复合形法是一种常用的直接搜索方法[6],该法只需通过直接比较和利用各设计点的目标函数和约束函数本身的数值来进行搜索,不需要考虑那些函数的导数信息.因此特别适应于数学模型8)的求解.其基本步骤是:首先在N 维设计空间中

构成顶点数P 大于(N+1)的多面体——复形,然

后进行寻优搜索,包括反射、延伸、收缩,替

代复合形中目标函数最大的点——最差点,如

此反复进行,使复形逐步缩小,逼近最优点。

复合形法是一种在最坏点进行不断迭代的方

法,在逐渐改进设计形成的新的复合形时,既

要使目标函数不断改善,同时还必须保证新顶

点是在可行域内,即满足所有约束条件。在本

文中,每产生的一个新的顶点(一组新的设计

变量),即通过改变BDF 文件中的相关数据来

改变有限元模型的几何尺寸,再调用

NASTRAN 进行各个工况的结构分析,从分析

的结果文件F06文件中读出约束函数值,以检

查是否满足约束条件。本文所提方法的具体实现流程见图1.

图1 优化流程图4 算例

在MSC.PATRAN 环境下建立了某型机翼有限元模型,如图2所示。沿机翼纵向布置三根翼梁,整个模型为板杆结构组成。共有节点48个,杆元70个,板元 75个,翼根固支。根据蒙皮受力不同,将蒙皮按展向和上下位置分为八块蒙皮。将翼梁缘条及腹板也做相应的分区。材料的弹性模量为700000MPa ,泊松比为0.3,密度为2.7g/cm 3,许可应力为400 MPa.。飞机机翼在飞行中往往是在几百种载荷工况下进行工作的,要将这么多的载荷工况都考虑进去显然是不可能的,同时也是不必要的,本文选取了机翼的四个典型受力工况进行研究,从气动组获取几种载荷后,分别将其转化为有限元模型的节点力,将该有限元模型分别加上一种载荷工况后得到四个包含载荷信息的BDF 文件。

选取分区后的元件几何尺寸(板元为板厚度,杆元为截面积)做为设计变量,分别考虑强度约束和刚度约束以及压杆件的稳定性约束,选取机翼结构总重量为目标函数,在MATLAB7.0

环境下编写程序,利用本文所提方法进行优化,经过复合形法的20次迭代最终收敛。表1为达到最优结构时的几种约束分别在各个工况下的值。

图2 机翼有限元模型

表1 优化结束时各约束函数值

载荷工况序号 1 2 3 4

最大应力:MPa(许可值400)112.42115.45130.25 112.3

最大翼尖挠度:mm(许可值500)470.2456.5499.2 430

最大拉伸应力:MPa(80)20.3 21.7 24.3 21.1

从以上结果可以看出,在各类约束中位移约束是起决定性的约束,结构在各个工况下都没有达到强度极限。而最大翼尖挠度仅仅在第3种工况下达到了许可值。

5 结论

根据工程实际需要,提出一种机翼多工况优化方法,该方法具有以下几个特点:

1) 优化方法很多,其中在航空中使用较多的满应力法、准则法等,虽然其收敛速度与复合形法相比较快,但是当约束太多的时候处理起来很困难,本文采用的复合形法虽然是一种直接搜索方法,收敛效率较低,然而其对约束函数没有特殊要求,易于编程实现,也就是说前期工作较少,加上现代高速计算机的出现,使得其具体应用起来总的耗时不是太高。

2) 在解决多工况优化问题时,有关文献中提出的加权目标函数法,权值大小的确定是个难点,而且其方法本身也缺少理论依据。与此相比,机翼多工况优化方法严格按照多种工况下都分别满足约束条件的要求进行优化,所得结果可信度更高。

参考文献

[1] 邓扬晨,等.基于分级优化的飞机翼面结构布局综合技术研究[J].强度与环境,2005,32(1):28-37.

[2] Dube R.,Hansen J.S. Optimal Design for Structures Subjected to Many Load Cases[R].AIAA 2004-4531.

[3] Deepak Kaushal. Techniques for Structural Optimization Under Uncertain Loading Conditions[J]. Master paper of

the university of Toronto.

[4]李孝全,王莉. 反射面型天线结构多工况离散变量优化设计[J].宇航学报,2001,22(2):56-60.

[5]王英杰. 多工况下复杂杆系结构的截面优化研究[J].燕山大学学报,2001,25(3):242-244.

[6] 欧海龙,李向真. 多层复合形法在结构优化中的程序设计[J]. 世界地震工程,2000,16(14):113-117.

[7]陈永会,李海虹,李志潭. 复合形法解决多维非线形有约束优化问题[J]. 精密制造与自动化,2002(3).

[8]苟文选,等.材料力学[M].西安:西北工业大学出版社,2000.

[9]丁运亮,结构优化设计[M]. 航空专业教材编审组出版.

[10]陈树勋,裴少帅. 一种简明易用的结构优化的包络函数[J]. 现代制造工程,2004(7).

机翼结构设计方案及强度计算

机翼结构设计方案及强度计算 模型一 设计思路:根据设计要求,机翼全长4m,翼弦长1m,前后两根梁。于是利用abaqus软件的壳单元建立了一个基本的机翼模型。 图1 单只机翼模型 然后参考《实用飞机复合材料结构设计与制造》、《复合材料设计手册》、《复合材料力学》等资料,初步设计机翼采用蒙皮夹心结构,上下表面分别铺3层复合材料,考虑到机翼的工况采用[45/0/-45]铺层方式,每层厚度为0.125mm,具体如图2所示。中间夹心材料采用PMI泡沫,该材料具有突出的比强度和良好的耐蠕变性,可以很好的克服屈曲。夹心材料厚度初步拟定为5mm,进行计算模拟,如果屈曲明显则可加厚。 表1 机翼的材料参数

图2 机翼的蒙皮夹心铺层结构 考虑到梁是主要的承力部件,采用[-45/0/45/90]s铺层方式,每层厚度为0.125mm,具体如图3所示。 图3 梁的铺层结构

利用abaqus模拟计算时将工况环境简化,采用一端固定,在机翼下表面加载Y方向的升力,分布如图5所示。 图4 机翼的固定端约束 图5 机翼的载荷分布

模型一的计算结果: 梁每层复合材料的应力云图 图6 梁每层复合材料的应力云图 梁的计算结果分析: 从计算结果中不难发现,机翼前缘的梁承受的力要比尾部的梁大很多,可以考虑适当加厚。对比各层复合材料的受力情况,0°的复合材料层受力明显,可以适当增加0°的复合材料层数。靠机身段的梁应力集中明显,可以在该部位适当增加梁的厚度,也可考虑用工字梁强化该部位。

机翼每层复合材料的应力云图: 图7 机翼每层复合材料的应力云 图(1-5层) 图7 机翼每层复合材料的应力云图(6-7层)

机械优化设计大作业2011 - 副本

宁波工程学院机械工程学院 机械优化设计大作业 班级 姓名 学号 教师

机械优化设计大作业 1.题目 行星减速器结构优化设计 NGW型行星减速器应用非常广泛。 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高; (2)传动效率高,工作高; (3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 2.已知条件 传动比u=4.64,输入扭矩T=1175.4N.m,齿轮材料均选用38SiMnMo钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02 ?u。 .0 ≤ 弹性影响系数Z E=189.8MPa1/2;载荷系数k=1.05; 齿轮接触疲劳强度极限[σ]H=1250MPa; 齿轮弯曲疲劳强度极限[σ]F=1000MPa; =2.97;应力校正系数Y Sa=1.52; 齿轮的齿形系数Y Fa 小齿轮齿数z取值范围17--25;模数m取值范围2—6。 注: 优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T

3.数学模型的建立 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约 束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z 1ˉ ̄ 太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d 1--太阳轮1的分度圆直径,mm;d 2 --行星轮2的分度圆 直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函数 则为: F(x)=0.19635m2z 1 2b[4+(u-2)2c][1] 式中u--减速器传动比;c--行星轮个数 由已知条件c=3,u=4.64,因此目标函数可简化为: F(x)=4.891x 32x 1 2x 2

立体车库的内部机械结构的优化设计

目录 摘要........................................................................Abstract..................................................................... 第一章绪论.............................................................. 1.1 课题的来源及研究的目的和意义...................................... 1.2 机械式停车库.................................................... 1.3 机械优化设计相关知识.............................................. 1.3.1 优化设计概述.................................................. 1.3.2 约束优化方法................................................ 第二章立体车库总体结构的研究............................................. 2.1 机械立体车库的总体结构形式...................................... 2.2 立体车库的总体结构的选择与设计....................................... 2.3 立体车库的存取车方式的总体设计.................................... 2.4 立体车库主体建筑结构的总体设计................................. 第三章固定叉梳的优化设计................................................ 3.1 横移叉梳和固定叉梳结构形式的设计................................... 3.2 固定叉梳的优化设计................................................. 第四章立体车库钢结构骨架的优化设计.................................... 4.1 立体停车库钢结构骨架基本结构的设计................................... 4.2 立体停车库钢结构骨架的模型化..................................... 4.3 钢结构骨架的受力情况............................. 4.4 进行受力分析的基本假设................................... 4.5 钢结构骨架的受力分析............................................. 4.6 钢结构骨架的变形分析........................................... 4.7 结构优化设计模型的建立....................................... 4.8 优化结果及分析........................................................结论.................................................................... 致谢.................................................................... 参考文献(References)................................................

结构优化设计的综述与发展

结构优化设计的综述与 发展 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

结构优化设计的综述与发展 摘要:结构优化设计,就是在计算机技术等高科技手段的支持下,为了提升机械产品的性能、工作效率,延长机械产品的工作寿命,对机械产品的尺寸、形状、拓扑结构和动态性能进行优化的过程。这是机械行业发展的必然要求,也是信息时代的必然要求。结构优化设计,必须在保证机械产品满足工作需要的前提下,通过科学的计算来实行。文章将简单对结构优化设计的发展状况进行介绍,列举几种优化设计方法,以及讨论未来优化的发展情况。 关键词:结构优化设计发展优化设计方法 1 结构优化设计 结构优化简单来说就是在满足一定的约束条件下,通过改变结构的设计参数,以达到节约原材料或提高结构性能的目的。结构优化设计通常是指在给定结构外形,给定结构各元件的材料和相关载荷及整个结构的强度、刚度、工艺等要求的条件下,对结构进行整体和元件优化设计。结构优化设计一般由设计变量、约束条件和目标函数三要素组成。评价设计优、劣的标准,在优化设计中称为目标函数;结构设计中以变量形式参与的称为设计变量;设计时应遵守的几何、刚度、强度、稳定性等条件称为约束条件,而设计变量、约束函数与目标函数一起构成了优化设计的数学模型。结构优化的目的是让设计的结构利用材料更经济、受力分布更合理。 结构优化设计根据设计变量选取的不同可以分为截面(尺寸)优化、形状优化、拓扑优化三个层次。尺寸优化是选取结构元件的几何尺寸作为设计变量,例如,杆元截面积、板元的厚度等等[1]。而形状优化是选取结构的内部形状或者是节点位置作为设计变量。拓扑优化就是选取结构元件的有无作为设计变量,为0-1型逻辑型设计变量。 2 结构优化设计研究概况与现状 结构优化设计最早可以追溯到17世纪,伽利略和伯努利对弯曲梁的研究从而引发了变截面粱形状优化的问题。后来Maxwell和Michell提出了单载荷仅有应力约束条件下最小重量桁架结构布局的基本理论,为系统地分析结构优化理论作出了重大的贡献。然而长期以来,由于缺乏高速可靠的计算手段和理论,结构优化设计一直无法获取较大发展。 到上世纪六十年代,有限元技术借助于计算机技术,得到了极大的发展。1960年Schmit在求解多种载荷情况下弹性结构的最小重量问题时,首次在结构优化中引入入数学规划理论,并与有限元方法结合应用,形成了全新的结构优化思想,标志着现代结构优化技术的开始[2]。 1973年Zienkiewicz和Campbell[3]在解决水坝的形状优化问题时,首次以节点坐标作为设计变量,在结构分析方面使用了等参元,在优化方法上使用了序列线性规划的方法。其后,众多的学者在此基础上,逐渐发展形成了使用边界形状参数化方法描述连续体边界的方法,即采用直线、圆弧、样条曲线、二次参数曲线、二次曲面、柱面等方式来描述边界。 1982年,Iman提出了设计元法。该方法把结构分成若干子域,每个子域对应一个设计元。设计元由一组控制设计元几何形状的主节点来描述,接着选择一组设计变量来控制主节点的移动。该方法可以有效地减少设计变量,但也存在网格畸形的缺点。 1986年Belegundu提出了基于自然设计变量和形状函数的形状优化方法[4]。他选择了作用在结构上的假想载荷等一系列自然变量,把由假想载荷产生的位移加到初始

机械结构优化设计作业

甘蔗收获机机械台架虚拟样机 结构优化设计 摘要:结构优化设计就是寻求满足约束条件下的最佳构建尺寸、结构形式以及材料配置方式。利用有限元方法对虚拟样机台架结构进行分析,并采用一阶方法对台架进行优化,预估出经验设计结构上的最危险点,并对结构进行改造和优化,可以保证结构综合应力在材料的许用应力范围内,对结构轻量化,合理分配材料,大大缩短研制周期,降低设计成本,为虚拟样机的创新设计可以提供一种新的设计及优化设计方法。 关键词:甘蔗收获机;优化设计;模态分析;一阶方法 引言:甘蔗作为重要经济作物在全世界范围内广泛种植,中国的种植面积在世界位居第三位,成为我国制糖,轻工,化工和能源的重要原料,对整个国民经济的发展都有重要的地位和作用。甘蔗收获包括切梢、切割、清理和装运等工序,为甘蔗生产过程中劳动强度最大,费工费时,成本最高的一个环节。在我国,甘蔗成产机械化程度低,随着人工收获成本的逐年增加,我国糖业面临着巨大的竞争压力,实现甘蔗收获机械化的要求愈加迫切。随着设计理论与设计理念的发展,对虚拟样机进行优化设计能改进凭经验设计出现的缺陷以及预估结构或机构的最危险点,从而对其进行改造和优化,对设计结果及时进行审查,并及时反馈给设计人员,实现了设计过程中的快速反馈,按照优化后的设计方案进行物理样机研制,可以避开预估的缺陷和危险点,从而使结构更趋于合理,降低了制造成本,大大缩短了设计和产品研制周期,还可以保证将错误消灭在萌芽状态。 虚拟样机技术[ 1]为这类创新产品的开发提供了强有力的手段。甘蔗收割机在工作过程中, 要经历扶蔗、砍蔗、输送、断尾以及剥叶等动作, 承受的都是动态载荷, 而结构的固有频率和振型是承受动态载荷结构设计中的重要参数, 因此本文采用通用有限元分析软件ANSYS对甘蔗收割机机架结构部件进行模态分析, 根据机架结构的低阶模态和振型, 确定对机架结构是进行动力刚度优化还是静力强度优化。 1.机架结构模型建立

机械结构优化设计

机械结构优化设计 ——周江琛 2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

某机翼部件巡航状态下的受力分析

目录 1 绪论 (1) 1.1 机翼受力分析的目的和意义 (1) 1.2 机翼受力分析要解决的问题 (1) 1.3 对机翼结构进行传力分析的基本方法 (2) 2气动升力的计算 (2) 2.1 机翼的功用与要求 (2) 2.1.1 机翼的功用 (2) 2.1.2 机翼的设计要求 (2) 2.2机翼的外载特点 (3) 2.2.1机翼的外载有以下三类 (3) 2.2.2机翼的总体受力 (4) 2.3机翼结构的典型元件与典型受力型式 (6) 2.4机翼的外形参数 (9) 2.4.1 翼型的几何参数 (9) 2.4.2 机翼的几何特性 (11) 2.5翼型气动力的基本计算理论 (13) 2.5.1 气动特性公式 (15) 2.6对于具体弹翼的气动力的计算 (19) 3有限元分析 (26) 3.1有限元的发展史 (26) 3.2有限元的概述 (26) 3.3有限元的基本思想与特点 (27) 3.3.1 有限元分析的特点 (27) 3.3.2 有限元分析的基本思想 (28) 3.4有限元法的基本步骤 (28) 3.5对机翼进行具体的分析 (31) 4结论 (37)

参考文献 (38) 致谢 (40) 1 绪论 1.1 机翼受力分析的目的和意义 机翼主要用于产生升力,因此满足空气动力方面的要求是首要的。机翼除保证升力外,还要求阻力尽量小。机翼的气动特性主要取决于其外形参数,这些参数在总体设计时己经确定;结构设计应从强度、刚度、表面光滑度等各方面来保证机翼气动外形要求的实现,所以机翼结构设计的一个问题就是怎么才能保证机翼在飞行过程中的气动外形[1]。对于机翼,在外形、装载和连接情况己定的条件下,重量要求是机翼结构设计的主要要求,具体地说就是要设计出一个既能满足强度、刚度和耐久性要求,又尽可能轻的结构来。当飞机在高速飞行时,很小的变形就可能严重恶化机翼的空气动力性能;刚度不足还会引起颤振和操纵面反效等严重问题。值的注意的是:随着飞行速度的提高,机翼所受载荷增大;然而由于减小阻力等空气动力的需要,此时机翼的相对厚度却越来越小,再加上后掠角的影响,致使机翼结构的扭转刚度、弯曲刚度越来越难保证,这些都将引起机翼在飞行中变形的增加。因此对于高速飞机,为满足机翼的气动要求,刚度问题必须足够重视[2]。然而也正是由于上述原因,此时解决好机翼的最少重量要求与强度、刚度要求之间的矛盾将更为困难[3]。 1.2 机翼受力分析要解决的问题: 机翼受力分析的主要目的是:运用软件,采用有限元分析的办法,通过给机翼加载其在巡航状态下所受的各种力,来分析机翼各部件所受的力以及它们在这些力的作用下的变形,根据结果来修改机翼的结构设计,以达到既能保证机翼在飞行时的气动外形又能合理设计机翼结构的目的。通过机翼的受力分析,我们还能够根据变形结果合理的设计出各个部件的最佳几何尺寸,最终解决机翼最少重量要求与强度、刚度要求之间的矛盾。 机翼结构受力分析主要的研究手段为有限元分析。为了使有限元分析的结果比较准确的接近现实,就必须较好的完成以下两个工作。 (1)较为准确的绘制机翼的三维几何模型,本文采用UG进行绘图。

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

机械结构设计课程教学大纲

《机械结构设计》课程教学大纲 执笔人:陈建毅编撰日期:2009年8月30日 一、课程概述 《机械结构设计》是工业设计专业的职业核心课程(属于B类),它包括理论力学、材料力学和机械设计基础三部分内容。计划时数为68学时,本课程4学分。 通过本课程的学习,使学生掌握工程力学和机械设计有关的基本概念、基本理论和基本方法。会对物体进行正确的受力分析,会分析计算一些简单力学问题。培养学生对工程设计中的强度、刚度和稳定性问题有明确的基本概念,必要的基础知识和比较熟练的计算能力、分析能力和初步的实验分析能力。使学生学会应用工程力学的基本理论和方法分析与解决机械工程中的一些简单实际问题。掌握一般机械中常用机构和通用零件的工作原理、性能特点,及其使用、维护的基础知识。掌握常用机构的基本理论和设计方法,常用零部件失效形式、设计准则和设计方法。在本课程的学习,注意培养学生正确的设计思想和严谨的工作作风。 教学对象:工业设计专业大二上学期的高职学生。 二、教学内容描述 教学内容分成两个模块:工程力学基础和机械设计基础。工程力学主要内容分为静力分析和强度分析;机械设计基础分为机械零件基础、常用机构、机械传动基础。 第一篇工程力学基础 第一章工程力学的基本概念 教学内容: 第一节工程力学与工业设计 第二节工程力学的研究对象与基本内容 第三节工程力学的基本概念 第四节静力学公理 第五节约束与约束反力 第六节分离体与受力图 教学要求:了解力与力系的基本概念,掌握静力学的基本公理和各种常见约束的性质,对简单的物体系统,能熟练地取分离体,画受力图。 第二章构件与产品的静力分析 教学内容: 第一节平面力系的简化与合成 第二节平面力系平衡问题的求解 第三节空间力系简介超静定的概念

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

基于有限元分析的结构优化设计方法的研究_李曼丽

基于有限元分析的结构优化设计方法的研究 The research of a structure optimization design method based on FEA 李曼丽,杨志兵 LI Man-li ,YANG Zhi-bing (北京理工大学 机械与车辆学院工业工程研究所,北京 100081) 摘 要:提出一种新的结合有限元分析和参数化建模的结构优化设计方法,并利用单参数分析和多参数 分析进行阐述。在该方法中,首先建立产品的参数化FE模型,实现修改参数后自动更新产品模型并进行计算;其次利用二次开发设计用户界面,通过单参数分析评价各参数对产品结构性能的影响程度,通过多参数分析在修改两个参数的条件下,基于权衡研究找出产品结构最佳优化方案;最后提出一种根据权重评价多参数修改条件下的设计方案的思路。 关键词:结构优化设计;有限元分析;参数化FE模型 中图分类号:TH122;TP391.7 文献标识码:A 文章编号:1009-0134(2013)09(下)-0123-04Doi:10.3969/j.issn.1009-0134.2013.09(下).37 收稿日期:2013-05-21 作者简介:李曼丽(1990 -),女,河南周口人,硕士,研究方向为CAD/CAE 。 0 引言 如今,竞争日趋激烈的环境迫切需要企业快速开发出高质量的产品,为了在降低成本同时改善产品的性能,对产品进行结构优化设计是具有实际意义的。结构优化是在满足最优结构性能时能自动生成机械零件设计的一种方法,它能够在成本较低的情况下满足设计要求。最优结构性能可能是产品的质量较轻或者便于操作者使用[1] 。 在过去的一段时间内,很多学者对机械产品如液压挖掘机、飞机零件等的结构优化设计做了一些研究[2],验证了有限元分析(FEA )在分析产品结构性能时所体现的重要意义的意义。FEA 是对已知工作载荷和边界条件下的结构强度计算的最强大的一门技术。随着并行工程以及DFX 技术的发展,FEA 已成为设计过程中的关键步骤。最初FEA 只是用来在设计最后验证设计的合理性,现在已经应用到设计整个过程,尤其是在上游设计阶段[3]。 然而,传统用于结构优化的FEA 技术需要花费大量的时间,不能满足快速响应的需求,因此关于FEA 的进一步的研究目前引起了学术界的注意。Qiao L.H.等提出了一种基于工程仿真的混合优化设计方法,并以钳臂为例进行验证该方法[4]。通过总结前人的研究成果,其中一些研究也提出了参数建模方法,可以有效减少设计时间,并提高设计质量。Liu Z.C.等同归对VC+ +和ANSYS 的APDL 语言进行结合开发,完成了YJ32液压机下梁 的有限元优化设计[5]。基于有限元分析和参数化建模这两个基本理论,本文提出了一种结构优化设计方法,可以帮助设计者短时间内找出产品的最优设计,最后以电焊钳钳臂为例验证该方法的有效性。 1 基于FEA 的强度分析 强度是产品设计过程中最基本的设计要求,为了测试产品是否能够承受工作载荷,需要进行有限元分析得到最大应力和最大位移,并与产品所用的材料性能进行比较。另外,设计者可以考虑采用加强筋或加强套,或者改变关键尺寸来提高产品的强度。通常情况下,有加强筋的钳臂可以承受更大的负载,直径尺寸大一些的使用寿命较长,但同时重量也增大,因此设计者要对强度和重量进行权衡,找到最优设计。强度分析被广泛用于获得特定负载条件下的结构的最佳强度/重量比。 Zhang B.等利用FEA 技术,通过参数研究方法分析内燃机的气缸盖直径这一关键参数,验证了气缸盖的结构设计中存在一个理想的参数匹配点[6]。参数和最大应力之间的匹配关系有助于产品设计。本文从两个方面阐述了一种新的结构优化设计方法:单参数分析和多参数分析。 1)单参数分析 产品结构的很多参数都会影响结构性能,并且影响的程度不同。因此,可以通过单参数分析方法找出相对重要的影响参数。在固定其他参数

机械结构优化设计分析

机械结构优化设计分析 摘要:机械结构优化设计具有综合性和专业性的特点,在设计过程中涉及方面很多,对设计人员的综合素质很高。因此,本文就结合实际情况,如何做好机械结构优化设计展开论述。 关键词:机械结构;设计流程;优化设计 一、机械设计的流程 机械的设计是开发和研究重要组成部分。设计人员在设计过程中,要提高自身设计水平,加快技术创新,为社会发展设计出质量优良的生产和机械。第一,要确立良好的设计目标。机械设计与开发要满足实际需要,能够发挥其自身的功能。第二,要严格遵守设计标准和要求,对具体的内容进行提炼,从而有效的设计任务和目标。第三,在承接设计任务书以后,要坚持合适的原则,明确设计责任;还要组织设计方案,对设计方案进行讨论,重视设计样品机械的关键环节和重要步骤,从而形成最初的设计。第四,要组建优秀的项目团队,对方案进行深入讨论,不断优化设计方案,控制方案变更。第五,要组织专家对设计图纸进行严格的审核,保证设计质量,在图纸完成交付以后,要针对存在的问题做好记录,为以后设计提供借鉴和帮助。第六,在机械创建完成后,要做好机械的验收,设计师要对机械进行检查,保证在发现问题能够及时有效的解决,只有在质量验收合格后,才能进行最后的交付使用。第七,在进行机械安装过程中,设计人员要在安装现场进行全程的监督和控制,做好技术指导。第八,为了保证机电和安装质量,要进行生产鉴定和调试,根据机械使用的效果进行合理的评价和鉴定。在以上设计流程中,缺一不可,需要设计人员不断提高自身设计水平,采用先进的设计理念,保证设计质量。 二、机械设计过程中需要注意的问题 为了保证机械设计质量,设计人员要不断总结经验教训,根据实际情况,树立质量第一的理念,实现机械结构的优化设计。 (一)在机械制造阶段,设计水平直接影响到预期的效果,甚至导致机械不能正常投入使用。因此,在设计过程中,设计人员要与制造人员进行协调,多深入生产现场,认真听取制造工人和设计人员的意见、建议,不断优化机械结构,提高机械的精密度。

结构优化方法研究综述

结构优化方法研究综述 结构优化方法研究综述 【摘要】建筑结构优化对建筑整体的稳定性、可靠性、耐久性有非常重要的作用。文章针对建筑结构优化设计的主要因素,以及结构优化的方法等方面做简要的分析,以提高建筑结构的整体的稳定性、耐久性等性能。 【关键词】结构设计;结构优化;结构类型 0引言 建筑结构优化,即在一些建筑结构的设计方案中选取最优的或最适宜的设计方案,它参照数学中的模型最优化原理应用到建筑工程结构设计方案的优化比选中。研究发现,建筑结构在使用过程中是否稳定、耐久、合理等,主要决定于在建筑结构设计时选定的结构类型是否最优、是否最符合工程结构的需要。对于同一座建筑工程项目,不同的结构设计师知识储备不同,因此可能会设计出不同的结构类型、结构体系,但经过结构方案的优化、从而选取最优化的结构类型,提高建筑结构的使用寿命、稳定性能。 1建筑结构优化的主要因素 1.1荷载设计 研究发现,任何一座建筑结构都需要受到水平力和竖向荷载的作用,同时建筑还要承受较大的风荷载、地震力的作用等。当建筑结构的整体高度比较低时,由结构本身的重力引起的竖向荷载对结构的作用比较明显,而水平荷载作用在结构上,产生的内力和位移比较小,往往在计算时不考虑水平荷载的作用;若在较高层建筑设计中,虽然所受到的竖向荷载仍对结构产生较大程度的影响,但水平荷载对建筑结构本身的影响比竖向荷载产生的影响更加强烈。研究表明,随着建筑结构整体高度的逐渐增加,水平荷载对建筑结构产生的影响越将会越来越大,因此,在建筑结构高度较高时,结构所承受的水平荷载对结构的影响则不可忽视。 1.2选取结构类型较轻的

在建筑结构优化过程中,要尽量选取结构体较轻的。在现代结构优化设计中,设计人员越来越重视选用轻质高强材料,从而做大程度上减轻整体结构的自重。由于在多层建筑结构中,水平荷载对结构产生的影响处于较次要地位,结构所承受的主要荷载是竖向荷载。由于多层建筑楼层较少,整体高度相对比较低,结构自重相对来说较轻,对材料的强度要求不是特高。 但随着建筑结构高度的增加,在较多的楼层作用下,结构产生的自重荷载则会比较大,使得建筑结构对基础产生较大的竖向荷载,同时在水平荷载的作用下,结构的竖向构件(柱)中会产生较大的水平剪力和附加轴力。为了使得结构满足刚度和强度的要求,通常采取加大结构构件的截面尺寸,但是加大构件的截面尺寸会使得结构的整体自重增加。因此在高层建筑结构首先应该考虑如何减轻结构的自重。 研究表明,当在高层或超高层建筑结构优化设计时,选用结构强度高、自重较轻的钢结构、高强混凝土结构可以很大程度上减小建筑结构的自重。 1.3 侧向位移 据相关资料表明,建筑结构的侧向位移随着建筑高度的增加而逐渐增大,因此,在建筑结构的优化设计中,对层数较少、高度较低的结构,可以不考虑其侧向位移对结构的影响。但随建筑结构高度的增加,整体结构的侧移对结构产生的影响则不可忽视。 研究表明,由于水平荷载对结构作用产生的侧移随着建筑高度的增加而逐渐增大,且侧移量与结构高度成一定的关系。 在进行高层建筑结构优化设计时,既需要充分考虑建筑结构整体是否具有足够的承载能力,能否承受风荷载的冲击作用,又要求结构具有足够的抗侧移性能,当建筑结构受到较大的水平力作用下,其可以很好地控制产生过大的侧移量,确保结构整体的稳定性能。 与低层或多层建筑相比,高层建筑结构的刚度稍微差一些,在发生地震灾害时,结构的侧向变形更大。为了确保高层建筑结构在进入塑性阶段后,结构整体仍具有较强的抗侧移性能,保持结构的稳定性,则需要在高层建筑结构的构造上采取合适的措施,确保结构具有足够的延性,从而满足结构的刚度要求。

机翼分析

B-2隐形战略轰炸机 一、飞机简介: B-2隐形战略轰炸机是冷战时期的产物,由美国诺思罗普公司为美国空军研制。1979年,美国空军根据战略上的考虑,要求研制一种高空突防隐形战略轰炸机来对付苏联90年代可能部署的防空系统。1981年开始制造原型机,1989年原型机试飞。后来对计划作了修改,使B-2轰炸机兼有高低空突防能力,能执行核及常规轰炸的双重任务。 二、飞机整体结构: 飞机三视图和飞机内部结构剖析(图下)

三、飞机机翼结构分析: B-2轰炸机采用翼身融合、无尾翼的飞翼构形,其机体扁平,采用翼身融合的无尾(无垂直尾翼)的飞翼构型,机翼前缘为直线,交接于机头处,机翼后掠33度,飞机头部到翼尖成锐角,机翼后缘成双“W”形(锯齿形)有8个操纵面(6个升降副翼,2个阻流方向舵),巨大的锯齿状后缘由10条直的边缘组成,翼展尺寸为52.43米机翼前缘交接于机头处,机翼后缘呈锯齿形。机身机翼大量采用石墨/碳纤维复合材料、蜂窝状结构,表面有吸波涂层,发动机的喷口置于机翼上方。这种独特的外形设计和材料,能有效地躲避雷达的探 测,达到良好的隐形效果。 形尾翼原始设计 是专门为高空飞 行设计的,能够 满足高空阵风载 荷的需求,但不 适应于低空阵风 载荷的需求。飞 机主翼的设计进 行了重大改动, 因为空军不仅要 求飞机能从高空 突入,而且还要 能超低空突防, 从而带来了提高 飞机升力、增强

机械结构强度、进一步降低其雷达反射截面积等一系列问题,使飞机的设计历经数年才得以定型。B-2飞机的结构设计是基于满足阵风载荷(又称突风载荷)标准进行设计的,航空历史上仅有几种型号的飞机是按阵风载荷需求设计的,大部分军用飞机是根据机动载荷(又称惯性载荷)需求而设计。 机翼结构为单块式。从构造上看,单块式机翼的长桁较多且较强;蒙皮较厚;长桁、蒙皮组成可受轴向力的壁板。当有梁时,一般梁缘条的剖面面积与长桁的剖面面积接近或略大,有时就只布置纵墙。为了充分发挥单块式机翼的受力特点,左、右机翼一般连成整体贯穿机身。但有时为了使用、维护方便,在展向布置有设计分离面。分离面处采用沿翼箱周缘分散连接的形式将机翼连为一体。 单块式机翼的上、下壁板成为主要受力构件。这种机翼比梁式机翼的刚度特性好(这点对后掠机翼很重要)。同时由于结构分散受力,能更好地利用剖面结构高度,因而在某些情 况下(如飞机速度较大时)材料利用率较高,重量可能较轻。此外单块式机翼比梁式机翼生存力强。它的缺点是不便于开口 (Boeing)波音747 SP 一、飞机名称: 波音747 SP 波音747,又称为“珍宝客机”(Jumbo Jet),是一种双层客舱四发动机飞机,是世界上最易识别的客机之一,亦是全世界首款生产的宽体民航客机,由美国波音民用飞机集团制造。波音747原型大小是1960年代被广泛使用的波音707的两倍。1965年8月开始研制,自1970年投入服务后,一直是全球最大的民航机,垄断着民用大型运输机的市场,到A380投入服务之前,波音747保持全世界载客量最高飞机的纪录长达37年。 二、飞机整体结构:

机械结构分析与课程设计说明书

机械结构分析与设计课程设计 设计说明书 设计题目设计一级直齿圆柱齿轮 学生姓名学号 班级 专业 分院 指导教师 完成时间

目录 分析和拟定传动方案 (1) 电动机的选择 (3) 计算传动装置的运动和动力参数 (4) 传动件的设计计算 (5) 轴的设计计算 (8) 滚动轴承的选择及计算 (9) 键联接的选择及校核计算 (9) 联轴器的选择 (10) 减速器附件的选择 (11) 润滑与密封 (14) 参考文献 (14) 设计小结 (14)

分析和拟定传动方案 1.1设计背景: 机器通常由原动机,传动装置和工作机三部分组成。传动装置用来传递原 动机的运动和力,变换其运动形式以满足工作机的需要,是机器的重要组 成部分。传动装置的传动的传动方案是否合理将直接影响机器的工作性 能、重量和成本。合理的传动方案除了满足工作机的功能外,还要求结构 简单、制造方便、成本低廉、传动效率高和使用维护方便。拟定一个合理 的传动方案,除了综合考虑工作装置的载荷、运动及机器的其他要求外, 还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。 (1) 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大, 但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传动 的转矩,减少带传动的结构尺寸。 (2) 链传动平稳性差,宜布置在低速级。 (3) 斜齿轮传动较直齿轮传动平稳,相对应用于高速级。 综上各条件考虑宜选用带传动和齿轮传动 1.2原始数据: (1) 工作装置的阻力 W F =5500N (2) 工作装置的线速度 W V =1.35s m (3) 输送机滚筒直径 D=250mm (4) 卷筒效率 w =0.98 二、电动机的选择 2.1 选择电动机的类型 按工作要求和条件选取Y 系列一般用途的全封闭自扇冷笼型三相异步电 动机 2.2 选择电动机的功率

结构优化设计的综述与发展

结构优化设计的综述与发展 摘要:结构优化设计,就是在计算机技术等高科技手段的支持下,为了提升机械产品的性能、工作效率,延长机械产品的工作寿命,对机械产品的尺寸、形状、拓扑结构和动态性能进行优化的过程。这是机械行业发展的必然要求,也是信息时代的必然要求。结构优化设计,必须在保证机械产品满足工作需要的前提下,通过科学的计算来实行。文章将简单对结构优化设计的发展状况进行介绍,列举几种优化设计方法,以及讨论未来优化的发展情况。 关键词:结构优化设计发展优化设计方法 1 结构优化设计 结构优化简单来说就是在满足一定的约束条件下,通过改变结构的设计参数,以达到节约原材料或提高结构性能的目的。结构优化设计通常是指在给定结构外形,给定结构各元件的材料和相关载荷及整个结构的强度、刚度、工艺等要求的条件下,对结构进行整体和元件优化设计。结构优化设计一般由设计变量、约束条件和目标函数三要素组成。评价设计优、劣的标准,在优化设计中称为目标函数;结构设计中以变量形式参与的称为设计变量;设计时应遵守的几何、刚度、强度、稳定性等条件称为约束条件,而设计变量、约束函数与目标函数一起构成了优化设计的数学模型。结构优化的目的是让设计的结构利用材料更经济、受力分布更合理。 结构优化设计根据设计变量选取的不同可以分为截面(尺寸)优化、形状优化、拓扑优化三个层次。尺寸优化是选取结构元件的几何尺寸作为设计变量,例如,杆元截面积、板元的厚度等等[1]。而形状优化是选取结构的内部形状或者是节点位置作为设计变量。拓扑优化就是选取结构元件的有无作为设计变量,为0-1型逻辑型设计变量。 2 结构优化设计研究概况与现状 结构优化设计最早可以追溯到17世纪,伽利略和伯努利对弯曲梁的研究从而引发了变截面粱形状优化的问题。后来Maxwell和Michell提出了单载荷仅有应力约束条件下最小重量桁架结构布局的基本理论,为系统地分析结构优化理论作出了重大的贡献。然而长期以来,由于缺乏高速可靠的计算手段和理论,结构优化设计一直无法获取较大发展。 到上世纪六十年代,有限元技术借助于计算机技术,得到了极大的发展。1960年Schmit在求解多种载荷情况下弹性结构的最小重量问题时,首次在结构优化中引入入数学规划理论,并与有限元方法结合应用,形成了全新的结构优化思想,标志着现代结构优化技术的开始[2]。 1973年Zienkiewicz和Campbell[3]在解决水坝的形状优化问题时,首次以节点坐标作为设计变量,在结构分析方面使用了等参元,在优化方法上使用了序列线性规划的方法。其后,众多的学者在此基础上,逐渐发展形成了使用边界形状参数化方法描述连续

相关主题
文本预览
相关文档 最新文档