当前位置:文档之家› 用MATLAB实现连续系统的S域分析

用MATLAB实现连续系统的S域分析

用MATLAB实现连续系统的S域分析
用MATLAB实现连续系统的S域分析

姓名:白迎春

实验名称:实验五用MATLAB 实现连续系统的S 域分析学号:1101050801实验时间:2012.12.15评语:

一.实验目的

1.熟悉拉普拉斯变换的原理及性质

2.熟悉常见信号的拉氏变换

3.了解信号的零极点分布对信号拉氏变换曲面图的影响及续信号的拉氏变换与傅氏变换的关系

二.实验内容

1.已知

,画出该系统的零极点分布图,求出系统的冲击响应,

阶跃响应和频率响应。2.实验指导书3.已知连续时间信号[]()s(2)()(4)f t co t t t πεε=--,请分别求出该信号的拉氏变换()F s 及其傅里叶变换()F j ω,并用MATLAB 绘出

()F s 的曲面图及振幅频谱

()F j ω的波形,观察()F s 的曲面图在虚轴上的剖面图,并将它与信号的振幅频谱曲线进行比较,分析两者的对应关系。三.仿真分析

10.9已知,画出该系统的零极点分布图,求出系统的冲击响应,阶跃响应和频率响应。

代码:

clear

b=[12];

a=[1231];

sys=tf(b,a);

figure(1);

pzmap(sys),title('Pole-Zero Map');

axis([-2.50-22])

figure(2);impulse(b,a)

figure(3);

step(b,a)

[H,w]=freqs(b,a);

figure(4);

plot(w,abs(H)),xlabel('\omega'),ylabel('|H(j\omega)|')

title('Magnitude Respone')

图形:

-2.5-2-1.5-1-0.50

-2-1.5

-1

-0.5

00.51

1.5

2

P ole-Zero M ap Real Axis (seconds -1)

I m a g i n a r y A x i s (s e c o n d s -1)024********

00.1

0.2

0.3

0.4

0.50.6

0.7

0.8

Tim e (seconds)

A m p l i t u d e

024********

00.2

0.4

0.6

0.8

1

1.21.4

1.6

1.8

2

Tim e (seconds)

A m p li t u d e 012345678910

00.2

0.4

0.6

0.8

1

1.21.4

1.6

1.8

2

ω

|H (j ω)|运行结果:

三个极点均位于S 平面左半开平面上,故该系统是稳定系统。零点影响冲击响应的幅度和相位。

实验指导书3.已知连续时间信号[]()s(2)()(4)f t co t t t πεε=--,请分别求出该信号的拉氏变换()F s 及其傅里叶变换()F j ω,并用MATLAB 绘出

()F s 的曲面图及振幅频谱()F j ω的波形,观察()F s 的曲面图在虚轴上的剖面图,并将它与信号的振幅频谱曲线进行比较,分析两者的对应关系。

代码:

clear

function y=sf1(t,w);

y=(t>=0&t<=4).*(cos(2*pi*t).*exp(-j*w*t));

b=[10];

a=[104*pi.^2];

figure(1);

sys=tf(b,a);

pzmap(sys);

syms x y s

s=x+i*y;

FS=(s/(s.^2+4*pi.^2)).*(1-exp(-4*s));

FSS=abs(FS);

figure(2);

ezmesh(FSS);

ezsurf(FSS);

colormap(hsv);

w=linspace(-6*pi,6*pi,512);

N=length(w);F=zeros(1,N);

for k=1:N

F(k)=quadl('sf1',0,4,[],[],w(k));

end

figure(3);

plot(w,real(F));

xlabel('\omega');ylabel('F(j\omega)');

title('振幅频谱F(j\omega)');

-1-0.8-0.6-0.4-0.200.20.40.60.81

-8-6

-4

-2

0246

8

P ole-Zero Map

Real Axis (seconds -1)

I m a g i n a r y A x i s (s e c o n d s -1)

2

4

6

8

x abs((x + y i) (exp(y (-4 i) - 4 x) - 1))/abs((x + y i)2 + 2778046668940015/70368744177664)

y

-20-15-10-505101520

-0.50

0.5

1

1.5

2

2.5

ω

F (j ω)振幅频谱F(j ω)

运行结果:

从拉普拉斯变换的三维曲面图中可以看出,曲面图上有象山峰一样突出的尖峰,这些峰值点在s 平面的对应点就是信号拉氏变换的极点位置。而曲面图上的谷点则对应着拉氏变换的零点位置。因此,信号拉氏变换的零极点位置决定了其曲面图上峰点和谷点位置。与振幅频谱一一对应。

实验总结:

1.进一步了解了拉普拉斯变换的原理及性质。

2.进一步了解了信号的零极点分布对信号拉氏变换曲面图的影响及连续信号

拉氏变换与傅氏变换的关系。

基于matlab实现OFDM的编码.

clc; clear all; close all; fprintf('OFDM系统仿真\n'); carrier_count=input('输入系统仿真的子载波数: \n');%子载波数128,64,32,16 symbols_per_carrier=30;%每子载波含符号数 bits_per_symbol=4;%每符号含比特数,16QAM调制 IFFT_bin_length=1024;%FFT点数 PrefixRatio=1/4;%保护间隔与OFDM数据的比例1/6~1/4 GI=PrefixRatio*IFFT_bin_length ;%每一个OFDM符号添加的循环前缀长度为1/4*IFFT_bin_length ,即256 beta=1/32;%窗函数滚降系数 GIP=beta*(IFFT_bin_length+GI);%循环后缀的长度40 SNR=10; %信噪比dB %================信号产生=================================== baseband_out_length=carrier_count*symbols_per_carrier*bits_per_symbol;%所输入的比特数目 carriers=(1:carrier_count)+(floor(IFFT_bin_length/4)-floor(carrier_count/2));%共轭对称子载波映射复数数据对应的IFFT点坐标 conjugate_carriers = IFFT_bin_length - carriers + 2;%共轭对称子载波映射共轭复数对应的IFFT点坐标 rand( 'twister',0); %每次产生不相同得伪随机序列 baseband_out=round(rand(1,baseband_out_length));%产生待调制的二进制比特流figure(1); stem(baseband_out(1:50)); title('二进制比特流') axis([0, 50, 0, 1]); %==============16QAM调制==================================== complex_carrier_matrix=qam16(baseband_out);%列向量 complex_carrier_matrix=reshape(complex_carrier_matrix',carrier_count,symbols_per

连续系统的s域分析

实验四 连续系统的s 域分析 一、实验目的 (1)熟悉拉氏变换。 (2)掌握系统响应s 域求法。 (3)熟悉系统的频率响应。 二、实验原理 连续LTI 系统,在s 域可以用系统函数H(s)描述,其实质是系统冲激响应h(t)的拉氏变换。 ) ()()(s A s B s H = (1) 拉氏逆变换 若H(s)的极点分别为p1,…,pn ,则H(s)可表示为 ∑=+-+???+-+-=M m m m n n s c p s r p s r p s r s H 0 2211)( 由此可以方便的求出其拉氏逆变换(即对应的时间域信号)。 (2)s 域求响应 变换到s 域,系统响应等于激励信号与系统函数相乘 )()()(s H s E s R = (3)系统的频率响应 如果系统函数H(s)的收敛域包含虚轴,则令s=j ω,得到系统的频率响应H(j ω)。 三、验证性实验 已知系统)(9)(3)(8)(6)()1()1()2(t e t e t r t r t r +=++,其系统函数为8 693)(2+++=s s s s H 。 (1) 求零、极点。 程序: clear; b=[3,9]; %分子多项式系数 a=[1,6,8]; %分母多项式系数 zs=roots(b); ps=roots(a); figure('Position',[100,100,400,200]); plot(real(zs),imag(zs),'go',real(ps),imag(ps),'rx'); grid; legend('zero','pole');

-4-3.5-3-2.5 -2 (2) 求冲激响应h(t) 程序: clear; b=[3,9]; %分子多项式系数 a=[1,6,8]; %分母多项式系数 [r,p,k]=residue(b,a) 运行结果: r = 1.5000 1.5000 p = -4 -2 k = [] 则 t t e e t h s s s H 245.15.1)(25 .145 .1)(--+=+++= (3) e(t)=u(t)时,求零状态响应 s s s s s E s H s R s t u L s E 869 3)()()(1 )]([)(23+++==== 程序: clear; b=[3,9]; %分子多项式系数 a=[1,6,8,0]; %分母多项式系数 [r,p,k]=residue(b,a); %求留数、极点 t=0:0.1:10; f=r(1)*exp(p(1)*t)+r(2)*exp(p(2)*t)+r(3)*exp(p(3)*t); plot(t,f);

第二章 连续系统的时域分析

第二章连续系统的时域分析 求响应:经典法:已知f(t)、x{0} 全响应y(t)= y f(t)+y x(t) 卷积积分法:先求n(t),已知f(t) y f(t)=h(t) f(t) 主要内容: 一经典法求LTI系统的响应: 齐次解自由响应瞬态零输入 特解强迫响应稳态(阶跃、周期)零状态二冲击响应与阶跃响应:(定义、求解方法仍为经典法)三卷积积分:(定义、图示法求卷积) 四卷积积分的性质:

§2.1 LTI 系统的响应(经典法) 一 常系数线性微分方程的经典解 n 阶:y )(n (t)+ a n-1y )1(-n (t)+…+ a 1y )1((t)+ a 0y(t) = b m f )(m (t)+ b m-1 f )1(-m (t)+……+ b 1 f )1((t)+ b 0f(t) 全解:y(t)=齐次解y h (t)+ 特解y p (t) 1 齐次解:y h (t)=∑=n i t e i C i 1 λ(形式取决于特征根) 特征方程: λ)(n (t)+ a n-1λ)1(-n (t)+… + a 1 λ(t)+ a 0=0 特征根:决定齐次解的函数形式,表2-1 如为2个单实根λ1、λ2, y h (t )=e C t 11 λ +e C t 22 λ 如为2重根(λ+1)2=0,λ= - 1,y h (t)=C 1te -t +C 0e -t 系数C i :求得全解后,由初始条件确定 2 特解: 函数形式:由激励的函数形式决定,与特征根有关系,表2-2 如:f(t)为常数 )(t ε, y p (t)=P 0 f(t)=t 2, y p (t)= P 2t 2+ P 1t+ P 0 f(t)=e -t ,λ= - 2,不等 y p (t)=P e -t f(t)= e -t ,λ= - 1,相等 y p (t)=P 1te -t +P 0e -t 系数P i :由原微分方程求出 3 全解:y(t)= y h (t)+ y p (t)=∑=n i t e i C i 1 λ+ y p (t) 此时利用y(0),y ‘(0),求出系数C i

利用matlab进行系统分析基础

实验一利用matlab进行系统分析基础1.描述线性系统的三种不同方式之间的转换

问题1 已知系统的传递函数为 将其转换为零极点型。 相应的matlab语句为: num=[2 10]; den=[1 8 19 12]; printsys(num,den,’s’) 回车 [z,p,k]=tf2zp(num,den) 回车 察看语句的执行结果,并说明最后一行程序执行结果的含义;问题2 已知传递函数同上,试将其转换为状态变量型。Matlab语句为: Num=[2 10]; den=[1 8 19 12]; [a,b,c,d]=tf2ss(num,den) 回车

对应的状态方程为 式中A,B,C,D对应于程序中的a,b,c,d。

问题3 已知系统的零极点型传递函数为,试将其转换为传递函数型。Matlab语句: z=-1;p=[-2 –3 –4 ]; k=5; (回车) [num, den]=zp2tf(-1, [-2 –3 –4 ],2) (回车) %观察显示结果 继续输入: printsys(num,den,’s’) (回车) 记录显示结果。 2.卷积计算 原理: 两个信号卷积公式:

对于两个不规则波形的卷积,依靠手算是很困难的,在Matlab种则变得十分简单。 例如已知两个信号 其中分别表示两个门函数。 求其卷积的matlab程序如下: t1=1:0.01:2; f1=ones(size(t1)).*(t1>1);(表示一个高度为1的门函数,时间从t=1到 t=2) t2=2:0.01:3; f2=ones(size(t2)).*(t2>2); (表示一个高度为1的门函数,时间从t=2到t=3) c=conv(f1,f2);(卷积) t3=3:0.01:5; subplot(3,1,1),plot(t1,f1); subplot(3,1,2),plot(t2,f2); subplot(3,1,3),plot(t3,c); 其结果如图所示 问题1 已知两个信号 试利用matlab计算卷积 (要求显示出波形图) 3.傅立叶变换

OFDM技术仿真(MATLAB代码)

第一章绪论 1.1简述 OFDM是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制(MCM,Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的干扰,还大大提高了频谱利用率。 符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM)是解决这一难题中最具前景的方法和技术。利用OFDM技术和IFFT方式的数字实现更适宜于多径影响较为显著的环境,如高速WLAN 和数字视频广播DVB等。OFDM作为一种高效传输技术备受关注,并已成为第4代移动通信的核心技术。如果进行OFDM系统的研究,建立一个完整的OFDM 系统是必要的。本文在简要介绍了OFDM 基本原理后,基于MATLAB构建了一个完整的OFDM动态仿真系统。 1.2 OFDM基本原理概述 1.2.1 OFDM的产生和发展 OFDM的思想早在20世纪60年代就已经提出,由于使用模拟滤波器实现起来的系统复杂度较高,所以一直没有发展起来。在20世纪70年代,提出用离散傅里叶变换(DFT)实现多载波调制,为OFDM的实用化奠定了理论基础;从此以后,OFDM在移动通信中的应用得到了迅猛的发展。 OFDM系统收发机的典型框图如图1.1所示,发送端将被传输的数字信号转换成子载波幅度和相位的映射,并进行离散傅里叶变换(IDFT)将数据的频谱表达式变换到时域上。IFFT变换与IDFT变换的作用相同,只是有更高的计算效

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

用MATLAB实现线性系统的频域分析报告

实验二用MATLA实现线性系统的频域分析 [ 实验目的] 1 .掌握MATLAE平台下绘制典型环节及系统开环传递函数的Bode图和Nyquist图(极坐标图)绘制 方法; 2.掌握利用Bode图和Nyquist图对系统性能进行分析的理论和方法。 [ 实验指导] 一、绘制Bode图和Nyquist图 1.Bode图绘制 采用bode() 函数,调用格式: ①bode(sys) ; bode(num,den); 系统自动地选择一个合适的频率围。 ②bode(sys , w); 其中w(即3)是需要人工给出频率围,一般由语句w=logspace(a,b,n)给出。logspace(a,b,n):表示在10a到10b之间的n个点,得到对数等分的w值。 ③bode(sys,{wmin,wmax}); 其中{wmi n,wmax}是在命令中直接给定的频率w的区间。 以上这两种格式可直接画出规化的图形。 ④[mag,phase, 3 ]=bode(sys)或[m,p]=bode(sys) 这种格式只计算Bode图的幅值向量和相位向量,不画出图形。 m为频率特性G(j 3 )的幅值向量; p 为频率特性G(j 3 ) 的幅角向量,单位为角度(°)。 w为频率向量,单位为[弧度]/秒。在此基础上再画图,可用: subplot(211);semilogx(w,20*log10(m) % 对数幅频曲线subplot(212);semilogx(w,p) % 对数相频曲线 ⑤bode(sys1,sys2 ,…,sys N); ⑥bode((sys1,sys2 ,…,sys N, w); 这两种格式可在一个图形窗口同时绘多个系统的bode图。 2.Nyquist 曲线的绘制

OFDM系统设计及其Matlab实现

课程设计 。 课程设计名称:嵌入式系统课程设计 专业班级: 07级电信1-1 学生姓名:__王红__________ 学号:_____107_____ 指导教师:李国平,陈涛,金广峰,韩琳 课程设计时间:— |

1 需求分析 运用模拟角度调制系统的分析进行频分复用通信系统设计。从OFDM系统的实现模型可以看出,输入已经过调制的复信号经过串/并变换后,进行IDFT或IFFT和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM调制后的信号s(t)。该信号经过信道后,接收到的信号r(t)经过模/数变换,去掉保护间隔,以恢复子载波之间的正交性,再经过串/并变换和DFT或FFT后,恢复出OFDM的调制信号,再经过并/串变换后还原出输入符号 2 概要设计 1.简述OFDM通信系统的基本原理 2.简述OFDM的调制和解调方法 3.概述OFDM系统的优点和缺点 4.基于MATLAB的OFDM系统的实现代码和波形 : 3 运行环境 硬件:Windows XP 软件:MATLAB 4 详细设计 OFDM基本原理 一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。

在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为: [ 式 式1中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。加保护间隔后的信号可表示为式,最后信号经并/串变换及D/A转换,由发送天线发送出去。 式 接收端将接收的信号进行处理,完成定时同步和载波同步。经A/D转换,串并转换后的信号可表示为:

连续时间LTI系统的频率特性及频域分析

实验报告 实验项目名称:运用Matlab进行连续时间信号卷积运算 (所属课程:信号与系统) 学院:电子信息与电气工程学院 专业: 10电气工程及其自动化 姓名: xx 学号: 201002040077 指导老师: xxx

一、实验目的 1、学会运用MATLAB 分析连续系统的频率特性。 2、掌握相关函数的调用。 二、实验原理 1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即 )()()()()()(01 )(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得: )(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++ 101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为: )()()(ω?ωωj e j H j H = 其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。 MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。 H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

无线通信原理 基于matlab的ofdm系统设计与仿真..

基于matlab的ofdm系统设计与仿真

摘要 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?? ???=? +m n m n m n T T tdt m t n T t t ωω 其中ωπ2=T (1-1)

_第二章连续系统的时域分析习题解答

第二章 连续系统的时域分析习题解答 2-1 图题2-1所示各电路中,激励为f (t ),响应为i 0(t )和u 0(t )。试列写各响应关于 激励微分算子方程。 解: . 1)p ( ; )1(1)p ( , 111 , 1 111)( )b (; 105.7)625(3 102 ; )(375)()6253(4) ()()61002.041( )a (0202200 204006000f i p f p u p f p p p u i f p p p p p f t u pf i p pu i t f t u p t f t u p =+++=++?++=+=+++= ++= ?=+??==+?=++-- 2-2 求图题2-1各电路中响应i 0(t )和u 0(t )对激励f (t )的传输算子H (p )。 } 解:. 1 )()()( ; 11)()()( )b (; 625 3105.7)()()( ; 6253375)()()( )a (220 20 40 0 +++==+++==+?==+== -p p p p t f t i p H p p p t f t u p H p p t f t i p H p t f t u p H f i f u f i f u 2-3 给定如下传输算子H (p ),试写出它们对应的微分方程。 . ) 2)(1() 3()( )4( ; 323)( )3(; 3 3)( )2( ; 3)( )1( +++=++=++=+= p p p p p H p p p H p p p H p p p H 解:; 3d d 3d d )2( ; d d 3d d )1( f t f y t y t f y t y +=+=+ . d d 3d d 2d d 3d d )4( ; 3d d 3d d 2 )3( 2222t f t f y t y t y f t f y t y +=+++=+ 2-4 已知连续系统的输入输出算子方程及0– 初始条件为: . 4)(0y ,0)(0y )y(0 ),()2(1 3)( )3(; 0)(0y ,1)(0y ,0)y(0 ),()84() 12()( )2(; 1)(0y ,2)y(0 ),()3)(1(4 2)( )1(---2 ---2 --=''='=++==''='=+++-=='=+++= t f p p p t y t f p p p p t y t f p p p t y 1 f (u 0(t ) (b) @ f (t ) 4k 6k 2F } u 0(t ) (a) 图题2-1

利用MATLAB进行时域分析

自动控制原理与系统课程实验报告 实验题目:利用MATLAB进行时域分析 班级:机电1131班姓名:刘润学号:38号 一、实验目的及内容 时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。在此实验中,主要介绍时域法进行系统分析,包括一阶系统、二阶系统以及高阶系统,以及系统的性能指标。通过实验,能够快速掌握、并利用MATLAB及控制系统箱对各种复杂控制系统进行时域分析。 二、实验设备 三、实验原理 典型的二阶系统在不同的阻尼比的情况下,它们的阶跃响应输出特性的差异是很大的。若阻尼比过小,则系统的振荡加剧,超调量大幅度增加;若阻尼比过大,则系统的响应过慢,又大大增加了调整时间,下面通过此实验课题分析输出响应变化规律: 已知二阶振荡环节的传递函数为:G(s)=ωn*ωn/(s*s+2*ζ*ωn*s+ωn*ωn), 其中ωn=0.4,ζ从0变化到2,求此系统的单位阶跃响应曲线,并分析当ζ发生变化时,二阶系统的响应有什么样的变化规律。

四、实验步骤编出程序如下图: 五、实验结果画出图表如下图:

六、结果分析 (1)当ξ=0(无阻尼)(零阻尼)时: 无阻尼时的阶跃响应为等幅振荡曲线。如图ξ=0曲线。 (2)当0<ξ<1(欠阻尼)时: 对应不同的ξ,可画出一系列阻尼振荡曲线,且ξ越小,振荡的最大振幅愈大。如图ξ=0.4曲线。 (3)当ξ=1(临界阻尼)时: 临界阻尼时的阶跃响应为单调上升曲线。如图ξ=1曲线。 (4)当ξ>1(过阻尼)时: 过阻尼时的阶跃响应也为单调上升曲线。不过其上升的斜率较临界阻尼更慢。如图ξ=1.6曲线 七、教师评语

用MATLAB实现OFDM仿真分析

3.1 计算机仿真 仿真实验是掌握系统性能的一种手段。它通过对仿真模型的实验结果来确定实际系统的性能。从而为新系统的建立或系统的改进提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈。优化系统的整体性能,衡量方案的可行性。从中选择最后合理的系统配置和参数配置。然后再应用于实际系统中。因此,仿真是科学研究和工程建设中不可缺少的方法。 3.1.1 仿真平台 ●硬件 CPU:Pentium III 600MHz 内存:128M SDRAM ●软件 操作系统:Microsoft Windows2000 版本5.0 仿真软件:The Math Works Inc. Matlab 版本6.5 包括MATLAB 6.5的M文件仿真系统。 Matlab是一种强大的工程计算软件。目前最新的6.x版本 (windows环境)是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。其工具箱中包括:数值分析、矩阵运算、通信、数字信号处理、建模和系统控制等应用工具程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。Matlab的特点是编程效率高,用户使用方便,扩充能力强,语句简单,内涵丰富,高效方便的矩阵和数组运算,方便的绘图功能。 3.1.2 基于MATLAB的OFDM系统仿真链路 根据OFDM 基本原理,本文给出利用MATLAB编写OFDM系统的仿真链路流程。串行数据经串并变换后进行QDPSK数字调制,调制后的复信号通过N点IFFT变换,完成多载波调制,使信号能够在N个子载波上并行传输,中间插入10训练序列符号用于信道估计,加入循环前缀后经并串转换、D /A后进入信道,接收端经过N点FFT变换后进行信道估计,将QDPSK解调后的数据并串变换后得到原始信息比特。 本文采用MATLAB语言编写M文件来实现上述系统。M文件包括脚本M文件和函数M文件,M文件的强大功能为MATLAB的可扩展性提供了基础和保障,使MATLAB能不断完善和壮大,成为一个开放的、功能强大的实用工具。M文件通过input命令可以轻松实现用户和程序的交互,通过循环向量化、数组维数预定义等提高M文件执行速度,优化内存管理,此外,还可以通过类似C++语言的面向对象编程方法等等。

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的 复频域分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞ --∞ =? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ - ∞ = ? (2) MATLAB 中相应函数如下: (F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 ()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量 为t 的结果表达式。 (,)F ilaplace L x =用x 替换结果中的变量t 。 拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比: 110 1 10 ...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式 1212(s)...N N r r r X s p s p s p = +++--- (4) 再通过查找常用拉氏变换对易得反变换。 利用residue 函数可将X(s)展成(4)式形式,调用格式为: [r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分 别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数 连续时间系统的系统函数是指系统单位冲激响应的拉氏变换 (s)(t)e st H h dt +∞ --∞ = ? (5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。 (s)(s)/X(s)H Y = (6) 单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数 110 1 10 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

连续系统的时域、频域分析

学生实验报告实验课程:信号与 系统E D A 实验地点:东1教 414 学院: 专业: 学号 : 姓名 :

2.信号卷积,根据PPT 中的实验2、2与2、3内容完成课堂练习,写出程序及运行结果。 用Matlab 实现卷积运算)(*)(t h t f ,其中 )()()],2()([2)(t e t h t t t f t εεε-=--=,)2 ()(2t h t h =;对比说明信号)( t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。 >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-nh)、*(nh>0); y=conv(f,h);

t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1、1]); subplot(3,1,3),plot(0、01*t,y); title('y(t)=f(t)*h(t)'); >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-2*nh)、*(2*nh>0); y=conv(f,h); t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]);

利用matlab分析系统动态性能

利用matlab分析系统动态性能

控制系统的时域分析 一.系统阶跃响应的性能指标 表 1 系统性能指标 利用 matlab 程序求出各系统阶跃响应的性能指标及图像,如求原系统 1 的方程: num=1.05; den=conv([0.125,1],conv([0.5,1],[1,1,1])); G=tf(num,den); C=dcgain(G); [y,t]=step(G); plot(t,y) grid [Y,K]=max(y); tp=t(K) mp=100*(Y-C)/C n=1; while y(n)0.98*C)&&(y(i)<1.02*C) i=i-1; end ts=t(i)

图 1 系统 1 阶跃响应曲线图二.根据系统性能指标及图像分析系统 1.利用 Matlab 得各系统节约系统曲线,如图 2:num1=1.05; den1=conv([0.125,1],conv([0.5,1],[1,1,1])); G1=tf(num1,den1); [y1,t1]=step(G1); num2=1.05*[0.4762,1]; den2=conv([0.125,1],conv([0.5,1],[1,1,1])); G2=tf(num2,den2); [y2,t2]=step(G2); num3=1.05*[1,1]; den3=conv([0.125,1],conv([0.5,1],[1,1,1])); G3=tf(num3,den3); [y3,t3]=step(G3); num4=1.05*[0.4762,1]; den4=conv([0.25,1],conv([0.5,1],[1,1,1])); G4=tf(num4,den4); [y4,t4]=step(G4); num5=1.05*[0.4762,1]; den5=conv([0.5,1],[1,1,1]); G5=tf(num5,den5); [y5,t5]=step(G5); num6=1.05; den6=[1,1,1]; G6=tf(num6,den6);

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分析

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分 析 MATLABOFDM 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得 到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理 及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出 参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道 采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 : 正交频分复用;仿真;循环前缀;信道估计 I Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this

article OFDM basic principle is briefly introduced. This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation II

实验三 连续时间LTI系统的时域分析

实验三 连续时间LTI 系统的时域分析 一、实验目的 1、学会使用符号法求解连续系统的零输入响应和零状态响应 2、学会使用数值法求解连续系统的零状态响应 3、学会求解连续系统的冲激响应和阶跃响应 二、实验原理及实例分析 1、连续时间系统零输入响应和零状态响应的符号求解 连续时间系统可以使用常系数微分方程来描述,其完全响应由零输入响应和零状态响应组成。MATLAB 符号工具箱提供了dsolve 函数,可以实现对常系数微分方程的符号求解,其调用格式为: dsolve(‘eq1,eq2…’,’cond1,cond2,…’,’v’) 其中参数eq 表示各个微分方程,它与MATLAB 符号表达式的输入基本相同,微分和导数的输入是使用Dy ,D2y ,D3y 来表示y 的一价导数,二阶导数,三阶导数;参数cond 表示初始条件或者起始条件;参数v 表示自变量,默认是变量t 。通过使用dsolve 函数可以求出系统微分方程的零输入响应和零状态响应,进而求出完全响应。 [实例1]试用Matlab 命令求齐次微分方程0)()(2)(='+''+'''t y t y t y 的零输入响应,已知起始条件为2)0(,1)0(,1)0(=''='=---y y y 。

3、连续时间系统冲激响应和阶跃响应的求解 在连续时间LTI系统中,冲激响应和阶跃响应是系统特性的描述。在MATLAB中,对于冲激响应和阶跃响应的数值求解,可以使用控制工具箱中提供的函数impulse和step来求解。 ) , ( ) , ( t sys step y t sys impulse y = = 其中t表示系统响应的时间抽样点向量,sys表示LTI系统模型。

相关主题
文本预览
相关文档 最新文档