当前位置:文档之家› 溴化锂制冷机组故障的解析

溴化锂制冷机组故障的解析

溴化锂制冷机组故障的解析
溴化锂制冷机组故障的解析

溴化锂制冷机组故障的解析

来源:互联网时间:2009年3月3日15时0分发布评论进入论坛

一机组概况

某溴化锂制冷机组制冷量为1 034kW ,2003 年投入使用,全天24 h 运行。2005 年5 月出现了真空度下降、制冷剂被污染的情况,运行管理人员持续抽真空以保障运行,2005 年11 月该机组因无法开机被迫停机待修。

二故障及维修情况

2. 1 首次出现故障时的维修情况

检查发现该机组有以下问题:1) 高压发生器(以下简称高发) 压力为平压,绝对真空压力表右侧汞柱处于顶部,说明机组有外漏。2) 真空泵内腔中有溴化锂溶液存在,说明抽真空的过程中有不当操作。

2005 年11 月中旬检查机组发现:高发视镜焊接处泄漏;溶液呈酱色,只有0. 6 t 左右。维修时对漏点进行了打磨焊接;对溶液进行了再生,重新添加了溶液和缓蚀剂;检修了真空泵。

抽真空后重新运行,在外界温度为20 ℃左右、室内有热源的情况下,冷水机组出口处冷水温度在6. 5 ℃以下,真空度保持48 h 几乎无变化,抽样检测发现制冷剂没被污染,但从高发视镜看不到液位。厂家技术人员认为对于此机型出现这种情况是完全正常的。鉴于机组当时运行稳定、真空度保持良好,决定作保守观察处理。

2. 2 再次出现故障时的维修情况

机组2006 年4 月重新运行后,出现了“吸收液浓度上升,检查”的报警。笔者对机组进行了抽真空、旁通制冷剂处理,报警消失。半个月后再次出现了同样的报警,依照上述方法处理,却没有任何作用,但在每次重新开机的前4~5 h 内并无此报警显示。6 月中旬,冷水出水温度在蒸汽压力为0. 2 MPa 的情况下,达到了10~12 ℃,且蒸汽压力不稳定。运行管理人员加大蒸汽压力至0. 3 MPa ,3 min 后,蒸汽凝水温度异常,且凝水出口有蒸汽喷出;制冷剂凝缩温度异常,凝水管道温度较高,用手触摸极其烫手,实测温度为74 ℃,远高于正常温度;低压发生器(以下简称低发) 伴有清脆的啪啪声;制冷剂污染严重,用波美浓度计测得的不同运行时间的制冷剂中的溴化锂溶液质量分数高达21 %~27 %不等,冷水出口温度高达17 ℃。

三故障分析

3. 1 蒸汽凝水温度异常

蒸汽压力不稳定、蒸汽凝水温度异常和液位有关。因为只有溶液到达一定位置时,蒸汽对溶液进行加热时才有足够多的溶液吸收热量,导致形成了凝结水。当加大蒸汽压力到0. 4 MPa 时,蒸汽凝水温度显示高达90 ℃,且出口处的凝水携带了大量的蒸汽,很容易让人误认为是疏水器

出现了故障。后经检查发现,疏水器并无大的故障。因此判断蒸汽凝水温度异常只和高发中的溶液液位有关。

3. 2 吸收液浓度上升

吸收液浓度上升是指稀溶液浓度上升,请教有关专家得知,该机组并无稀溶液浓度测量控制节点,因此,稀溶液浓度是根据其他测量值计算得到的结果,并不是实测值。

现场实际测量和计算表明,稀溶液质量分数在运行阶段基本稳定在57 %左右,浓溶液质量分数在60 %左右,浓度差明显偏小,导致吸收能力下降。

导致该机组吸收液浓度上升的原因有:1) 溶液循环量没有达到设计流量,而在维修前后也没

有调节流量调节阀。

2) 由于首次维修时添加了一定量的溶液,但没有补充制冷剂,制冷剂量不足导致了吸收液浓度上升。3) 溶液质量可能有问题。对溶液进行发泡实验,显示溶液质量无问题,有蟹沫状泡沫存在应该归因于溶液较脏[1 ] ,因此排除溶液质量问题。

3. 3 制冷剂凝缩温度异常

根据实测得到的温度和制冷剂严重污染的情况综合判断,制冷剂凝水管道中必定有大量的溴化锂溶液流过,否则制冷剂凝水管道温度不会那么高,制冷剂被污染的速度不会那么快。

3. 4 制冷剂污染

产生制冷剂污染的原因很多,主要有:发生器液位过高;冷却水温度过低;溶液循环量过大;溶液中有气泡、含挥发性物质、质量不好;等等。但对于该机组而言,除发生器液位过高外,其余均不可能。而事实是,高发液位很低,因此可以排除高发液位高形成的污染,实际情况必然是低发

液位过高导致了制冷剂污染。

四故障的确定

根据该制冷机的故障现象,笔者和维修人员初步判断故障原因是高温、低温换热器铜管穿孔串流。由于稀溶液出口有溶液泵加压,稀溶液在低温换热器内堵塞了从低发进入吸收器的浓溶液通路,使低发液位高于设定液位,从而导致制冷剂被污染,制冷剂凝缩温度异常;另一方面,由于

换热器铜管穿孔串流,从溶液泵压出的溶液很大一部分没有回到高发,导致高发液位很低。该故障出现以后,笔者邀请国内几名维修专家进行诊断,有人认为板式换热器穿孔现象并不少见,但管式换热器穿孔的可能性极小,甚至可以不考虑。生产厂家技术人员也认为不可能,因为以前没有先例,并认为换热器串流不会引起制冷剂污染。

2006 年8 月,室外温度高达38 ℃,冷水机组出水温度为17~19 ℃,严重影响了产品质量和工人工作环境。在该公司的强烈要求和笔者的坚持下,切开机组高温、低温换热器进行检查,发现低温换热器的204 根铜管中约有60 %泄漏,而高温换热器的120 多根铜管中有14 根泄漏。至此,可以确定该机组出现故障的根本原因是高温、低温换热器铜管穿孔。

2007 年2 月更换了高温、低温换热器,运行到5 月底的3 个多月中,机组运行情况为:1) 高发液位正常,而且加大蒸汽量也没有出现蒸汽凝水温度异常的报警。2) 制冷剂未被污染。

3) 运行过程中,依然出现过吸收液浓度上升的报警。4) 在室外温度为35 ℃的情况下,冷水出口温度

稳定在10~12 ℃,冷却水进口温度为30~33 ℃,出口温度为34~36 ℃,加大蒸汽量后冷水温度下降不明显。5) 没有出现制冷剂凝缩温度异常报警,但出现了冷却水温度高、冷却水结垢的报警。

鉴于所换高温、低温换热器并非原厂家所制造,笔者对高温、低温换热器循环溶液温度进行了定点测量,发现在最大负荷时低温换热器进出口溶液温度偏离良好运行状态时的温度达10 ℃,影响了吸收效果。更换低温换热器后,吸收液浓度上升报警仍偶尔出现,冷却水温度高和冷却水结垢的报警仍然没有消失。检查发现,机组铭牌冷却水量为299 m3 / h ,而实际配置了两用一备、流量为150 m3 / h 的泵,两台并联泵的实际运行流量为197 m3 / h ,远小于额定流量。冷却水流量小导致了冷却水温度高、冷却水结垢和吸收液浓度上升的报警。更换冷却水泵后运行正常。

无独有偶,2007 年5 月底,笔者在宿州宾馆再次遇到了低温换热器铜管串流问题,症状是:低发满液位,液位不能下到视镜中部;制冷剂污染。这佐证了该药厂机组制冷剂污染是溶液从低发越过栅板导致的。

五结语

5. 1 在2005 年5 月机组出现真空问题后该公司没有立即停机检查维修,导致铜管腐蚀是穿孔的根本原因。真空是溴化锂制冷机的生命,但在实际运行过程中,还是很容易忽略这个问题。该机组真空泄漏达半年时间而没有进行维修,腐蚀造成机组严重损坏。出于节能和成本的考虑,换热器铜管被厂家做得越来越薄,一旦真空泄漏,它成为最容易被损坏的配件。

5. 2 2005 年11 月,笔者维修机组时虽然对液位问题有所警觉,但因为在当时的室外温度下机组运行完全正常,无法判断是否存在其他故障。可以肯定的是,虽然当时没有报警,铜管泄漏是存在的,只不过穿孔的面积不大,而运行后,串流对铜管的冲刷导致了漏孔面积不断扩大,不但大大降低了制冷量,而且直接影响了高发液位,从而使蒸汽量无法加大。

5. 3 在机房设计过程中,若采取泵并联运行,则必须对流量进行校核,否则极易影响机组制冷量。

解析溴化锂冷水机组的维护保养

解析溴化锂冷水机组的维护保养 一、概况 直燃型溴化锂吸收式冷水机组以燃气燃烧作为热源,将溴化锂稀溶液进行加热使其沸腾,分离出冷剂蒸汽和溴化锂浓溶液,冷剂蒸汽经冷凝器冷却变成冷剂水,而溴化锂浓溶液回到吸收器,吸收来自蒸发器中的冷剂蒸发又变成稀溶液,由此循环往复,不断循环制冷。直燃采暖循环过程即采暖所需的热水仍由蒸发器中产生,供热水时,机组上的蒸发泵和系统中冷却水泵停止运行。稀溶液通过低温、高温热交换器后进入高压发生器,被燃料燃烧加热,产生冷剂蒸汽。该冷剂蒸汽直接进入蒸发器,加热在铜管内流动的热水,自身被冷却凝结成冷剂水并回到吸收器,而高压发生器被浓缩的浓溶液同样直接回到吸收器并与冷剂水混合,又重新回到稀溶液状态。 直燃型溴化锂吸收式冷水机组主要由高压发生器、低压发生器、冷凝器、蒸发器、吸收器、高温热交换器、低温热交换器等换热设备和屏蔽泵、真空泵、电控箱、抽气系统管道阀等部件组成。它的控制系统以一套微电脑为主的控制中心用来监视和控制机器的运转状况,微电脑根据实际需要,命令主机产生适当的冷热量以满足实际需求,同时提供周密的安全保护措施。 二、溴化锂机组维护保养内容 为使溴化锂吸收式冷水机组获得安全可靠的运行并发挥最佳效果,对机组的维护保养内容如下: 1、对溴化锂机组进行气密性检验。真空度是溴化锂中央空调的第一生命,如达不到高真空,一方面会使机内腐蚀加重,缩短主机使用寿命;另一方面冷剂水也不能低温蒸发导致制冷量下降,能耗上升,从而影响机组的正常运行。检验方法是向机内腔充0.12Mpa的氮气以进行检漏试压,对密封件部分、溶液泵、冷剂泵口、法兰连接处、焊缝等进行查漏,如查到漏点及时更换或修补漏点。主机内腔抽至高真空,24小时内若大气压、室温无变化,U型真空表应无变化。 2、溴化锂机组溶液的再生处理:若机内放出的溶液混浊,颜色已由金黄色变为暗红、绿色或黑色时则用沉淀法和过滤法清除溶液中的杂质,使之澄清,并测量铬酸锂、氢氧化锂等的含量及PH值,调整到所需范围内,过滤后的溶液应保存于密封的容器内。如果溶液质量不合格,机内会发生腐蚀,特别是点蚀,产生大量腐蚀物沉淀,腐蚀同时产生氢气,造成主机真空恶性循环,制冷出力下降。由于腐蚀物沉淀,溶液热交换器换热性能下降。腐蚀物在溶液中呈悬浮状,随溶液在系统内循环会堵塞主机溶液及冷剂水补液装置,铜离子也会增多,引起涂铜现象。屏蔽泵的轴承磨损加剧,损坏屏蔽泵。腐蚀严重的主机还会出现冷剂水污染现象,制冷出力严重不足,主机不能正常运行。溶液内铜离子增多引起溶液的物性变化,引起主机性能衰退。

中央空调直燃型溴化锂制冷机组优缺点

直燃型溴化锂制冷机组优缺点 吸收式:溴化锂吸收式冷水机组是利用水在高真空度状态低沸点蒸发吸收热量而达到制冷目的的制冷设备。溴化锂水溶液作为吸收剂吸收蒸发的水蒸汽,从而使制冷剂连续运转,形成制冷循环。一般可分为蒸汽型、直燃型和热水型等类型,直燃型包括燃油和燃气两种。使用寿命较短,耗气量大,热效率低,单效0.6,双效 1.12,直燃式1.6。 优点包括以下几点: (1)耗电非常小,其耗电设备仅有几台小型泵和直燃机的燃烧器,耗电量一般为蒸汽压缩式制冷机的3%~4%,对解除电力紧张 有好处;但要消耗大量的燃油或燃气,是该机组运行成本的主要部分。 (2)不应用氟利昂类制冷剂,制冷剂采用水,溶液无毒,对臭氧层无破坏作用,对环境无影响,有利于环境保护。 (3)加工简单、操作方便,制冷量调节范围大,可无级调节,运行平稳,无噪声,无振动。 (4)夏季制冷,冬季可以制热,也可以同时供冷和供热,除了满足空调冷、热源的要求外,还可以提供其它生活方面的供热,一机多用,节省了占地面积和投资。 (5)不同类型的运行费用与使用的能源关系极大。蒸汽型的蒸汽来源如果是燃煤锅炉或者是余热、废热时则制冷成本非常低,是一种价格低廉的冷源。但燃煤锅炉受到环境保护法规的限制,目前在城市中基本不允许使用;一般都采用油或气体燃料,费用取决于燃料的市场价格,运行成本高。与蒸汽压缩式制冷机

组比较,一般体积较大,冷却水系统设备费和水泵电费比较 高。 缺点包括以下几点: (1)安全隐患:燃油型机组:由于燃油机组一般使用的为轻质柴油,需要配置机房的日用油箱(一般为1m3),及室外储油罐 (最大可做15 m3),两者之间由齿轮油泵及输油管连接,由 于柴油的侵润性强,易渗漏,所以管路施工要求高,且要在使用中要加强管理,勤检修,负责会有安全隐患;储油罐依据消防的要求,必须安装于离周围建筑物15米以外的空地上,否 则消防验收通不过;储油罐需作好防雷及防静电工作,罐上要安装防爆呼吸阀及作好静电接地工作,并定期检查,确保安 全。使用单位需配备专门的油罐每星期定期运油。燃气型机 组:一般使用天然气、管道煤气或液化石油气(燃烧器一般不通用),其中天然气的燃烧值最高,安装时需按照当地气网的压力设置相应的配套设备(减压阀或增压阀),运行费用较燃油机组低。就机组本身而言,在项目中使用后,直燃机必须报请消防部门,经过严格的审批和验收手续后,才能使用。蒸汽压缩式机组则无此类严格要求。 (2)能源利用性:由于考虑到燃烧段排烟侧的低温酸腐蚀因素(由于燃烧产物中有S、N的氧化气体,在温度降低后与烟气中的 水蒸气结合,产生酸性液体,对设备的后烟箱等处造成腐 蚀),排烟温度一般在200℃左右,造成能源的浪费,影响到大气的温室效应;同样的原因,即使在200℃的排烟温度情况下,设备制造时要在后烟箱等处涂抹特制的防腐蚀涂料,同时在设备运行中,还需定期检修、保养排烟箱等。

溴化锂机组维修保养

溴化锂机组维修保养 一、中央空调维护保养的必要性:空调设备及其系统是价值较为昂贵的资产,如何有效的 发挥空调的作用,使其高效、安全、经济的运行,其日常维护保养是必要的;定期的维护保养 可排出故障隐患,减少事故,减少运行费用,延长设备的使用寿命,同时,保障正常的工作时序。溴化锂机组由于长时间运行、导致其机组内部循环系统、传热系统、控制系统、运转部件、气密性元件、制冷液等发生了较严重的偏差。此时,维修保养工作显得尤为重要,如机组不能 得到及时的调整、维护和处理,轻者可能造成整机或部件无法最佳工作,严重的将导致机组运 行可靠性与使用寿命受到影响,并引起机组故障率与运行能耗的增加。 1、溴化锂机组维修保养服务溴化锂机组维修保养工程部:对各种溴化锂机组进行机组大修、维护保养。保养内容为:整机气密性检查、检漏堵漏,机组高真空阀、观察镜更换,屏蔽泵、燃烧器、变频器、真空泵检修更换,机组换热铜管检查更换,吸收器、蒸发器、喷嘴更换,机组控制系统元器件检修更换,控制系统升级改造、程序重写,供应易损件及制冷剂、缓蚀剂、增强剂,整机年度维保,承包运行,技术培训等。主要维护的品牌有:江苏双良、长沙远大、 大连三洋、烟台荏原、上海开利、青岛同和LG等。

2、氟利昂机组维修保养服务氟利昂机组维修保养工程部:对各种氟利昂机组进行大修、 维修保养。保养内容为:压缩机检修、更换,冷凝器、蒸发器检修更换,冷冻机油、干燥过滤 器检修更换,制冷剂压力检测补充,温控阀、安全阀、靶式流量计检查更换,控制系统升级改 造、程序重写,整机年度维保,承包运行,技术培训等服务。主要维保的品牌有:开利、约克、麦克维尔、特灵、大金、日立、顿汉布什、武冷、捷丰等。 3、系统综合维修保养服务中央空调末端设备风机盘管、吊顶风机、新风机组安装维修、清洗、保养,冷却水、冷媒水循环泵检修保养,冷却塔检修、填料清洗更换,控制阀门检修、更换,系统升级改造、安装调试,日常运行托管服务等。 4、专业维保机构的优势(1)价格优势:部分厂家依靠自己是生产厂家的优势,凭借用户对 厂家的信任,大幅度提高维保服务价格,给用户单位造成不必要的开支。(2)服务优势:专业的 维保单位要想和生产厂家或者安装单位分的市场份额,必须付出更优质的服务,为此我单位制 定了完整的质量管理体系,完全按照国际质量管理体系要求,安排配件的供应,施工的管理、 项目的验收等一系列影响的规定,并通过了国际认证。(3)人才优势:我单位为了把维护保养做 的更好,努力的挖掘人才,目前以掌握了大多数品牌机组的核

溴化锂制冷机组故障维修实例(原创)

溴化锂制冷机组故障维修实例 一机组概况 某溴化锂制冷机组制冷量为1 034kW ,2003 年投入使用,全天24 h 运行。2005 年5 月出现了真空度下降、制冷剂被污染的情况,运行管理人员持续抽真空以保障运行,2005 年11 月该机组因无法开机被迫停机待修。 二故障及维修情况 2. 1 首次出现故障时的维修情况 检查发现该机组有以下问题:1) 高压发生器(以下简称高发) 压力为平压,绝对真空压力表右侧汞柱处于顶部,说明机组有外漏。2) 真空泵内腔中有溴化锂溶液存在,说明抽真空的过程中有不当操作。 2005 年11 月中旬检查机组发现:高发视镜焊接处泄漏;溶液呈酱色,只有0. 6 t 左右。维修时对漏点进行了打磨焊接;对溶液进行了再生,重新添加了溶液和缓蚀剂;检修了真空泵。 抽真空后重新运行,在外界温度为20 ℃左右、室内有热源的情况下,冷水机组出口处冷水温度在6. 5 ℃以下,真空度保持48 h 几乎无变化,抽样检测发现制冷剂没被污染,但从高发视镜看不到液位。厂家技术人员认为对于此机型出现这种情况是完全正常的。鉴于机组当时运行稳定、真空度保持良好,决定作保守观察处理。 2. 2 再次出现故障时的维修情况 机组2006 年4 月重新运行后,出现了“吸收液浓度上升,检查”的报警。笔者对机组进行了抽真空、旁通制冷剂处理,报警消失。半个月后再次出现了同样的报警,依照上述方法处理,却没有任何作用,但在每次重新开机的前4~5 h 内并无此报警显示。6 月中旬,冷水出水温度在蒸汽压力为0. 2 MPa 的情况下,达到了10~12 ℃,且蒸汽压力不稳定。运行管理人员加大蒸汽压力至0. 3 MPa ,3 min 后,蒸汽凝水温度异常,且凝水出口有蒸汽喷出;制冷剂凝缩温度异常,凝水管道温度较高,用手触摸极其烫手,实测温度为7 4 ℃,远高于正常温度;低压发生器(以下简称低发) 伴有清脆的啪啪声;制冷剂污染严重,用波美浓度计测得的不同运行时间的制冷剂中的溴化锂溶液质量分数高达21 %~27 %不等,冷水出口温度高达17 ℃。 三故障分析 3. 1 蒸汽凝水温度异常

蒸汽双效型溴化锂吸收式冷水机组操作规程讲解(优.选)

蒸汽双效型溴化锂吸收式冷水机组操作规程 操作人员必须仔细阅读使用说明书,熟悉和掌握机组的结构、性能和调试方法。非合格操作人员不得操作机组。 一、制冷操作规程 (一)开机程序 1.合上机房配电箱总电源及各相关设备的电源开关,合上机组控制箱电源,切换到“机组 监视”画面,确认机组“故障监视”画面上无故障灯亮(冷水断水故障除外)。 2.确认冷水泵、冷却水泵阀门打开(水泵为一用一备,只打开要启用的水泵阀门),确认 减温减压设备进口阀门处于关闭状态。 3.确认系统阀门开启是否处于供冷状态(阀门状态详见机房平面布置图中阀门切换表)。 4.打开减温减压设备的减温水泵。 5.打开室外蒸汽进口总阀门及室外蒸汽凝水排水阀门,排尽蒸汽系统凝水后,缓慢逐步开 启减温减压设备进口阀门,并逐步关闭蒸汽凝水排水阀门。 6.在机组自动运行工况下,在“机组监视”画面上按“系统启动”键,然后按“确认”键、 “确认完毕”键(按“确认”键的同时,冷水泵及冷却水泵启动,若不启动说明存在问题,关闭机组从新操作),机组进入运行状态。 7.当储气室压力升至45mmHg以上时,启动真空泵,对其抽气1—2分钟。 8.巡回检查机组运行情况,每隔2小时记录一次数据。 (二)关机程序 1.关闭室外蒸汽进口总阀门,按“系统停止”键,机组进入稀释运行状态。 2.机组停止后,冷水泵延时10分钟后自动关闭。 3.观察减温减压设备中蒸汽压力,无压力后关闭减温减压设备进口阀门,关闭减温减压设 备的减温水泵。 4.切断机组控制箱电源,关闭机房配电箱总电源。 二、供热操作规程 (一)开机程序 1.合上机房配电箱总电源及各相关设备的电源开关,合上供热电动阀控制电源。 2.确认热水泵阀门打开(水泵为一用一备,只打开要启用的水泵阀门),确认减温减压设 备进口阀门处于关闭状态。 3.确认系统阀门开启是否处于供热状态(阀门状态详见机房平面布置图中阀门切换表)。 4.打开室外蒸汽进口总阀门及室外蒸汽凝水排水阀门,排尽蒸汽系统凝水后,缓慢逐步开 启供热电动阀,并逐步关闭蒸汽凝水排水阀门。 5.手动开启供热水泵。 6.观察供热系统出水温度是否处在50℃左右。 (二)关机程序 1.关闭室外蒸汽进口总阀门。 2.关闭供热电动阀。 3.10分钟后手动关闭供热水泵。 4.切断供热电动阀控制箱电源,关闭机房配电箱总电源。 5. 6.最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便 更改 7. 1 / 1word.

螺杆制冷机组常见故障及补救方法

螺杆机组: 1、启动负荷大,不能启动或启动后立即停车的故障原因及补救方法: 1、能量调节未至零位,减载至零位。 2、压缩机与电极同轴度过大,重新校正同轴度。 3、压缩机内充满油或液体制冷剂,盘动压缩机联轴节,将机腔内积液排出。 4、压缩机内磨损烧伤,拆卸检修。 5、电源断电或电压过低(低于额定值10%),排除电路故障,按产品要求供 电。 6、压力控制器或温度控制器调节不当,使触头常开,按要求调整触头位置。 7、压差控制器或热继电器断开后未复位,按下复位键。 8、电机绕组烧毁或短路,检修。 9、变压器、接触器、中间继电器线圈烧毁或触头接触不良,拆检、修复。 10、温度控制器调整不当或出故障不能打开电磁阀,调整温度控制器的调定 值或更换温控器。 11、电控柜或仪表箱电路接线有误,检查、改正。 12、机组内部压力太高,连接均压阀。 2、压缩机在运转中突然停车怎么办? 1、吸气压力低于规定压力,应查明原因排除故障。 2、排气压力过高,使高压继电器动作。 3、温度控制器调的过小或失灵,调大控制范围,更换温控器。 4、电机超载使压差控制器或保险丝烧毁,排除故障更换保险丝。 5、油压过低使压差控制器动作,查明原因,排除故障。 6、控制电路故障,查明原因,排除故障。 7、仪表箱接线端松动,接触不良,查明后上紧。 8、油温过高,油温继电器动作,增加油冷却器冷却水量。 3、机组震动过大的故障原因及补救方法: 1、机组地脚未紧固,塞紧调整垫铁,拧紧地脚螺栓。 2、压缩机与电机同轴度过大,重新校正同轴度。

3、机组与管道固有震动频率相近而共振,改变管道支撑点位置。 4、吸如过量的润滑油或液体制冷剂,停机,盘动联轴节联将液体排出。 4、运行中有异常声音的故障原因及补救方法: 1、压缩机内有异物,检修压缩机及吸气过滤器。 2、止推轴承磨损破裂,更换。 3、滑动轴承磨损,转子与机壳磨擦,更换滑动轴承检修。 4、联轴节的键松动,紧固螺栓或更换键。 5、排气温度过高的故障原因及补救方法: 1、冷凝器冷却水量不足,增加冷却水量。 2、冷却水温过高,开启冷却塔。 3、制冷剂充灌量过多,适量放出制冷剂。 4、膨胀阀开启过小,适当调节。 5、系统中存有空气(压力表指示明显跳动),排放空气。 6、冷凝器内传热管上有水垢,清除水垢。 7、冷凝器内传热管上有油膜,回收冷冻机油。 8、机内喷油量不足,调整喷油量。 9、蒸发器配用过小,更换。 10、热负荷过大,减少热负荷。 11 、油温过高,增加油冷却器冷却水量(液氨量),降低油温。 12、吸气过热度过大,适当开大供液阀,增加供热量。 6、压缩机本体温度过高的故障原因及补救方法: 1、吸气温度过高,适当调大截流阀。 2、部件磨损造成摩擦部位发热,停车检查。 3、压力比过大,降低排气压力。 4、油冷却器能力不足,增加冷却水量(液氨量),降低油温。 5、喷油量不足,增加喷油量。 6、由于杂质等原因造成压缩机烧伤,停车检查。 7、蒸发气温度过低的故障原因及补救方法: 1、制冷剂不足,添加制冷剂到规定值。

三洋蒸汽型溴化锂机组保养方案

蒸汽型溴化锂机组保养方案 一、溴化锂机组定期检查工作内容 1.对运行记录判读,指出不正常数据并作相应改善建议。 2.吸收损失检测,按检测程度作相应之气密处理。 3.空气排除量及排除系统运行检查。 4.溶液之抑制剂及碱性控制剂与异辛醇之检验,必要时调整。 5.各热交换器之效能检查判断,按需要作相应之建议与处理。 6.机组控制系统检查,必要时做相应之调整。 7.手动方式检查循环保护阀动作,确认正常后回置自动位置。 8.容量控制之蒸气阀或热水阀开度及压力是否正常。 9.对不正常之运行噪音及振动,提出相应改善建议。 10.对操作提供指导,必要时提出保养建议或报告。 二、溴化锂机组年度保养工作内容 1.机组气密性检查 A.对机组进行加压试验(0.08MPa),并保证24小时后不减压。 B.对机组进行负压试验(-700mmHg),并确认真空上升率24小时不大于0.5mmHg。 C.提供气密试验报告。

2.机组热交换器检查和清洗 A.打开蒸发器端盖,检查换热铜管结垢情况,必要时进行清洗。 B.打开冷凝器端盖,检查换热铜管结垢情况,必要时进行清洗。 C.打开吸收器端盖,检查换热铜管结垢情况,必要时进行清洗。 3.机组溴化锂溶液成份分析和调整(费用另计) A.对溶液进行成份检测分析,并提交分析报告。 B.调校溶液铬酸锂浓度和碱度至正常值。 C.检查溴化锂溶液量,并调整冷剂水溶液量。 D.溶液检验未达参数时,向甲方提出报告,建议对溶液进行过滤或再生。4.电气控制系统的检查和维护 A.检查电气控制箱内电器元件,必要时建议换新。 B.调整检查控制设定值(如时间开关,水温感应器等)。

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: https://www.doczj.com/doc/d916117794.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

冷藏车制冷机组压缩机常见故障分析

冷藏车制冷机组压缩机常见故障分析 1、高压、低压均低。原因:雪种不足。辅助诊断:只要开空调,玻璃眼中就一直有气泡;摸三个地方的温度,高温、中温偏低,低温偏高。只要补充雪种就可排除故障了。 2、高压、低压均高。原因:(1)有空气;(2)雪种过多;(3)冷凝器冷却效果差;(4)膨胀阀开度太大。 诊断方法:先看一下,低压管上是不是结了霜,如果结了霜,是膨胀阀开度太大。再用水冲一下冷凝器,如果效果明显变好的话,是冷凝器冷效果差。如果没有什么变化,是系统中有空气。剩下的是雪种太多了。如果在开空调或关空调时,玻璃眼中也没有气泡,可以肯定是雪种太多。只要放掉一些雪种,故障就可排除了。 3、运行时,低压有时呈真空,有时正常。可以确诊是系统中有水份。那只有重新抽真空,一般还需要更换储液干燥器,再重新加注雪种就可。 4、低压一直指示真空。原因:系统有堵塞之处,雪种不循环。最容易堵塞的地方不外呼是膨胀阀和储液干燥器。只要摸一下储液干燥器的进出口管子,如果温度相差很大,可以肯定是储液干燥器中的过滤器堵塞了。那只有更换它了。否则就是膨胀阀堵塞了。一般也是换新处理。 5、低压高、高压低。原因:压缩机本身不良。由于压缩机是空调系统中的主要的部件,价格也较高,因此不能随便换新。可进一步确诊,方法如下:将压缩机的低压管拆开,将高压管在压力表之后设法堵住。起动发动机,并在电磁离合器上接上12V电源。如果压力低于15公斤每平方厘米的话,可以肯定是压缩机坏了。一般只有换压缩机总成了。请注意,试验时,只要发动机运行不到半分钟就可确诊了,千万不要运行时间太长。

二、泄漏 雪种泄漏,一般可以用卤素灯、电子检漏仪等设备来进行检查。但在实际工作中,大多数修理厂都采用肥皂水进行检漏的方法。 三、风量小 就是吹出来的风太小。先查看产生的风是不是太小呢产生的风小的原因有:风机供电电压太低风机本身故障另一个是蒸发器太脏等原因,造成风的阻力太大。还一个就是风道漏掉了风,这是一个较常见的故障。 在实际工作中,可能还会遇到其他故障。但我认为,只要认真想想前面介绍的空调的基本原理,都一定可以排除的。 空调的使用注意事项与维护 一、注意事项 1、使用空调时,鼓风机尽量开高档,温度尽量设置高一点。这样做,车厢的空气循环快,又易停机,就是效果好,又节省。 2、在炎热的夏天停车时,应避免在阳光下直接曝晒。且在使用空调前,应先开窗放走车内高温空气。 二、维护 1、经常从玻璃眼中查看雪种状况。如缺少,要及时排除泄漏处,并尽快补充。

溴化锂制冷机

第一部分溴化锂制冷机发展过程 一、国外的发展过程 1. 美国是溴化锂制冷机的创始国,目前日本等国的溴冷机也都有较大的发展。 2.美国开利公司于1945年试制出第一台制冷量为523KW(45×104kcal/h)的单效溴冷机,开创了利用溴化锂水溶液为工质对做为吸收剂的吸收式制冷新领域。美国不仅创造了单效溴冷机,而且在世界上又率先研制出了双效溴冷机。现已研制出了直燃型、热水型和太阳能型等新型溴冷机。同时还研制了冷温水机组和吸收式热泵等新机组。 3. 日本一家汽车公司于1959年研制出制冷量为689KW(60×104kcal/h)的单效溴冷机,1962年茬原制造所又研制出双效溴冷机。日本溴冷机无论在生产数量、性能指标、应用范围和新技术、新产品研制等方面,均超过了美国,成为世界上溴冷机研究与生产领先的国家。特别是燃气两效温水机组的产量很大,约占世界上溴冷机生产总台数的2/3;目前已致力于第三种吸收式热泵和溴化锂热电并供机组的研制工作。 4. 前苏联奔萨化工厂于1965年研制出2908KW(250×104kcal/h)溴冷机。目前溴冷机的应用范围已从化纤厂扩展到其它纺织厂、橡胶厂酿酒厂、化工厂、冶金厂和核电站。 二、中国溴化锂制冷机的发展过程 我国研制溴冷机起步于60年代初期,至今已有四十多年,其发展过程大体分为四个阶段: 1. 研制阶段。60年代初船舶总公司704所(原六机部704所)、一机部通用机械研究所与高等院校以及设备制造厂通力合作,试制了两台样机。1966年上海第一冷冻机厂试制出了制冷量1160KW(100×104kcal/h)全钢结构的单效溴冷机,安装于上海国棉十二厂。60年代末期,许多单位都着手研制单效溴冷机,这一研制工作持续到了70年代初期。 2. 单效机生产应用阶段。70年代初先后有上海、青岛、天津、北京和长沙等地的棉纺厂为了适应生产的需要,各自设计与制造了单效溴冷机。继而更多地区也都自行设计制造单效溴冷机,尤以上海、天津两地更为突出。以天津为例,70年代初至80年代初,制造出3480KW(300×104kcal/h)大型溴冷机七台,总制冷能力达到24360KW(2100×104kcal/h)。单效溴冷机在这一时期虽然有了较

溴化锂吸收式制冷机维护检修规范流程

溴化锂吸收式制冷机维护检修规程

目次1总则 2完好标准 2.1零部件质量 2.2运行状况 2.3技术资料 2.4设备及其环境 3设备的维护 3.1 日常维护 3.2 机组的检查 3.3常见故障处理方法 3.4紧急情况处理方法 4检修周期和检修容 4.1检修周期 4.2检修容 5检修方法及质量标准 5.1机体部各管束的检修 5.2泵类的检修 6试车与验收 6.1试车前的准备工作 6.2试车 6.3验收 7维护检修安全注意事项 7.1 维护安全注意事项 7.2检修安全注意事项 7.3试车安全注意事项

1 总则 本规程适用于以溴化锂为制冷剂的吸收式制冷机,制冷围为2~20°C。常用溴化锂制冷机的技术参数见表1。

2完好标准 2.1 零部件质量 2.1.1 机组整体检验合格,安装平稳牢靠。 2.1.2 仪器、仪表、联锁信号及自控装置按期校验。 2. 1. 3 配套辅机、管线、阀门及其零部件完整、合格。 2. 1. 4 隔热、保温及涂色符合标准要求。 2.2 运行状况 2. 2. 1 达到铭牌出力或查定能力。 2. 2. 2 制冷温度、压力、流量、电气、仪表等参数符合规定。 2. 2. 3 熔晶及解冻处理及时、好用。 2. 2.4 制冷温度均衡稳定。 2. 3 技术资料 2. 3. 1 具备出厂说明书、图纸等全套技术资料。 2. 3. 2 有设备安装记录、完整的运行记录、检修和验收记录。 2. 3. 3 有完整的设备技术档案。 2. 4 设备及其环境 2. 4. 1 机体及管道无跑、冒、滴、漏。 2. 4. 2 机组本体无油污,无灰尘,周围环境清洁、整齐。 3设备的维护 3.1 日常维护 3. 1.1短期停车的保养 a. 将机的溶液充分稀释,使其在当地的环境温度下不致于结晶。 b.保持机器部的真空度。 c.把通向大气的阀门全部关闭。 d. 一旦漏入空气,应打开抽气阀及时抽除空气。

离心式冷水机组与溴化锂机组费用比较

离心机与溴机各方面比较 一、比较条件 (1)本工程系南宁地区,总制冷量Q0为544万大卡/小时,制热量200万大卡/时,卫生热水量20吨/时(120万大卡/小时)。 (2)南宁地区室外气候条件:夏季空气调节室外计算干球温度:34.2℃,夏季空气调节室外计算湿球温度:27.5℃。 二、采用离心式冷水机组与直燃型溴化锂冷水机组定性比较

综合以上比较,我们不难发现,溴化锂吸收式机组在实际应用中难免存在如下缺陷: 1. 节电不节能: 从能源角度看溴化锂机组虽然运行时用电少,只需供溶液泵,溶剂泵用电即可,但煤气,油,蒸汽均属能源。若折合成标准煤来计算,溴化锂机组每万大卡耗煤为1.6-3.3公斤,而电制冷机每万大卡耗煤为 1.11-1.32公斤,故溴化锂机组是省电不节能。 2. 运行时存在腐蚀现象: 因为溴化锂机组用溴化锂溶液为制冷剂,溴化锂是盐溶液,在高温时对换热管易产生微孔腐蚀,使机组真空度下降,影响机组制冷,另外,燃油型机组会硫化腐蚀,蒸汽型机组因蒸汽含氧,在放热后变成水时会产生微量氧化腐蚀,这种情况在机组启停时最严重,久而久之会使传热管结垢降低制冷量,所以溴化锂机组的冷量衰减较大。 3. 真空度难以保障: 机组运行时会产生如氮、氧等不凝性气体,需及时排出,否则会使机组内真空下降,但通过抽气装置排出这些不凝性气体时,同时也将冷剂蒸汽排出,久而久之溴化锂溶液浓度升高,导致机组容易结晶,一旦结晶,消除需2~4天。 4. 不适在过滤季节且室外温度较低时开机: 溴化锂对冷却水的温度限制很高,在室内温度低于23C便不能开机,否则会因为冷却水温度低而产生结晶,但电制冷机组冷却水温度可达15.6C。下限为12.7C,因此溴化锂机组的使用范围及时间有限。 5. 一机多用,有名无实: 溴化锂机组可同时进行供热与制冷,但在燃烧器容量一定的情况下满足供热,则必须用于制冷的溴化锂温度降低导致制冷时易结晶,否则便加大燃烧器型号,增大投资。 6. 辅助设备的投资大: 溴化锂蒸发器,冷凝器管路长而复杂,水阻大,且冷却水需量大,如此,增加了冷却泵及冷却塔的投资。 7. 初投资大,管理复杂:

溴化锂制冷机的操作规程示范文本

溴化锂制冷机的操作规程 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

溴化锂制冷机的操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、开机程序 1)、打开系统的冷媒水和冷却水阀门,并启动冷媒水 和冷却水泵并检查其流量是否达到机组运行要求。 2)、启动发生器、吸收器泵,并调整高、低发液位。 3)、打开疏水器凝水旁通阀,并缓缓加入蒸汽,使机 组逐渐升温,同时注意高发液位。1)、打开系统的冷媒 水和冷却水阀门,并启动冷媒水和冷却水泵并检查其流量 是否达到机组运行要求。 2)、启动发生器、吸收器泵,并调整高、低发液位。 3)、打开疏水器凝水旁通阀,并缓缓加入蒸汽,使机 组逐渐升温,同时注意高发液位。 4)、蒸发器冷剂水位上升后启动蒸发器泵,并关闭疏

水器旁通阀。 2、关机程序 1)、关闭蒸汽。 2)、机组继续运行20分钟后关闭溶液泵(使稀浓溶液充分混合,以防机组结晶)。 3)、停止冷却水、冷媒水泵。 3、紧急停机 制冷机在运转过程中,当出现下列任何一种情形时,应立即关闭蒸汽阀门、旁通冷剂水至吸收器,打开凝结水疏水器旁通阀,并尽量按正常步骤停机。 1)、冷却水、冷媒水断水。 2)、发生器、蒸发器、吸收器泵中任何一台不正常运转。 3)、断电。 4、维护保养

溴化锂制冷机组操作规程

3溴化锂制冷机组 3.1结构原理 热水单效型溴化锂吸收式冷水机组(以下简称机组)是一种以热水为热源,水为制冷剂、溴化锂水溶液为吸收剂,在真空状态下制取工艺用冷水的设备。 机组由发生器、冷凝器、蒸发器、吸收器和热交换器等主要部分及抽气装置、熔晶管、屏蔽泵(溶液泵和冷剂泵)等辅助部分组成。 3.1.1发生器 管壳式结构,由管体、传热管、隔热层、挡液板和传热管支撑板等组成。来自装置的低位能热水流经发生器的传热管,加热管外的溴化锂稀溶液,使其产生出冷剂蒸汽,溶液浓缩成浓溶液。发生器压力约为7.6kPa(57mmHg)。 热水型机组的热水在传热管放出热量,温度降低后流出机组。 3.1.2冷凝器 由传热管及前后端盖组成。来自Ⅱ循的冷却水(约32℃)从端盖流进导热管,使传热管外侧的来自发生器的冷剂蒸汽冷凝,产生的冷剂水由U形管流入蒸发器水盘。冷凝器与发生器处在一个筒体(上筒体),中间由隔热层和挡液板隔开,压力相当。 冷却水在吸收了冷剂蒸汽冷凝放出的热量后流出冷凝器。 3.1.3蒸发器 由传热管、前后端盖、喷淋管、冷水水盘、液囊、冷剂泵组成。从系统来的冷水从端盖进入传热管,,喷淋在传热管外的冷剂水(由冷剂泵从冷剂水液囊中抽出)获得热量蒸发,成为冷剂蒸汽,部分未蒸发的冷剂水落到水盘后被冷剂泵再次送入喷淋管喷淋。冷水的热量被冷剂水吸收后温度降低,流出蒸发器,进入冷水系统。产生的冷剂蒸汽流入吸收器。蒸发器压力约为0.8kPa(6~7mmHg)。 3.1.4吸收器 由传热管前后端盖及喷淋盘、液囊、溶液泵组成。来自Ⅱ循的冷却水从端盖进入传热管,冷却淋激在传热管外的浓溶液。溴化锂溶液在一定温度和浓度条件下(如浓度63%及温度50℃),具有极强的吸收水蒸汽性能,它大量吸收同一筒体蒸发器中产生的冷剂蒸汽,并把吸收热量传给冷却水带走。吸收了冷剂蒸汽的溴化锂溶液因变稀而丧失吸收能力,这时它由溶液泵送入发生器,再次产生冷剂蒸汽并浓缩。吸收器与蒸发器处于同一筒体,压力相当。吸收器有两个,分别位于蒸发器的两侧。 3.1.5溶液交换器 . .

溴化锂直燃机中央空调运行维修保养方案

溴化锂直燃机中央空调运行维修保养方案 一、各单位现状: 对各酒店、商场、写字楼等溴化锂直燃机中央空调、冷却塔、冷却水泵、冷温水泵、卫生热水泵、定压罐、补水泵、补水箱、分水器、集水器、燃烧机、水系统、电控柜、末端等设备,主机系统在冬季采暖,夏季制冷,春秋制卫生热水使用。为保证以上设备正常安全运行,各单位将对以上设备进行外委管理。承揽此项业务,并制定以下运行维修保养方案。 二、人员编制 1.主机人员编制: 为保证中央空调机组的安全运行,北京众运生达科技公司负责派专业溴化锂直燃机运行操作人员持证上岗,到各单位进行日常运行工作,并作好每一个班次的运行记录。 2.末端人员编制: 为了保证末端设备的安全运行使用,我公司负责派专业末端维护人员到各单位对每1个班次的末端设备进行检查维护工作,并作好详细的记录。 3.技术人员支持:将派专业工程师,专门负责对各单位的每一台溴化锂直燃机运行工作提供技术支持,做到预防为主,及时发现问题及时修理解决,如有重大问题及时汇报给各单位负责人,尽快解决,确保中央空调正常运行。 三、降低能源耗用

1.运行节能要求: 在冬季供暖、夏季制冷时精心操作,派专人负责巡查,温度达到标准时,采取有效措施,为各单位节省燃气和电能源,降低成本。 2.燃气节能标准(单价:2元/立方气): 1.平均每一天节省2个小时至2个多小时燃气; 2.平均每一个月节省4200个燃气至4500个燃气; 3.一年可节省50400个燃气至54000个燃气; 4.一年可节省人民币100800元至108000元。 3.电源节能标准:30千瓦电机1个小时用电量30度电(0.8元/度电); 1.平均每一天节省2个小时至3个小时,节省用电量70度至90度; 2.平均每一个月可节省用电量2100度至2700度; 3.一年可节省25200度电至32400度电; 4.一年可节省人民币20160元至25920元。 四、直燃机机组真空要求 为了保证直燃机使用长久,保证厂家制定使用期限,运行人员要严格遵守厂家规定时间,为直燃机机组抽真空,确保机组内高真空度运行,达到使用效果。五、机房卫生要求 运行人员要确保机房内卫生干净,保持所有设备卫生整洁,这样才能更好的保证直燃机机组使用寿命。六、服务管理 我公司积极配合各单位的纪律要求,严格遵守各单位对直燃机机组制冷、供热开关机时间,保证运行人员守时到岗。 七、维保方案

溴化锂吸收式制冷机参数

溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利 用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、 无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调 节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84) X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔 范围内稳定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。 可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机 组的维修保养工作,主要在于保持其气密性。 二、缺点 (一)在有空气的情况下,溴化锂溶液对普通碳钢具有强烈的腐蚀性。这不仅影响机组的寿命, 而且影响机组的性能和正常运转。

烟气热水型溴化锂机组操作规程

华电分布式能源 余热机操作规程

目录 第一章余热机系统运行方式 (2) 第一条余热机控制方式 (2) 第二条附属设备运行方式 (2) 第二章余热机系统的检查项目 (3) 第一条余热机系统调试前的检查项目 (3) 第二条余热机运行中检查项目 (3) 第三章附属设备的检查项目 (3) 第一条附属设备系统启动前检查项目 (3) 第二条附属设备系统运行中检查项目 (4) 第四章余热机组的启动、停止 (4) 第一条余热机的启动 (4) 第二条余热机组的正常停止 (5) 第五章附属设备的启动、停止与转动 (6) 第一条冷温水泵 (6) 第二条冷却塔 (7) 第六章余热机各种设定值 (8) 第七章余热机系统的日常保养项目 (8) 第一条余热机每天的保养项目 (8) 第二条余热机每月的保养项目 (8) 第三条余热机每季的保养项目 (8) 第四条余热机每年的保养项目 (9) 第五条余热机每二年的保养项目 (9) 第六条余热机每四年的保养项目 (9) 第七条余热机每八年的保养项目 (10) 第八章附属设备系统的维护保养项目 (10) 第一条冷却塔的保养 (10) 第二条水泵的保养 (11) 第九章余热机系统的事故处理 (11) 第一条外部系统故障及处理对策 (11)

第二条制冷时故障及处理对策 (12) 第十章附属设备系统的事故处理 (17) 第一条冷却塔故障原因及排除对策 (17) 第二条冷温水泵故障原因及应对措施 (18) 第一章余热机系统运行方式 第一条余热机控制方式 余热机控制有半自动控制、自动控制和联动控制三种方式。(1)、在机组的制冷、供热调试及维护时,采用半自动控制方式;(2)、自动控制系统仅对机组及冷却塔风机实行开机/停机控制及保护控制,仅在联动控制失效的情况下使用,联动控制恢复正常后应立即切换。(3)、联动控制是指控制系统除对机组进行开机/停机控制以外,还对水系统进行控制。控制系统具有6个联动控制输出接点,分别控制1#冷温水泵、2#冷温水泵、1#冷却水泵、2#冷却水泵及两台冷却塔的风机。 本系统采用联动控制的控制方式。 第二条附属设备运行方式 水泵系统在余热机系统处于自动和半自动状态时,均位于“手动”状态;在余热机系统处于联动状态时水泵系统均位于“自动”状态。

冷水机组常见故障和解决方法

冷水机组常见问题和故障的分析与解决方法核心提示: 冷水机组在中央空调系统运行时担负着提供冷量的重任,作为运行管理人员,除了要正确操作、认真维护保养外,能及时发现和排除常见的一些问题和故障,对保证中央空调系统不中断正常运行,减小因出现的问题和故障造成的损失及所付出的代价有重要作用。 1.冷水机组运行中故障的早期发现与分析 对冷水机组进行精心的维护保养,可以尽量减少故障的发生,但不可能杜绝故障的出现。因为冷水机组本身和客观的外部条件,使得冷水机组的结构制造、安装质量、使用方法和操作水平等优劣程度各异,不可能绝对地全部消除潜在的不利因素,因此构成冷水机组故障的不安全因素始终是存在的。 为了保证冷水机组安全、高效、经济的长期正常运转,在其使用过程中尽早发现故障的隐患是十分重要的。作为运行操作人员,可以通过“看、摸、听、想”来达到这个目的。 看:看冷水机组运行申高、低压力值的大小。油压的大小,冷却水和冷 冻水进出口水压的高低等参数,这些参数值以满足设定运行工况要求的参数值 为正常,偏离工况要求的参数值为异常,每一个异常的工况参数都可能包含着一定的故障因素。此外,还要注意看冷水机组的一些外观表象,例如出现压缩机吸气管结霜这样的现象,就表示冷水机组制冷量过大,蒸发温度过低,压缩机吸气过热度小,吸气压力低。这对于活塞式擒口喹。机组将会引起“液击”;对于离心式冷水机组则会引起踹振。 二摸:在全面观察各部分运行参数的基础上t 进一步体验各部分的温度情况,用手触摸冷水机组各部分及管道(包括气管、液管、水管、油管等),感觉压缩机工作温度及振动;两器的进出口温度;管道接头处的油迹及分布情况等。 正常情况下,压缩机运转平稳,吸、排气温差大,机体温升不高;蒸发温度低,冷冻水进出口温差大;冷凝温度高,冷却水进、出口温差大;各管道接头处无制冷剂泄漏则无油污等;任何与上述情况相反的表现,都意味着相应的部位存在着故障因素。 用手摸物体对温度的感觉特征见表1。 表 1 触摸物体测温的感觉特征 温度/c 手感特征 温度/c

溴化锂简单介绍

溴化锂机组 一、溴化锂工作原理 原理图 在溴化锂吸收式制冷中,水作为制冷剂,溴化锂作为吸收剂。 由于溴化锂水溶液本身沸点很高,极难挥发,所以可认为溴化锂饱和溶液液面上的蒸汽为纯水蒸汽;在一定温度下,溴化锂水溶液液面上的水蒸气饱和分压力小于纯水的饱和分压力;而且浓度越高,液面上的水蒸气饱和分压力越小。所以在相同的温度条件下,溴化锂水溶液浓度越大,其吸收水分的能力就越强。这也就是通常采用溴化锂作为吸收剂,水作为制冷剂的原因。 溴化锂吸收式制冷机主要由发生器、冷凝器、蒸发器、吸收器、换热器、循环泵等几部分组成。

在溴化锂吸收式制冷机运行过程中,当溴化锂水溶液在发生器内受到热媒水的加热后,溶液中的水不断汽化;随着水的不断汽化,发生器内的溴化锂水溶液浓度不断升高,进入吸收器;水蒸气进入冷凝器,被冷凝器内的冷却水降温后凝结,成为高压低温的液态水;当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量,从而达到降温制冷的目的;在此过程中,低温水蒸气进入吸收器,被吸收器内的溴化锂水溶液吸收,溶液浓度逐步降低,再由循环泵送回发生器,完成整个循环。如此循环不息,连续制取冷量。由于溴化锂稀溶液在吸收器内已被冷却,温度较低,为了节省加热稀溶液的热量,提高整个装置的热效率,在系统中增加了一个换热器,让发生器流出的高温浓溶液与吸收器流出的低温稀溶液进行热交换,提高稀溶液进入发生器的温度。 二、直燃型溴化锂吸收式冷水机组以燃气燃烧作为热源,将溴化锂稀溶液进行加热使其沸腾,分离出冷剂蒸汽和溴化锂浓溶液,冷剂蒸汽经冷凝器冷却变成冷剂水,而溴化锂浓溶液回到吸收器,吸收来自蒸发器中的冷剂蒸发又变成稀溶液,由此循环往复,不断循环制冷。直燃采暖循环过程即采暖所需的热水仍由蒸发器中产生,供热水时,机组上的蒸发泵和系统中冷却水泵停止运行。稀溶液通过低温、高温热交换器后进入高压发生器,被燃料燃烧加热,产生冷剂蒸汽。该冷剂蒸汽直接进入蒸发器,加热在铜管内流动的热水,自身被冷却凝结成冷剂水并回到吸收器,而高压发生器被浓缩的浓溶液同样直接回到吸收器并与冷剂水混合,又重新回到稀溶液状态。

相关主题
文本预览
相关文档 最新文档