当前位置:文档之家› 自动控制原理综合实验指导书(20141025)

自动控制原理综合实验指导书(20141025)

自动控制原理综合实验指导书(20141025)
自动控制原理综合实验指导书(20141025)

控制理论综合实验报告

班级

学号

姓名

同组人

上交日期年月日

自动控制原理

综合实验指导书

天津科技大学电子信息与自动化学院

自动化工程系

2014/10 by daifz

目录

前言 (1)

实验一典型环节及其阶跃响应 (3)

实验二二阶系统阶跃响应 (7)

实验三控制系统的稳定性分析 (12)

实验四系统根轨迹法数字仿真分析 (15)

实验五系统频率特性数字仿真分析 (18)

实验六控制系统综合实验 (23)

实验七系统频率特性测量 (25)

附录一MA TLAB应用简介 (29)

1. 利用MA TLAB进行时域分析 (29)

2. 利用MA TLAB进行根轨迹分析 (32)

3. 利用MA TLAB绘制系统的频率特性图 (35)

附录二SIMULINK简介 (39)

1. SIMULINK概述 (39)

2. 功能模块的处理 (47)

附录三EL-AT-III试验箱的软件使用说明 (49)

附录四EL-AT-III实验箱的布局图 (52)

附录五实验报告撰写须知 (56)

前言

一、概述

研究一个控制系统的运动,一般采用两种方法来进行研究。一种方法是应用理论分析方法来分析系统运动的性能,以获得系统设计的依据。另一种方法是通过实验研究,以获得所设计系统的运动规律与系统的各项性能。这是通过运动曲线与实验数据来展现的。控制系统的两种研究方法互为补充,互为验证,两者缺一不可。

在控制系统的实验研究中,可以在实际物理系统上来进行,也可以通过物理装置模型来进行研究。当前,由于控制系统的对象规模越来越大,对象结构越来越复杂,对象的种类越来越多,因此在控制系统的设计过程中,控制系统的仿真研究也就基本上取代了物理系统的实验研究。一般只有到了控制系统设计的最后阶段——系统调试阶段,才有可能进行实际系统实验。

控制系统的仿真研究方法有两种,一种方法是模拟仿真方法,另一种方法是数字仿真。在自动控制原理综合实验中,我们将分别采用数字仿真的基本原理和模拟仿真的基本原理,设计出合理的控制系统的仿真试验,为自动控制理论知识的进一步掌握和运用打下坚实的基础。

二、自动控制原理综合实验的任务

自动控制原理综合实验是自动控制理论课的一部分。实验任务是:

1.通过实验进一步了解和掌握自动控制理论的基本概念、控制系统的分析方法

和设计方法。

2.学习和掌握系统模拟电路的构成和测试技术。

3.学习和掌握MA TLAB语言和SIMULINK仿真环境。

4.提高分析问题及解决问题的能力。

5.提高动手能力、应用计算机的能力和水平。

三、实验设备

自动控制原理综合实验所使用的设备由计算机、EL-AT-III试验箱、万用表、电阻、电容等组成。

四、对参加实验学生的要求:

1.阅读实验指导书、复习与实验有关的理论知识、明确每次实验的目的,了

解实验内容和方法。

2.按实验指导书要求进行接线和操作,经检查和指导教师同意后再通电。

3.在实验中注意观察、记录有关数据和图像,并由指导教师复查后才能结束

实验。

4.实验后应断电、整理实验台、恢复到实验前的情况。

5.认真写实验报告、按规定格式做出图表、曲线、并分析实验结果。字迹要

清楚,画曲线用坐标纸,结论要明确。

6.爱护实验设备、遵守实验室规定。

7.实验报告封皮采用标准的“控制理论综合实验报告”(该指导书的第一页)。

自带U盘将各自实验的输出结果拷贝回去整理在报告中。

五、几点说明

1.有关用MA TLAB语言进行系统时域分析、根轨迹绘制及频率特性分析的

内容,请参见附录一。

2.有关用SIMULINK仿真环境进行系统时域分析、系统校正分析的内容请

参见附录二。

3.有关EL-AT-III试验箱的软件使用说明请参见附录三。

4.有关EL-AT-III实验箱的布局图请参见附录四。

5.实验报告的撰写须知(包括公式、图表等的格式)参见附录五。

实验一典型环节及其阶跃响应

一、实验目的

1. 掌握控制系统模拟实验的基本原理和一般方法。

2. 掌握控制系统时域性能指标的测量方法。

二、实验仪器

1.EL-AT-III型自动控制系统实验箱一台

2.计算机一台

三、实验原理

1.模拟实验的基本原理:

控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法:

超调量%

1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2)检查USB线是否连接好,在实验项目下拉框中选中任一实验,点击按

钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出

现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才

可以继续进行实验。

3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1

输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

4)在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。

5)鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框中

设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

%100%max ?-=

Y Y Y σ6) 用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调

量:

四、实验内容

构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1. 比例环节的模拟电路及其传递函数如图1-1。

G (S )= -R2/R1

2. 惯性环节的模拟电路及其传递函数如图1-2。

G (S )= - K/(TS+1) K=R2/R1,T=R2·C

3. 积分环节的模拟电路及传递函数如图1-3。

G (S )=1/(TS ) T=RC

4.比例+积分环节的模拟电路及传递函数如图1-4。

G (S )=K (1+1/(TS )) K=R2/R1,T=R2· C

五、实验步骤

1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。

比例环节

3.连接被测量典型环节的模拟电路(图1-1)。电路的输入U1接A/D、D/A卡的

DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

4.在实验项目的下拉列表中选择实验一[一、典型环节及其阶跃响应] 。

5.鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框中设

置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6.观测计算机屏幕显示出的响应曲线及数据。

7.记录波形及数据(由实验报告确定)。

惯性环节

8.连接被测量典型环节的模拟电路(图1-2)。电路的输入U1接A/D、D/A卡的

DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。

9.实验步骤同4~7

积分环节

10.连接被测量典型环节的模拟电路(图1-3)。电路的输入U1接A/D、D/A卡

的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将积分电容两端连

在模拟开关上。检查无误后接通电源。

11.实验步骤同4~7

比例+积分环节

12.连接被测量典型环节的模拟电路(图1-4)。电路的输入U1接A/D、D/A卡

的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将积分电容连在模

拟开关上。检查无误后接通电源。

13.实验步骤同4~7。

14.测量系统的阶跃响应曲线,并记入下表。

六、实验报告

1.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算

的结果相比较。

2.将实验中测得的曲线、数据及理论计算值,整理列表。

七、预习要求

1.阅读实验原理部分,掌握时域性能指标的测量方法。

2.分析典型一阶系统的模拟电路和基本原理。

表1-1 典型环节及其阶跃响应实验结果

实验数据测试表(学生填写)

实验二二阶系统阶跃响应

一、实验目的

1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的

σ和调节时间t S之间的关系。

影响。定量分析ζ和ωn与最大超调量%

2.进一步学习实验系统的使用方法。

3.学会根据系统阶跃响应曲线确定传递函数。

二、实验仪器

1.EL-AT-III型自动控制系统实验箱一台

2.计算机一台

三、实验原理

1.模拟实验的基本原理:

控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 域性能指标的测量方法:

σ:

超调量%

1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB线是否连接好,在实验项目下拉框中选中任一实验,点击按

钮,出现参数设置对话框设置好参数,按确定按钮,此时如无警告对话

框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正

常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输

出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟

开关上。检查无误后接通电源。

4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。

%100%max ?-=

Y Y Y σ5) 鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框中

设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。 6) 利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调

量:

四、实验内容

典型二阶系统的闭环传递函数为

ω2

n

?(S )= (1)

s 2+2ζωn s +ω2n

其中 ζ 和ωn 对系统的动态品质有决定的影响。构成的典型二阶系统的模拟电路如图2-1所示,并测量其阶跃响应:

图2-1 二阶系统模拟电路图

系统的结构图如图2-2:

图2-2 二阶系统结构图

系统闭环传递函数为

(2)式中 T=RC,K=R2/R1。

比较(1)、(2)二式,可得

ωn=1/T=1/RC

ζ=K/2=R2/(2R1) (3)由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC值可以改变无阻尼自然频率ωn。

取R1=200K,R2=100KΩ和200KΩ,可得实验所需的阻尼比。电阻R取100KΩ,电容C分别取1μf和0.1μf,可得两个无阻尼自然频率ωn。

五、实验步骤

1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,

电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容得两端连在模拟

开关上。检查无误后接通电源。

2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

3.测查USB线是否连接好,在实验项目下拉框中选中任一实验,点击按钮,

出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示

通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续

进行实验。

4.在实验项目的下拉列表中选择实验二[二阶系统阶跃响应], 鼠标单击按

钮,弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

5.取ωn=10rad/s, 即令R=100KΩ,C=1μf;分别取ζ=0,0.25,0.5、1、2,即取

R1=100KΩ,R2分别等于0、50KΩ、100KΩ、200KΩ、400KΩ。输入阶跃信号,

σ和调节测量不同的ζ时系统的阶跃响应,并由显示的波形记录最大超调量%

时间Ts的数值和响应动态曲线,并与理论值比较。

6.取ζ=0.5。即电阻R1=R2=100KΩ;ωn=100rad/s, 即取R=100KΩ,改变电路中的

电容C=0.1μf(注意:二个电容值同时改变)。输入阶跃信号测量系统阶跃响应,

σ和调节时间Ts。

并由显示的波形记录最大超调量%

7.取R=100KΩ;改变电路中的电容C=1μf,R1=100KΩ,调节电阻R2=200KΩ。输入

σ阶跃信号测量系统阶跃响应,记录响应曲线,特别要记录峰值时间Tp和%的数值。

8.测量二阶系统的阶跃响应并记入表中(如果以上步骤中的各数值与下表不同,则以下表中的取值为实验数据):

表2-1 二阶系统阶跃响应实验结果

六、实验报告

1.画出二阶系统的模拟电路图,讨论典型二阶系统性能指标与ζ,ωn的关系。

σ和t s值列表,根据测量结果得出相应结论。

2.把不同ζ和ωn条件下测量的%

σ计算出传递函数,并与由模拟电路计算的

3.画出系统响应曲线,再由t s和%

传递函数相比较。

七、预习要求

1. 阅读实验原理部分,掌握时域性能指标的测量方法。

2. 按实验中二阶系统的给定参数,计算出不同ζ、ωn下的性能指标的理论值。

实验三控制系统的稳定性分析

一、实验目的

1.观察系统的不稳定现象。

2.研究系统开环增益和时间常数对稳定性的影响。

二、实验仪器

1.EL-AT-III型自动控制系统实验箱一台

2.计算机一台

三、实验内容

系统模拟电路图如图3-1

图3-1 系统模拟电路图

其开环传递函数为:

G(s)=10K1/(s(0.1s+1)(Ts+1))

式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf 两种情况。

四、实验步骤

1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,

电路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。

2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

3.检查USB线是否连接好,在实验项目下拉框中选中任一实验,点击按钮,

出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

4.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析],

鼠标单击

按钮,弹出实验课题参数设置对话框。在参数设置对话框中设置目的电压U1=1000mV鼠标单击确认等待屏幕的显示区显示实验结果。

5.取R3的值为50KΩ,200KΩ,300KΩ,此时相应的K=0.5,2,3。观察不同

R3值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=300kΩ,200kΩ,50kΩ,观察不同R3值时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。

6.在步骤5条件下,使系统工作在不稳定状态,即工作在等幅振荡情况。改变

电路中的电容C由1μf变成0.1μf,重复实验步骤4观察系统稳定性的变化。

7.将实验结果添入下表中(如果以上步骤中的各数值与下表不同,则以下表中

的取值为实验数据):

表3-1 控制系统的稳定性分析实验结果

五、实验报告

1.画出步骤5的模拟电路图。

2.画出系统增幅或减幅振荡的波形图。

3.计算系统的临界放大系数,并与步骤5中测得的临界放大系数相比较。

六、预习要求

1.分析实验系统电路,掌握其工作原理。

2.理论计算系统产生等幅振荡、增幅振荡、减幅振荡的条件。

实验四 系统根轨迹法数字仿真分析

一、实验目的

1. 利用计算机完成控制系统的根轨迹作图。

2. 了解控制系统根轨迹作图的一般规律。

3. 利用根轨迹进行系统分析。 二、实验步骤

1. 用鼠标双击图标进入MATLAB 命令窗口:“Command Window ”。

2. 相关MA TLAB 函数:

给定系统开环传递函数的多项式模型,作系统的根轨迹图。其计算公式为

1)

()

(0-=?=

s den s num K (s)G

式中,K 为根轨迹增益,num 为开环传递函数)(0s G 的分子多项式系数向量,den 为开环传递函数)(0s G 的分母多项式系数向量。

函数格式1:开环增益K 的范围自动设定。

函数格式2:开环增益K 的范围可以由人工给定。

函数格式3:返回变量格式。计算所得的闭环根r (矩阵)返回至MA TLAB 命令窗口,不作图。

函数格式4:返回变量格式。计算所得的闭环根r (矩阵)和对应的开环增益值K (向量)返回至MATLAB 命令窗口,不作图。

更详细的命令说明,可键入“help rlocus ”在线帮助查阅。例如,系统的开环传递函数

1)

2)(1()(0-=++=

s s s K s G g

根轨迹作图程序为

k=1; z=[];

p=[0,-1,-2];

[num,den]=zp2tf(z,p,k); rlocus(num,den) 根轨迹如图4-1所示。

给定单输入-单输出系统的传递函数

)

()

()(s den s num s G =

的分子多项式系数向量num 和分母多项式系数向量den ,在s 平面上作零极点图。

函数格式1:计算零极点并作图。

函数格式2:函数变量格式。计算所得的零极点向量p ,z 返回至MA TLAB 命令窗口,不作图。

例如,系统的传递函数

20

144)

1(2)(23+++=

s s s s-s G

程序为

num=[2 -2]; den=[1 4 14 20]; pzmap(num,den) 零极点图如图4-2所示。

三、实验内容

给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。 1. ()()()

2101++=

s s s K s G g

要求:

(a ) 准确记录根轨迹的起点、终点与根轨迹的条数; (b ) 确定根轨迹的分离点与相应的根轨迹增益; (c ) 确定临界稳定时的根轨迹增益gL K

图4-1 根轨迹图

图4-2 零极点图

2. ()()

()()

16

4112

02++-+=

s s s s s K s G g

要求:确定根轨迹与虚轴焦点并确定系统稳定的根轨迹增益g K 范围。 3. ()()()

2303++=s s s K s G g

要求:

(a) 确定系统具有最大超调量max p,M 时的根轨迹增益,做时域仿真验证; (b) 确定系统阶跃响应无超调量时的根轨迹增益取值范围,并作时域仿真验证。 4. 已知系统结构图如图4-3所示,分别令(选做)

(1)()1=s G c ; (2)()()()

53++=s s s G c ; (3)()5

5

2++=

s .s s G c 要求:

(a ) 做根轨迹图并将曲线保持(hold on)进行比较;

(b ) 选定闭环极点的虚部为[]3Im j s =,确定增益K 和闭环根r ,分析动态性能及稳态性能的差别,并作时域仿真验证。

四、实验报告要求

1. 记录给定系统与显示的根轨迹图。

2. 完成上述各题要求,分析闭环极点在s 平面上的位置与系统动态性能的关系。

图4-3 系统结构图

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

自动控制原理课程实验

上海电力学院实验报告 自动控制原理实验课程 题目:2.1.1(2.1.6课外)、2.1.4(2.1.5课内)班级:gagagagg 姓名:lalalal 学号:hahahahah 时间:zzzzzzzzzzz

实验内容一: 一、问题描述: 已知系统结构图,(1)用matlab编程计算系统的闭环传递函数;(2)用matlab转换函数表示系统状态空间模型;(3)计算其特征根。 二、理论方法分析 (1)根据系统结构图的串并联关系以及反馈关系,分别利用tf ()函数series()函数,parallel函数以及feedback函数构建系统传递函数;(2)已求出系统传递函数G,对于线性定常系统利用函数ss(G)课得到系统的状态空间模型。(3)利用线性定常系统模型数据还原函数[num,den]=tfdata(G,‘v’)可得到系统传递函数的分子多项式num与分母多项式den,利用roots(den)函数可得到系统的特征根。 三、实验设计与实现 新建M文件,编程程序如下文所示: G1=tf([0.2],[1,1,1]); G2=tf([0.3],[1,1]); G3=tf([0.14],[2,1]); G4=series(G2,G3);%G2与G3串联 G5=0.7*feedback(G4,-1,1); G6=0.4*feedback(G1,G5,1); G7=feedback(G6,0.6)

ss(G7)%将系统传递函数转化为状态空间模型 [num den]=tfdata(G7,'v');%还原系统传递函数分子、分母系数矩阵 roots(den)%求系统传递函数特征根 点击Run运行 四、实验结果与分析 M文件如下: 运行结果如下:

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自动控制原理实验书(DOC)

目录 实验装置介绍 (1) 实验一一、二阶系统阶跃响应 (2) 实验二控制系统稳定性分析 (5) 实验三系统频率特性分析 (7) 实验四线性系统串联校正 (9) 实验五 MATLAB及仿真实验 (12)

实验装置介绍 自动控制原理实验是自动控制理论课程的一部分,它的任务是:一方面,通过实验使学生进一步了解和掌握自动控制理论的基本概念、控制系统的分析方法和设计方法;另一方面,帮助学生学习和提高系统模拟电路的构成和测试技术。 TAP-2型自动控制原理实验系统的基本结构 TAP-2型控制理论模拟实验装置是一个控制理论的计算机辅助实验系统。如上图所示,TAP-2型控制理论模拟实验由计算机、A/D/A 接口板、模拟实验台和打印机组成。计算机负责实验的控制、实验数据的采集、分析、显示、储存和恢复功能,还可以根据不同的实验产生各种输出信号;模拟实验台是被控对象,台上共有运算放大器12个,与台上的其他电阻电容等元器件配合,可组成各种具有不同系统特性的实验对象,台上还有正弦、三角、方波等信号源作为备用信号发生器用;A/D/A 板安装在模拟实验台下面的实验箱底板上,它起着模拟与数字信号之间的转换作用,是计算机与实验台之间必不可少的桥梁;打印机可根据需要进行连接,对实验数据、图形作硬拷贝。 实验台由12个运算放大器和一些电阻、电容元件组成,可完成自动控制原理的典型环节阶跃响应、二阶系统阶跃响应、控制系统稳定性分析、系统频率特性测量、连续系统串联校正、数字PID 、状态反馈与状态观测器等相应实验。 显示器 计算机 打印机 模拟实验台 AD/DA 卡

实验一一、二阶系统阶跃响应 一、实验目的 1.学习构成一、二阶系统的模拟电路,了解电路参数对系统特性的影响;研究二阶系统的两个重要参数:阻尼比ζ和无阻尼自然频率ωn对动态性能的影响。 2.学习一、二阶系统阶跃响应的测量方法,并学会由阶跃响应曲线计算一、二阶系统的传递函数。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验原理 模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟一、二阶系统,即利用运算放大器不同的输入网络和反馈网络模拟一、二阶系统,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述系统的模拟电路,并测量其阶跃响应: 1.一阶系统的模拟电路如图

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

自动控制原理课程设计任务书(2016)

《自动控制原理》课程设计任务书 航空航天学院 2016.11

目录 一、设计目的和要求 (1) 1 设计目的 (1) 2 设计要求 (1) 二、题目 (2) 题目1直线一级倒立摆频率响应控制实验 (2) 题目2 直线一级倒立摆PID 控制实验 (7) 题目3 控制系统校正实验1 (9) 题目4 控制系统校正实验2 (10) 题目5 控制系统校正实验3 (11) 题目6 控制系统校正实验4 (12) 三、实践报告书写内容要求 (13) 四、考核方式 (14)

一、设计目的和要求 1 设计目的 1)培养学生综合分析问题、发现问题和解决问题的能力。 2)培养学生运用所学知识,利用MATLAB这软件解决控制理论中的复杂和工程实际问题。 3)提高学生课程设计报告撰写水平。 4)培养学生文献检索的能力。 2 设计要求 1)熟悉MATLAB语言及Simulink仿真软件。 2)掌握控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 3)掌握控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 4)掌握控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 5)掌握控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。

二、题目 题目1直线一级倒立摆频率响应控制实验 1、初始条件 (1)固高GLIP2002直线二级倒立摆 (2)计算机(Matlab Simulink) 1.1 倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 1.2 直线倒立摆 直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。直线倒立摆系列产品如图1-1 所示。

《自动控制原理》实验课程教学大纲

《自动控制原理》实验课程教学大纲 课程代码: TELE2004 课程学分:3 课程名称(中/英):自动控制原理 Principles of Automatic Control 课程学时: 54 实验学时:9 适用专业:信息、电子及通信 实验室名称:开放实验室 一、课程简介: 本课程主要学习自动控制系统分析与设计的基本原理与基本方法,包括系统数学 模型的建立,控制系统的分析的时域分析法、根轨迹法以及频域分析法,控制系统设 计的根轨迹法及频率响应法。通过课程的学习,同学们能理解并掌握系统传递函数的 概念,各项动态性能指标的定义与求法,稳定性的概念与判别,稳态误差及稳态误差 系数的求解。 本课程的教学目标是让用学们能够掌握反馈控制系统的经典理论与方法,并能运 用这些知识建立系统的数据模型,分析系统的动态性能指标,确定系统的稳定性与控 制精度,并可以进行小型控制系统的设计与改进。 本课程包含47学时的课程教学,讲授系统建模、时域分析、根轨迹、频率响应 与系统设计等内容。 本课程还包含一个9学时的实验项目,同学们将自行设计并实现一个小型控制系统,该实验将完全按照工程项目的执行方式进行的。 二、实验项目及学时分配 序号 项目名称 实验类型 学时分配 每组人数 必修/选修 设计性 9 1 必修 1 小型控制系统(角位 移、位移、温度可选) 设计与实现 三、实验内容及教学要求 实验项目1:小型控制系统(角位移、位移、温度可选)设计与实现

1.教学内容 与传统意义下的课程实验不同,这是一个项目型实验,意味着你必须执行一个小型的项目。有若干个项目题目可供选择,该项目需要在上课学期内完成。项目在学期中间发布,你必须在学期未进入考试周之前完成全部工作。 This is a project oriented lab, which means that you are required to carry out a small-scale project rather than a conventional lab. You will be supplied with several candidate projects to choose one as your objective project to carry out in the same semester when the course is given. You will have the project issued in the mid-semester and are required to complete it before entering examination weeks of the semester. 与普通的实验不同,项目的执行通常需要经历若干阶段,也会需要更长的实现周期。通过这个实验,你可明白并经历完整的项目执行过程,尽管从可操作性出发,实验中采用的会是一些比较小型化的项目。这样的经历无疑会对同学们参加项目的能力培养有所助益。 Not like conventional lab, project usually will run for several stages or phases and, maybe, will last for a longer period. You will move from one phase to the other until getting everything done properly. You can then experience and understand the complete project executing procedures, nevertheless how small scaled is the one in which you are involved, which is certainly helpful in preparing you some kind of project taking capabilities. 有三个可供选择的课题,它们是: There are three topics available. They are: 1)直流电机控制的角位移控制系统Angle position control system with dc motor 设计一个角度控制系统,它能接受所期望的角度的输入指令,产生一个与输出要求完全一致的输出角度。 Design an angle system, which can accept desired angle input command and generates an angle output following exactly the input one. 2)车辆运动控制系统Vehicle motion control system 一辆玩具车或是实验室自制的模型车将作为被控制对象。该系统必须能准确地行进任意指定的距离。 A toy vehicle or lab made vehicle is the plant to be controlled. The system must be able to move a given distance accurately. 3)温度控制系统Temperature control system 这是个水温控制系统。它用控制并操持一个小型容器中的水的温度到任意指定的数值。

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

自动控制原理实验报告

自动控制原理 实验报告 实验一典型系统的时域响应和稳定性分析 (2) 一、实验目的 (3) 二、实验原理及内容 (3) 三、实验现象分析 (5) 方法一:matlab程序 (5) 方法二:multism仿真 (12)

方法三:simulink仿真 (17) 实验二线性系统的根轨迹分析 (21) 一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21) 二、根据根轨迹图分析系统的闭环稳定性 (22) 三、如何通过改造根轨迹来改善系统的品质? (25) 实验三线性系统的频率响应分析 (33) 一、绘制图1. 图3系统的奈氏图和伯德图 (33) 二、分别根据奈氏图和伯德图分析系统的稳定性 (37) 三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导 出系统的传递函数 (38) 实验四、磁盘驱动器的读取控制 (41) 一、实验原理 (41) 二、实验内容及步骤 (41) (一)系统的阶跃响应 (41) (二) 系统动态响应、稳态误差以及扰动能力讨论 (45) 1、动态响应 (46) 2、稳态误差和扰动能力 (48) (三)引入速度传感器 (51) 1. 未加速度传感器时系统性能分析 (51) 2、加入速度传感器后的系统性能分析 (59) 五、实验总结 (64) 实验一典型系统的时域响应和稳定性分 析

一、 实验目的 1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、 实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:见图1 图1 (2) 对应的模拟电路图 图2 (3) 理论分析 导出系统开环传递函数,开环增益0 1 T K K = 。 (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2), s 1T 0=, s T 2.01=,R 200 K 1= R 200 K =?

自动控制原理实验报告 (1)

实验1 控制系统典型环节的模拟实验(一) 实验目的: 1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。 2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。 实验原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 实验内容及步骤 实验内容: 观测比例、惯性和积分环节的阶跃响应曲线。 实验步骤: 分别按比例,惯性和积分实验电路原理图连线,完成相关参数设置,运行。 ①按各典型环节的模拟电路图将线接好(先接比例)。(PID先不接) ②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。 ③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。改变比例参数,重新观测结果。 ④同理得积分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线。 实验数据

实验二控制系统典型环节的模拟实验(二) 实验目的 1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。 2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。 实验仪器 1.自动控制系统实验箱一台 2.计算机一台 实验原理 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 实验内容及步骤 内容: 观测PI,PD和PID环节的阶跃响应曲线。 步骤: 分别按PI,PD和PID实验电路原理图连线,完成相关参数设置,运行 ①按各典型环节的模拟电路图将线接好。 ②将模拟电路输入端(U i)与方波信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。 ③用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。改变参数,重新观测结果。 实验数据 实验结论及分析

自动控制原理实验(全面)

自动控制原理实验 实验一 典型环节的电模拟及其阶跃响应分析 一、实验目的 ⑴ 熟悉典型环节的电模拟方法。 ⑵ 掌握参数变化对动态性能的影响。 二、实验设备 ⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。 ⑵ 数字万用表。 三、实验内容 1.比例环节的模拟及其阶跃响应 微分方程 )()(t Kr t c -= 传递函数 = )(s G ) () (s R s C K -= 负号表示比例器的反相作用。模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。 图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应 微分方程 )() (t r dt t dc T = 传递函数 s K Ts s G ==1)( 模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。 3.一阶惯性环节的模拟及其阶跃响应 微分方程 )()() (t Kr t c dt t dc T =+ 传递函数 1 )(+=TS K S G 模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃

响应曲线,并打印曲线。 4.二阶系统的模拟及其阶跃响应 微分方程 )()() (2)(2 22 t r t c dt t dc T dt t c d T =++ξ 传递函数 121 )(22++=Ts s T s G ξ2 2 2 2n n n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。 ⑵ T=2,ξ=0.5 时的阶跃响应曲线。 四、实验步骤 ⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。 ⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。 ⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。 五.实验预习 ⑴ 一、二阶系统的瞬态响应分析;模拟机的原理及使用方法(见本章附录)。 ⑵ 写出预习报告;画出二阶系统的模拟机排题图;在理论上估计各响应曲线。 六.实验报告 ⑴ 将每个环节的实验曲线分别整理在一个坐标系上,曲线起点在坐标原点上。分析各参数变化对其阶跃响应的影响,与估计的理论曲线进行比较,不符请分析原因。 ⑵ 由二阶环节的实验曲线求得σ﹪、t s 、t p ,与理论值进行比较,并分析σ﹪、t s 、t p 等和T 、ξ的关系。 实验二 随动系统的开环控制、闭环控制及稳定性 一.实验目的 了解开环控制系统、闭环控制系统的实际结构及工作状态;控制系统稳定的概念以及系统开环比例系数与系统稳定性的关系。 二.实验要求 能按实验内容正确连接实验线路,正确使用实验所用测试仪器,在教师指导下独立

自动控制原理实验指导书(2017-2018-1)

自动控制原理实验指导书 王娜编写 电气工程与自动化学院 自动化系 2017年11月 实验一控制系统的时域分析

[实验目的] 1、熟悉并掌握Matlab 操作环境和基本方法,如数据表示、绘图等命令; 2、掌握控制信号的拉氏变换与反变换laplace 和ilaplace ,控制系统生成模型的常用函数命令sys=tf(num,den),会绘制单位阶跃、脉冲响应曲线; 3、会构造控制系统的传递函数、会利用matlab 函数求取系统闭环特征根; 4、会分析控制系统中n ζω, 对系统阶跃、脉冲响应的影响。 [实验内容及步骤] 1、矩阵运算 a) 构建矩阵:A=[1 2;3 4]; B=[5 5;7 8]; 解: >> A=[1 2;3 4] A = 1 2 3 4 >>B=[5 5;7 8] B = 5 5 7 8 b) 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A 的特征值、特征多项式和特征向量. 解:>> A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4]; >> [V ,D]=eig(A) V = 0.4181 -0.4579 - 0.3096i -0.4579 + 0.3096i -0.6044 0.6211 -0.1757 + 0.2740i -0.1757 - 0.2740i 0.0504 0.5524 0.7474 0.7474 -0.2826 0.3665 -0.1592 - 0.0675i -0.1592 + 0.0675i 0.7432 D = 13.0527 0 0 0 0 -4.1671 + 1.9663i 0 0 0 0 -4.1671 - 1.9663i 0 0 0 0 2.1815 >> p=poly(A) p = -6.9000 -77.2600 -86.1300 604.5500 2. 基本绘图命令 a) 绘制余弦曲线y=cos(x),x ∈[0,2π] 解:>> x=linspace(0,2*pi); >> y=cos(x); >> plot(x,y)

相关主题
文本预览
相关文档 最新文档