当前位置:文档之家› 运放应用大全

运放应用大全

运放应用大全
运放应用大全

1?集成运算放大器的主要应用

集成运算放大器的两个输入端分别为同相输入端U p和反相输入端U N,这里的“同相”

和“反相”是集成运算放大器的输入电压与输出电压U o之间的相位关系,其符号及外观如

图1.1所示。从外部看,可以认为集成运算放大器是一个双端输入、单端输出、具有高差模

集成运算放大器加上负反馈回路,使其具有各种各样的特性,实现各种各样的电路功能。集成运算放大器的主要应用:

DC放大器----DC?低频信号的放大。

音频放大器----数十H z?数十kH z的低频信号的放大器。

视频放大器----数十H z?数十MH z的视频信号的放大器。

有源滤波器----低通滤波器、高通滤波器、带通滤波器、带阻滤波器。

模拟运算----模拟信号的加法、减法、微分、积分等运算。

信号的发生和转换----正弦波振荡电路、矩形波发生电路、电压比较器、电压一电流转换电路等。

2?集成运算放大器的主要性能指标

(1)开环差模增益A od

在集成运算放大器无外加反馈时的差模放大倍数称为开环差模增益,记作A°d。A od=^ u o/ △( U P-U N ),常用分贝(dB)表示,其分贝数为20lg|A°d|。通用型集成运算放大器A od通常在105左右或用102V/mV表示,即100dB左右。

(2)共模抑制比K CMR

共模放大倍数A oc如图2.1所示,A oc= △ u o/△ u ic。

共模抑制比等于差模放大倍数与共模放大倍数A oc之比的绝对值,即K cMR = |A od/A oc|,常用分贝表示,其数值为20lg K CMR。K CMR越大越好,K CMR越大对温度影响的抑制能力就越大。

K CMR =|A od/A oc|。K CMR越大越好,

K CMR越大对温度影响的抑制能力就越

大。

图2.1共模放大倍数持别晏示

⑶差模输入电阻r id

r id 是集成运算放大器两个输入端之间的差模输入电压变化量与由它所引起的差模输入 电流之比。r id 越大越好,从信号源索取的电流越小。

⑷输入失调电压U OS 及其温漂dU os /dT

由于集成运算放大器的输入级电路参数不可能绝对对称, 所以当输入电压为零时,输出

电压U o 不为零。U OS 是使输出电压为零时在输入端加的补偿电压。 U OS 越小越好,越小表

明电路参数对称性越好。 对于有外接调零电位器的集成运算放大器, 可以通过改变电位器滑

动端的位置使得零输入时输出为零。

dU OS / dT 是U OS 的温度系数,是衡量集成运算放大器温漂的重要参数,其数值越小, 表明集

成运算放大器的温漂越小。

⑸输入失调电流I OS 及其温漂dI OS / dT

1

OS 斗 1 Bl

_ 1

B2 |其中 1

B1、1

B2 是集成运算放大器输入级差放管的基极(栅级)偏置电

流, I OS 反映输入级差放管输入电流的不对称程度。 dl OS / dT 与dU OS / dT 的含义相类似。

l os 和dI OS /dT 越小,集成运算放大器质量越好。

(6)输入偏置电流I IB

I lB 是集成运算放大器输入级差放管的基极(栅级)偏置电流的平均值。即

I IB 越小,往往I O S 也越小。

U OS 、 dU OS / dT 、I OS 、dl OS / dT 、I IB 越 小,集成运算放大器

精度越高。

(7)最大共模输入电压U |cmax

U Icmax 是集成运算放大器两个输入端对地间所允许加的最大共模输入电压。

超出此共模

电压极限值,其共模抑制比将明显下降,

不能对差模信号进行放大。 这也是集成运算放大器

用于同相放大器时所允许的输入电压极限值。如图 2.2所示。

(8)最大差模输入电压U |d max

U Id max 是集成运算放大器同相输入端与反相输入端之间所允许加的最大差模输入电

IB

= 2(I BI I B 2),

I lB 越小,信号源内阻对集成运算放大器静态工作点影响越小;通常

持别提示

共模输

入电压

有最大

值不能

超过

差模输入电压有

最大值不能超过

(9) —3dB 带宽

f H f

H是使开环差模增益A od下降3dB(即下降到0.707倍)时的信号频率。

(10)增益带宽积GBW、单位增益带宽f c

GBW是开环差模增益A od与带宽f H的乘积,即GBW=A°d XT H是一个常数。f c是使开

环差模增益A od下降到0dB(即A od=1,失去放大能力)时的信号频率。

增益带宽积GBW或单位增

益带宽f c越高,集成运算

放大器就越适用于音频放

大器和视频放大器。

特别提示

(11)转换速率SR

SR=|dU O/dt|max,表示集成运算放大器对信号变化速率的适应能力,是衡量集成运算放大器在大幅值信号作用时工作速度的参数,常用每微秒输出电压变化多少伏来表示。当输入信号变化斜率的绝对值小于SR时。输出电压才能线性规律变化。信号幅值越大、频率越高,要求集成运算放大器的SR越大。

特别提示转换速率SR越大,输

出才能跟上频率高、幅

值大的输入信号的变

化,否则输入正弦波,

输出是三角波。如图

2.4所示。

(12)等效输入噪声电压密度e n、等效输入噪声电流密度i n、等效输入噪声电压峰一峰值e np-p、等效输入噪声电流峰一峰值i np-p用来描述集成运算放大器噪声的大小。噪声越小越好。

输入无信号时,输出有噪声电压,如

图2.5所示。将输出噪声电压折合到输入

端就是等效输入噪声电压。即使输入端加

上有用信号,输出的噪声电压依然存在。

集成运算放大器的e n、i n、e np-p、i np-p

(13)功耗P d

在额定电源电压及空载条件下,所消耗的电源总功率

Pd。

3?集成运算放大器按性能指标分类

按性能指标可分为通用型和特殊型两类。通用型集成运算放大器用于无特殊要求的电路

之中,其性能指标的数值范围如表 3.1所示。特殊型集成运算放大器为了适应各种特殊要求,某一方面性能特别突出,下面作一简单介绍。

参数单位数值范围

A od d

B 65 ?100

R id M Q0.5 ?2

U os MV 2?5

I OS g A 0.2 ?2

I IB g A 0.3 ?7

K CMR dB 70 ?90 单位增益带宽MH Z0.5 ?2

SR V/ g S 0.5 ?0.7

功耗mW 80 ?120

(1)高阻型

具有高输入电阻(r id)的集成运算放大器称为高阻型集成运算放大器。r id大于109Q,适

用于测量放大电路、信号发生电路等。

(2)高速型

增益带宽积和转换速率高的集成运算放大器为高速型集成运算放大器。它的种类很多,

增益带宽积多在10MH Z左右,有的高达千兆;转换速率大多在几十伏/微秒至几百伏/微秒,有的高达几千伏/微秒。适用于模一数转换器、数一模转换器、视频放大器等。

(3)高精度型

高精度型集成运算放大器具有低失调、低温漂、低噪声、高增益等特点,它的失调电压和失调电流比通用型集成运算放大器小两个数量级,而开环增益和共模抑制比均大于100dB。适用于对微弱信号的精密测量和运算,常用于高精度的仪器设备中。

(4)低功耗型

低功耗型集成运算放大器具有功耗低、工作电源电压低等特点,它们的功耗只有几毫瓦,

甚至更小,电源电压为几伏,而其他方面的性能不比通用型集成运算放大器差。适用于能源

有严格限制的情况,例如空间技术、军事科学及工业中的遥感遥测等领域。

(5)大功率型

一般通用型集成运算放大器的输出电流在24V

以上这是大功率型集成运算放大器。

4?集成运算放大器典型电路

(1)反相比例运算电路如图 4.1所示。

R f

U O U i

R

1

R2 = R // R f

电压跟随器如图 4.3所示。输

入电阻高,输出电阻小,放大倍数等于1。

电压跟随器,叱|=玛

图4.3

⑵同相比例运算电路如图 4.2所示。

10mA以内,输出电流在1A以上,电源电压持别捉乖

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。 二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用 图电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计

如图所示,恒流原理分析过程如下: U5B (上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A (上图中上边的运放)有: V5 V3=; 而 () 421 2020 V4-Vref V5V R R R ++? =; ()019 1819 0-V2 V3++?=R R R ; 有以上等式组合运算得:Vref V1 V2=- 当参考电压Vref 固定为时,电阻R30为Ωk ,电流恒定输出。 该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。 但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。

常见运放滤波电路

滤波电路 这节非常深入地介绍了用运放组成的有源。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。 这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。 这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意: 1. 滤波器的拐点(中心)频率 2. 滤波器电路的增益 3. 带通滤波器和带阻滤波器的的Q值 4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell) 不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。 3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性 3.1.1 低通滤波器 典型的低通滤波器如图十三所示。

运放参数详解-超详细

运放参数的详细解释和分析1—输入偏置电流和输入失调电 流 一般运放的datasheet中会列出众多的运放参数,有些易于理解,我们常关注,有些可能会被忽略了。在接下来的一些主题里,将对每一个参数进行详细的说明和分析。力求在原理和对应用的影响上把运放参数阐述清楚。由于本人的水平有限,写的博文中难免有些疏漏,希望大家批评指正。 第一节要说明的是运放的输入偏置电流Ib和输入失调电流Ios .众说周知,理想运放是没有输入偏置电流Ib和输入失调电流Ios .的。但每一颗实际运放都会有输入偏置电流Ib和输入失调电流Ios .我们可以用下图中的模型来说明它们的定义。 输入偏置电流Ib是由于运放两个输入极都有漏电流(我们暂且称之为漏电流)的存在。我们可以理解为,理想运放的各个输入端都串联进了一个电流源,这两个电流源的电流值一般为不相同。也就是说,实际的运入,会有电流流入或流出运放的输入端的(与理想运放的虚断不太一样)。那么输入偏置电流就定义这两个电流的平均值,这个很好理解。输入失调电流呢,就定义为两个电流的差。

说完定义,下面我们要深究一下这个电流的来源。那我们就要看一下运入的输入级了,运放的输入级一般采用差分输入(电压反馈运放)。采用的管子,要么是三级管bipolar,要么是场效应管FET。如下图所示,对于bipolar,要使其工作在线性区,就要给基极提供偏置电压,或者说要有比较大的基极电流,也就是常说的,三极管是电流控制器件。那么其偏置电流就来源于输入级的三极管的基极电流,由于工艺上很难做到两个管子的完全匹配,所以这两个管子Q1和Q2的基极电流总是有这么点差别,也就是输入的失调电流。Bipolar输入的运放这两个值还是很可观的,也就是说是比较大的,进行电路设计时,不得不考虑的。而对于FET输入的运放,由于其是电压控制电流器件,可以说它的栅极电流是很小很小的,一般会在fA级,但不幸的是,它的每个输入引脚都有一对ESD保护二极管。这两个二极管都是有漏电流的,这个漏电流一般会比FET的栅极电流大的多,这也成为了FET 输入运放的偏置电流的来源。当然,这两对ESD保护二极管也不可能完全一致,因此也就有了不同的漏电流,漏电流之差也就构成了输入失调电流的主要成份。

(整理)运算放大器基本电路大全

运算放大器基本电路大全 运算放大器电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告一、实验目的 1.了解运算放大器的特性和基本运算电路的组成; 2.掌握运算电路的参数计算和性能测试方法。 二、实验仪器及器件 1.数字示波器; 2.直流稳压电源; 3.函数信号发生器; 4.数字电路实验箱或实验电路板; 5.数字万用表; 6.集成电路芯片uA741 2块、电容0.01uF2个,各个阻值的电阻若干个。 三、实验内容 1、在面包板上搭接μA741的电路。首先将+12V和-12V直流电压正确接入μA741的Vcc+(7脚)和Vcc-(4脚)。 2、用μA741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。 3、用μA741组成积分电路,用示波器观察输入和输出波形,并做好记录。 四、实验原理 (1)集成运放简介 集成电路运算放大器(简称集成运放或运放)是一个集成的高增益直接耦合放大器,通过外接反馈网络可构成各种运算放大电路和其它应用电 路。集成运放uA741

uA741电路符号及引脚图 任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。 (a )电源端:通常由正、负双电源供电,典型电源电压为±15V 、 ±12V 等。如:uA741的7脚和4脚。 (b )输出端:只有一个输出端。在输出端和地(正、负电源公共端)之间获得输出电压。如:uA741的6脚。最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V ;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。这表明集成运放的输出电阻很小,带负载能力较强。 (c )输入端:分别为同相输入端和反相输入端。如:uA741的3脚和2脚。输入端有两个参数需要注意:最大差模输入电压V id max 和最大共模输入电压 V ic max 。 两输入端电位差称为“差模输入电压”V id :id V V V +-=- 。 两输入端电位的平均值,称为“共模输入电压”V ic : 任何一个集成运放,允许承受的V id max 和V ic max 都有一定限制。 两输入端的输入电流 i + 和 i - 很小,通常小于1?A ,所以集成运放的 输入电阻很大。 (2)集成运放的主要参数 集成运放的主要参数有:输入失调电压、输入失调电流、开环差模电压放大倍数、共模抑制比、输入电阻、输出电阻、增益-带宽积、转换速率和最大共模输入电压。其中最重要的是增益-带宽积、转换速率和最大共模输入电压三个参数,在应用集成运放时应特别注意。

2016东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心 实验报告 课程名称:模拟电子电路实验 第 1 次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化班 姓名:学号: 610142 实验室:实验组别: 同组人员:实验时间:2016年4月10日 评定成绩:审阅教师: 一、实验目的 1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法; 2.熟练掌握运算放大电路的故障检查和排除方法; 3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入 失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念; 4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;

5.掌握搭接放大器的方法及使用示波器测量输出波形。 二、预习思考 1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数 和极限参数,解释参数含义。

2.设计一个反相比例放大器,要求:|AV|=10,Ri>10K?,RF=100 k?,并用 multisim 仿真。 其中分压电路由100k?的电位器提供,与之串联的510?电阻起限流的作用。 3.设计一个同相比例放大器,要求:|AV|=11,Ri>10K?,RF=100 k?,并用 multisim 仿真。

三、 实验内容 1. 基本要求 内容一: 反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。 图 1.1 反相输入比例运算电路 LM324 管脚图 1) 图 1.1 中电源电压±15V ,R1=10k Ω,RF=100 k Ω,RL =100 k Ω,RP =10k//100k Ω。按图连接电路,输入直流信号 Ui 分别为-2V 、-0.5V 、0.5V 、2V ,用万用表测量对应不同 Ui 时的 Uo 值,列表计算 Au 并和理论值相比较。其中 Ui 通过电阻分压电路产生。 Ui/V Uo/V Au 测量值 理论值 -2 13.365 -6.6825 \

十一种经典运放电路分析

十一种经典运放电路分析 从虚断,虚短分析基本运放电路 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器: 传输文件进行[薄膜开关] 打样 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

实验 集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

经典运放电路分析

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接

近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖 丁解牛”了。 1)反向放大器: 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317 实现电路电压检测,并通过 三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1. 集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3 所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3 集成运算放大电路的结构组成集成运放的图形和文字符号如图3.4 所示。 图3.4 集成运放的图形和文字符号 其中“ -”称为反相输入端,即当信号在该端进入时,输出相位与输入相位相反;而 “+”称为同相输入端,输出相位与输入信号相位相同。 2. 集成运放的基本技术指标集成运放的基本技术指标如下。 ⑴输入失调电压U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃ )及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS,U OS 越小越好,一般约为0.5~5mV 。 ⑵开环差模电压放大倍数A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od。它是决定运放运算精度的重要因素,常用分贝(dB) 表示,目前最高值可 达140dB(即开环电压放大倍数达107)。 ⑶共模抑制比K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即K CMRR = A A od,其含义与差 动放大器中所定义的K CMRR 相同,高质量的运放K CMRR 可达160dB 。 ⑷差模输入电阻r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运放绝大部分接近理想运放。对于理想运放,A od、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能 力越强。理想集成运放r o趋于零。 其他参数包括输入失调电流I OS、输入偏置电流I B、输入失调电压温漂d UOS/d T 和输入失 调电流温漂d IOS/ d T、最大共模输入电压U Icmax、最大差模输入电压U Idmax 等,可通过器件

运放基本应用电路

运放基本应用电路 运放基本应用电路 运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。当反馈网络为线性 电路时可实现乘、除等模拟运算等功能。运算放大器可进行直流放大,也可进行交流放大。 R f 使用运算放大器时,调零和相位补偿是必 须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。U O 1.反相比例放大器 电路如图1所示。当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1 R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。 若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。 放大器的输入电阻为:R i ≈R 1 直流平衡电阻为:R P = R f // R 1 。 其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。 R 1的值应远大于信号源的 O 内阻。 2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻 很低的特点,广泛用于前置放大器。电路原理 图如图2所示。当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为: 1 111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。 同相放大器的输入电阻为:R i = r ic 其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。 若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。此时由于放大器几乎不从信号源吸取电流,因此 U 可视作电压源,是比较理想的阻抗变换器。 3.加(减)法器

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

相关主题
文本预览
相关文档 最新文档