当前位置:文档之家› (完整)经典的运算放大器基本电路大全,推荐文档

(完整)经典的运算放大器基本电路大全,推荐文档

(完整)经典的运算放大器基本电路大全,推荐文档
(完整)经典的运算放大器基本电路大全,推荐文档

运算放大器基本电路大全

我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电

所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节)

图一

通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。

1. 2 虚地

单电源工作的运放需要外部提供一个虚地,通常情况下,这个电压是VCC/2,图二的电路可以用来产生VCC/2的电压,但是他会降低系统的低频特性。

图二

R1 和R2 是等值的,通过电源允许的消耗和允许的噪声来选择,电容C1 是一个低通滤波器,用来减少从电源上传来的噪声。在有些应用中可以忽略缓冲运放。

在下文中,有一些电路的虚地必须要由两个电阻产生,但是其实这并不是完美的方法。在这些例子中,电阻值都大于100K,当这种情况发生时,电路图中均有注明。

1. 3 交流耦合

虚地是大于电源地的直流电平,这是一个小的、局部的地电平,这样就产生了一个电势问题:输入和输出电压一般都是参考电源地的,如果直接将信号源的输出接到运放的输入端,这将会产生不可接受的直流偏移。如果发生这样的事情,运放将不能正确的响应输入电压,因为这将使信号超出运放允许的输入或者输出范围。

解决这个问题的方法将信号源和运放之间用交流耦合。使用这种方法,输入和输出器件就都可以参考系统地,并且运放电路可以参考虚地。当不止一个运放被使用时,如果碰到以下条件级间的耦合电容就不是一定要使用:第一级运放的参考地是虚地

第二级运放的参考第也是虚地

这两级运放的每一级都没有增益。任何直流偏置在任何一级中都将被乘以增益,并且可能使得电路超出它的正常工作电压范围。

如果有任何疑问,装配一台有耦合电容的原型,然后每次取走其中的一个,观察电工作是否正常。除非输入和输出都是参考虚地的,否则这里就必须要有耦合电容来隔离信号源和运放输入以及运放输出和负载。一个好的解决办法是断开输入和输出,然后在所有运放的两个输入脚和运放的输出脚上检查直流电压。所有的电压都必须非常接近虚地的电压,如果不是,前级的输出就就必须要用电容做隔离。(或者电路有问题)

1. 4 组合运放电路

在一些应用中,组合运放可以用来节省成本和板上的空间,但是不可避免的引起相互之间的耦合,可以影响到滤波、直流偏置、噪声和其他电路特性。设计者通常从独立的功能原型开始设计,比如放大、直流偏置、滤波等等。在对每个单元模块进行校验后将他们联合起来。除非特别说明,否则本文中的所有滤波器单元的增益都是 1。

1. 5 选择电阻和电容的值

每一个刚开始做模拟设计的人都想知道如何选择元件的参数。电阻是应该用1 欧的还是应该用1 兆欧的?一般的来说普通的应用中阻值在K 欧级到100K 欧级是比较合适的。高速的应用中阻值在100 欧级到1K 欧级,但他们会增大电源的消耗。便携设计中阻值在1 兆级到10 兆欧级,但是他们将增大系统的噪声。用来选择调整电路参数的电阻电容值的基本方程在每张图中都已经给出。如果做滤波器,电阻的精度要选择1% E -96系列(参看附录A)。一但电阻值的数量级确定了,选择标准的E-12系列电容。

用E-24系列电容用来做参数的调整,但是应该尽量不用。用来做电路参数调整的电容不应该用5%的,应该用1%。

2.1 放大

放大电路有两个基本类型:同相放大器和反相放大器。他们的交流耦合版本如图三所示。对于交流电路,反向的意思是相角被移动180度。这种电路采用了耦合电容――Cin 。Cin被用来阻止电路产生直流放大,这样电路就只会对交流产生放大作用。如果在直流电路中,Cin被省略,那么就必须对直流放大进行计算。

在高频电路中,不要违反运放的带宽限制,这是非常重要的。实际应用中,一级放大电路的增益通常是100倍(40dB),再高的放大倍数将引起电路的振荡,除非在布板的时候就非常注意。如果要得到一个放大倍数比较的大放大器,用两个等增益的运放或者多个等增益运放比用一个运放的效果要好的多。

图三

2.2 衰减

传统的用运算放大器组成的反相衰减器如图四所示。

图四

在电路中R2要小于R1。这种方法是不被推荐的,因为很多运放是不适宜工作在放大倍数小于1倍的情况下。正确的方法是用图五的电路。

图五

在表一中的一套规格化的R3 的阻值可以用作产生不同等级的衰减。对于表中没有的阻值,可以用以下的公式计算

R3=(Vo/Vin)/(2-2(Vo/Vin))

如果表中有值,按以下方法处理:

为Rf和Rin在1K到100K之间选择一个值,该值作为基础值。

将Rin 除以二得到RinA 和RinB。

将基础值分别乘以1 或者2 就得到了Rf、Rin1 和Rin2,如图五中所示。

在表中给R3 选择一个合适的比例因子,然后将他乘以基础值。

比如,如果Rf是20K,RinA和RinB都是10K,那么用12.1K的电阻就可以得到-3dB的衰减。

表一

图六中同相的衰减器可以用作电压衰减和同相缓冲器使用。

图六

2.3 加法器

图七是一个反相加法器,他是一个基本的音频混合器。但是该电路的很少用于真正的音频混合器。因为这会逼近运放的工作极限,实际上我们推荐用提高电源电压的办法来提高动态范围。

同相加法器是可以实现的,但是是不被推荐的。因为信号源的阻抗将会影响电路的增益。

图七

2.4 减法器

就像加法器一样,图八是一个减法器。一个通常的应用就是用于去除立体声磁带中的原唱而留下伴音(在录制时两通道中的原唱电平是一样的,但是伴音是略有不同的)。

图八

2.5 模拟电感

图九的电路是一个对电容进行反向操作的电路,它用来模拟电感。电感会抵制电流的变化,所以当一个直流电平加到电感上时电流的上升是一个缓慢的过程,并且电感中电阻上的压降就显得尤为重要。

图九

电感会更加容易的让低频通过它,它的特性正好和电容相反,一个理想的电感是没有电阻的,它可以让直流电没有任何限制的通过,对频率是无穷大的信号有无穷大的阻抗。

如果直流电压突然通过电阻R1 加到运放的反相输入端上的时候,运放的输出将不会有任何的变化,因为这个电压同过电容C1 也同样加到了正相输出端上,运放的输出端表现出了很高的阻抗,就像一个真正的电感一样。

随着电容C1 不断的通过电阻R2 进行充电,R2上电压不断下降,运放通过电阻R1汲取电流。随着电容不断的充电,最后运放的两个输入脚和输出脚上的电压最终趋向于虚地(Vcc/2)。

当电容C1 完全被充满时,电阻R1 限制了流过的电流,这就表现出一个串连在电感中电阻。这个串连的电阻就限制了电感的Q 值。真正电感的直流电阻一般会比模拟的电感小的多。这有一些模拟电感的限制:

电感的一段连接在虚地上;

模拟电感的Q值无法做的很高,取决于串连的电阻R1;

模拟电感并不像真正的电感一样可以储存能量,真正的电感由于磁场的作用可以引起很高的反相尖峰电压,但是模拟电感的电压受限于运放输出电压的摆幅,所以响应的脉冲受限于电压的摆幅。

2.6 仪用放大器

仪用放大器用于需要对小电平信号直流信号进行放大的场合,他是由减法器拓扑而来的。仪用放大器利用了同相输入端高阻抗的优势。基本的仪用放大器如图十所示。

图十

这个电路是基本的仪用放大电路,其他的仪用放大器也如图中所示,这里的输入端也使用了单电源供电。这个电路实际上是一个单电源的应变仪。这个电路的缺点是需要完全相等的电阻,否则这个电路的共模抑制比将会很低。

图十中的电路可以简单的去掉三个电阻,就像图十一中的电路。

图十一

这个电路的增益非常好计算。但是这个电路也有一个缺点:那就是电路中的两个电阻必须一起更换,而且他们必须是等值的。另外还有一个缺点,第一级的运放没有产生任何有用的增益。

另外用两个运放也可以组成仪用放大器,就像图十二所示。

图十二

但是这个仪用放大器是不被推荐的,因为第一个运放的放大倍数小于一,所以他可能是不稳定的,而且Vin -上的信号要花费比Vin +上的信号更多的时间才能到达输出端。

这节非常深入地介绍了用运放组成的有源滤波器。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。

这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。

这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意:

1. 滤波器的拐点(中心)频率

2. 滤波器电路的增益

3. 带通滤波器和带阻滤波器的的Q值

4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)

不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。

3.1 一阶滤波器

一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性

3.1.1 低通滤波器

典型的低通滤波器如图十三所示。

图十三

3.1.2 高通滤波器

典型的高通滤波器如图十四所示。

图十四

3.1.3 文氏滤波器

文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。

图十五

3.2 二阶滤波器

二阶滤波电路一般用他们的发明者命名。他们中的少数几个至今还在使用。有一些二阶滤波器的拓扑结构可以组成低通、高通、带通、带阻滤波器,有些则不行。这里没有列出所有的滤波器拓扑结构,只是将那些容易实现和便于调整的列了出来。

二阶滤波器有40dB 每倍频的幅频特性。

通常的同一个拓扑结构组成的带通和带阻滤波器使用相同的元件来调整他们的Q 值,而且他们使滤波器在Butterworth 和Chebyshev 滤波器之间变化。必须要知道只有Butterworth 滤波器可以准确的计算出拐点频率,Chebyshev 和Bessell滤波器只能在Butterworth 滤波器的基础上做一些微调。

我们通常用的带通和带阻滤波器有非常高的Q 值。如果需要实现一个很宽的带通或者带阻滤波器就需要用高通滤波器和低通滤波器串连起来。对于带通滤波器的通过特性将是这两个滤波器的交叠部分,对于带阻滤波器的通过特性将是这两个滤波器的不重叠部分。

这里没有介绍反相 Chebyshev 和 Elliptic 滤波器,因为他们已经不属于电路集需要介绍的范围了。

不是所有的滤波器都可以产生我们所设想的结果――比如说滤波器在阻带的最后衰减幅度在多反馈滤波器中的会比在Sallen-Key 滤波器中的大。由于这些特性超出了电路图集的介绍范围,请大家到教科书上去寻找每种电路各自的优缺点。不过这里介绍的电路在不是很特殊的情况下使用,其结果都是可以接受的。

3.2.1 Sallen-Key滤波器

Sallen-Key 滤波器是一种流行的、广泛应用的二阶滤波器。他的成本很低,仅需要一个运放和四个无源器件组成。但是换成Butterworth 或Chebyshev 滤波器就不可能这么容易的调整了。请设计者参看参考条目【1】和参考条目【2】,那里介绍了各种拓扑的细节。

这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。

图十六

3.2.2 多反馈滤波器

多反馈滤波器是一种通用,低成本以及容易实现的滤波器。不幸的是,设计时的计算有些复杂,在这里不作深入的介绍。请参看参考条目【1】中的对多反馈滤波器的细节介绍。如果需要的是一个单位增益的Butterworth 滤波器,那么这里的电路就可以给出一个近似的结果。

图十七

3.2.3 双T滤波器

双T 滤波器既可以用一个运放也可仪用两个运放实现。他是建立在三个电阻和三个电容组成的无源网络上的。这六个元件的匹配是临界的,但幸运的是这仍是一个常容易的过程,这个网络可以用同一值的电阻和同一值的电容组成。用图中的公式就可以同时的将R3 和C3 计算出来。应该尽量选用同一批的元件,他们有非常相近的特性。

3.2.3.1 单运放实现

图十八

如果用参数非常接近的元件组成带通滤波器,就很容易发生振荡。接到虚地的电阻最好在E-96 1%系列中选择,这样就可以破坏振荡条件。

图十九

3.2.3.2 双运放实现

典型的双运放如图20到图22所示

图二十

图二十一

图二十二

精心收集:单电源供电时的运算放大器应用大全

单电源运算放大器应用集锦 (一):基础知识 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V 也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC -引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

(整理)运算放大器基本电路大全

运算放大器基本电路大全 运算放大器电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

单电源运放电路图集

单电源运放图集 前言 前段时间去福州出差,看到TI的《A Single-Supply Op-Amp Circuit Collection》这篇文章,觉得不错,就把它翻译了过来,希望能对大家有点用处。这篇文章没有介绍过多的理论知识,想要深究的话还得找其他的文章,比如象这里提到过的《Op Amps for Everyone》。我的E文不好,在这里要感谢《金山词霸》。 ^_^ 水平有限(不是客气,呵呵),如果你发现什么问题请一定指出,先谢谢大家了。 E-mail:wz_carbon@https://www.doczj.com/doc/b11006562.html, 王桢 10月29日

介绍 我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1. 1电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明V oh和V ol。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail的电压。虽然器件被指明是Rail-To -Rail的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。这样才能保证系统的功能不会退化,这是设计者的义务。1. 2虚地

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

LM324四运放集成电路图文详解

LM324四运放集成电路图文详解 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2。 图 1 图 2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用, 价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 1.反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大 等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是 消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。

2.同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。 电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 3.交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai 输入电阻高,运放 A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时 Rf=0 的情况,故各放大器电压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同

运算放大器地全参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RI RF 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益 共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV 。这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。 5. 输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB =2 1( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。 6. 输入失调电流I IO 输入失调电流可表示为 I IO =︱I IB -- I IB+∣ 在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。当I IO 流过信号源内阻时,产生输入失调电压。而且它也是温度的函数。 7. 差模输入电阻R ID 在一般应用电路中,输入阻抗是指差模输入电阻R ID 。它一般为100K Ω~1M Ω,高输入阻抗运算放大器的差模输入电阻可达1013Ω。 8. 温度漂移 输入失调电压、输入失调电流和输入偏置电流等参数均随温度、时间和电源等外界条件的变化而变化。其中输入偏置电流的变化是造成放大器温度漂移的主要原因。对于双极晶体管输入级运算放大器,输入偏置电流随温度上升而变小,数量级为nA 级。

运算放大器积分电路图

运算放大器积分电路图 原理图1 积分运算电路的分析方法与加法电路差不多,反相积分运算电路如图1所 示。根据虚地有, 于是 由此可见,输出电压为输入电压对时间的积分,负号表明输出电压和输入电压在相位上是相反的。 当输入信号是阶跃直流电压U I时,电容将以近似恒流的方式进行充电,输出 电压与时间成线性关系。即 例:在图1的积分器的输入端加入图2中给定输入波形,画出在此输入波形作用下积分器的输出波形,电容器上的初始电压为0。积分器的参数R=10kW、C=0.1mF。 图2给出了在阶跃输入和方波输入下积分器的输出波形。画出积分器输出波形,应对应输入波形,分段绘制。例如对于图2(a)阶跃信号未来之前是一段,阶跃信号到来之后是一段。 对图2(a),当t<t0时,因输入为0,输出电压等于电容器上的电压,初始值为0; 当t≥t0时,u I = -U I,积分器正向积分,输出电压 要注意,当输入信号在某一个时间段等于零时,参阅图2(b)的1ms~2ms、 3ms~4ms…各段。积分器的输出是不变的,保持前一个时间段的最终数值。因为虚地的原因,当输入为零时,积分电阻 R 两端无电位差,故R中无电流,因此 C 不能放电,故输出电压保持不变。 实际应用积分电路时,由于运放的输入失调电压、输入偏置电流和失调电流的影响,会出现积分误差;此外,积分电容的漏电流也是产生积分误差的原因之一。

(a) 阶跃输入信号(b)方波输入信号 图2 积分器的输入和输出波形 实际的积分电路,应当采用失调电压、偏置电流和失调电流较小的运放,并在同相输入端接入可调平衡电阻;选用泄漏电流小的电容,如薄膜电容、聚苯乙烯电容,可以减少积分电容的漏电流产生的积分误差。

ua741运算放大器

LM741/UA741运算放大器使用说明及应用 物理量的感测在一般应用中,经常使用各类传感器将位移、角度、压力、与流量等物理量转换为电流或电压信号,之后再由量测此电压电流信号间接推算出物理量变化,以达成感测、控制的目的。但有时传感器所输出的电压电流信号可能非常微小,以致信号处理时难以察觉其间的变化,故需要以放大器进行信号放大以顺利测得电流电压信号,而放大器所能达成的工作不仅是放大信号而已,尚能应用于缓冲隔离、准位转换、阻抗匹配、以及将电压转换为电流或电流转换为电压等用途。现今放大器种类繁多,一般仍以运算放大器(Operational Amplifier, Op Amp)应用较为广泛,本文即针对741运算放大器的使用加以说明。 1. 运算放大器简介ab126计算公式大全 放大器最初被开发的目的是运用于类比计算器之运算电路,其内部为复杂的集成电路(Integrated Circuit, IC),亦即在单一电子组件中整合了许多晶体管与二极管,图1为一般放大器之内部等值电路。 1. 运算放大器内部等值电路图 运算放大器属于使用反馈电路进行运算的高放大倍率型放大器,其放大倍率完全由外界组件所控制,透过外接电路或电阻的搭配,即可决定增益(即放大倍率)大小。图2为运算放大器于电路中的表示符号,可看出其包含两个输入端,其中(+)端为非反相(Non-Inverting)端,而(-)端称为反相(Inverting)端,运算放大器的作动与此二输入端差值有关,此差值称为「差动输入」。通常放大器的理想增益为无穷大,实际使用时亦往往相当高(可放大至105或106倍),故差动输入跟增益后输出比较起来几

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

运算放大器电路及版图设计报告

目录 摘要 (2) 第一章引言 (3) 第二章基础知识介绍 (4) 2.1 集成电路简介 (4) 2.2 CMOS运算放大器 (4) 2.2.1理想运放的模型 (4) 2.2.2非理想运算放大器 (5) 2.2.3运放的性能指标 (5) 2.3 CMOS运算放大器的常见结构 (6) 2.3.1单级运算放大器 (6) 2.3.2简单差分放大器 (6) 2.3.3折叠式共源共栅(Folded-cascode)放大器 (7) 2.4版图的相关知识 (8) 2.4.1版图介绍 (8) 2.4.2硅栅CMOS工艺版图和工艺的关系 (8) 2.4.3 Tanner介绍 (9) 第三章电路设计 (10) 3.1总体方案 (10) 3.2各级电路设计 (10) 3.2.1第三级电路设计 (10) 3.2.2第二级电路设计 (11) 3.2.3第一级电路设计 (12) 3.2.4三级运放整体电路图及仿真结果分析 (14) 第四章版图设计 (15) 4.1版图设计的流程 (15) 4.1.1参照所设计的电路图的宽长比,画出各MOS管 (15) 4.1.2 布局 (17) 4.1.3画保护环 (17) 4.1.4画电容 (17) 4.1.5画压焊点 (18) 4.2 整个版图 (19) 第五章 T-Spice仿真 (21) 5.1提取T-Spice文件 (21) 5.2用T-Spice仿真 (24) 5.3仿真结果分析 (26) 第六章总结 (27) 参考文献 (28)

摘要 本次专业综合课程设计的主要内容是设计一个CMOS三级运算跨导放大器,该放大器可根据不同的使用要求,通过开关的开和闭,选择单级、两级、三级组成放大器,以获得不同的增益和带宽。用ORCAD画电路图,设计、计算宽长比,仿真,达到要求的技术指标,逐级进行设计仿真。然后用L-Edit软件根据设计的宽长比画版图,最后通过T-Spice仿真,得到达到性能指标的仿真结果。 设计的主要结果归纳如下: (1)运算放大器的基本工作原理 (2)电路分析 (3)设计宽长比 (4)画版图 (5)仿真 (6)结果分析 关键词:CMOS运算跨导放大器;差分运放;宽长比;版图设计;T-Spice仿真

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

集成运算放大器IC的主要参数【经典】

集成运算放大器IC的主要参数 本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。 集成运放的参数较多,其中主要参数分为直流指标和交流指标。 其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 这里重点描述——直流指标 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k?或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

运算放大器常见问题

1.一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢? (1) 为芯片内部的晶体管提供一个合适的静态偏置。 芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地 线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分 析。 (2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡, 这也是其得名的原因。 2.同相比例运算放大器,在反馈电阻上并一个电容的作用是什么?? (1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。 (2)防止自激。 3.运算放大器同相放大电路如果不接平衡电阻有什么后果? (1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。 4.在运算放大器输入端上拉电容,下拉电阻能起到什么作用?? (1)是为了获得正反馈和负反馈的问题,这要看具体连接。比如我把现在输入电压信号,输出电 压信号,再在输出端取出一根线连到输入段,那么由于上面的那个电阻,部分输出信号通过该电 阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。因为信 号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。 5.运算放大器接成积分器,在积分电容的两端并联电阻RF 的作用是什么? (1) 泄放电阻,用于防止输出电压失控。 6.为什么一般都在运算放大器输入端串联电阻和电容? (1)如果你熟悉运算放大器的内部电路的话,你会知道,不论什么运算放大器都是由几个几个晶 体管或是MOS 管组成。在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时 候,会输出近似于正电压的电平,反之也一样……但这样运放似乎没有什么太大的用处,只有在 外接电路的时候,构成反馈形式,才会使运放有放大,翻转等功能…… 7.运算放大器同相放大电路如果平衡电阻不对有什么后果? (1)同相反相端不平衡,输入为0 时也会有输出,输入信号时输出值总比理论输出值大(或小) 一个固定的数。 (2)输入偏置电流引起的误差不能被消除。 8.理想集成运算放大器的放大倍数是多少输入阻抗是多少其同相输入端和反相输入端之间的电 压是多少? (1) 放大倍数是无穷大,输入阻抗是无穷小,同向输入和反向输入之间电压几乎相同(不是0

集成运放电路试题及答案.docx

第三章集成运放电路一、填空题 1、( 3-1,低)理想集成运放的 A =, K CMR =。 ud 2、( 3-1,低)理想集成运放的开环差模输入电阻ri=,开环差模输出电阻ro=。 3、( 3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或两种的状态。 4、( 3-1,低)集成运放工作在线形区的必要条件是___________。 5、( 3-1,难)集成运放工作在非线形区的必要条件是__________ ,特点是 ___________ ,___________。 6、( 3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。 7、( 3-2,低)反相输入式的线性集成运放适合放大(a.电流、 b.电压 )信号,同相输入式的线 性集成运放适合放大(a.电流、 b.电压 )信号。 8、(3-2,中)反相比例运算电路组成电压( a.并联、 b.串联)负反馈电路,而同相比例运算电 路组成电压( a.并联、 b.串联)负反馈电路。 9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。 ( 1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个 输入端的电位等于输入电压。 ( 2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 ( 3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻 中的电流。 ( 4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 10、( 3-2,难)分别填入各种放大器名称 (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 ( 3)运算电路可将三角波电压转换成方波电压。 ( 4)运算电路可实现函数Y= aX1+ bX 2+ cX3,a、 b 和 c 均大于零。 ( 5)运算电路可实现函数Y= aX1+ bX 2+ cX3,a、 b 和 c 均小于零。 113-3 12、( 3-3,中)在运算电路中,运算放大器工作在区;在滞回比较器中,运算放大器工作 在区。 13、( 3-3,中) _________ 和 _________是分析集成运算放大器线性区应用的重要依据。

常用运放IC lm567.pdf

LM567/LM567C Tone Decoder General Description The LM567and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband.The cir-cuit consists of an I and Q detector driven by a voltage con-trolled oscillator which determines the center frequency of the decoder.External components are used to indepen-dently set center frequency,bandwidth and output delay. Features n 20to 1frequency range with an external resistor n Logic compatible output with 100mA current sinking capability n Bandwidth adjustable from 0to 14% n High rejection of out of band signals and noise n Immunity to false signals n Highly stable center frequency n Center frequency adjustable from 0.01Hz to 500kHz Applications n Touch tone decoding n Precision oscillator n Frequency monitoring and control n Wide band FSK demodulation n Ultrasonic controls n Carrier current remote controls n Communications paging decoders Connection Diagrams Metal Can Package DS006975-1 Top View Order Number LM567H or LM567CH See NS Package Number H08C Dual-In-Line and Small Outline Packages DS006975-2 Top View Order Number LM567CM See NS Package Number M08A Order Number LM567CN See NS Package Number N08E May 1999 LM567/LM567C Tone Decoder ?1999National Semiconductor Corporation https://www.doczj.com/doc/b11006562.html,

相关主题
文本预览
相关文档 最新文档