当前位置:文档之家› 超声波无损检测基础原理

超声波无损检测基础原理

超声波无损检测基础原理
超声波无损检测基础原理

第1章绪论

1.1超声检测的定义和作用

指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。

作用:质量控制、节约原材料、改进工艺、提高劳动生产率

1.2超声检测的发展简史和现状

利用声响来检测物体的好坏

利用超声波来探查水中物体1910‘

利用超声波来对固体内部进行无损检测

1929年,前苏联Sokolov 穿透法

1940年,美国的Firestone 脉冲反射法

20世纪60年代电子技术大发展

20世纪70年代,TOFD

20世纪80年代以来,数字、自动超声、超声成像

我国始于20世纪50年代初范围

专业队伍理论及基础研究标准超声仪器

差距

1.3超声检测的基础知识

次声波、声波和超声波

声波:频率在20~20000Hz之间次声波、超声波

对钢等金属材料的检测,常用的频率为0.5~10MHz

超声波特点:

方向性好

能量高

能在界面上产生反射、折射、衍射和波型转换

穿透能力强

超声检测工作原理

主要是基于超声波在试件中的传播特性

声源产生超声波,采用一定的方式使超声波进入试件;

超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;

改变后的超声波通过检测设备被接收,并可对其进行处理和分析;

根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。

超声检测工作原理

脉冲反射法:

声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。

通常用来发现和对缺陷进行评估的基本信息为:

1、是否存在来自缺陷的超声波信号及其幅度;

2、入射声波与接收声波之间的传播时间;

3、超声波通过材料以后能量的衰减。

超声检测的分类

原理:脉冲反射、衍射时差法、穿透、共振法

显示方式:A 、超声成像(B C D P)

波型:纵波、横波、表面波、板波

按探头个数:单、双、多

按人工干预的程度分类:手工检测、自动检测

超声检测的优点

适用于金属、非金属和复合材料等多种制件的无损检测;

穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;

缺陷定位较准确;

对面积型缺陷的检出率较高;

灵敏度高,可检测试件内部尺寸很小的缺陷;

检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。

超声检测的局限性

对试件中的缺陷进行精确的定性、定量仍须作深入研究;

对具有复杂形状或不规则外形的试件进行超声检测有困难;

缺陷的位置、取向和形状对检测结果有一定影响;

材质、晶粒度等对检测有较大影响;

以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。

超声检测的适用范围

非常广

从检测对象的材料来说,可用于金属、非金属和复合材料;

从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;从检测对象的形状来说,可用于板材、棒材、管材等;

从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;

从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。

机械振动

物体(或物体的一部分)在某一中心位置两侧所做的往复运动,就叫做机械振动。

振动的基本概念

振动产生的必要条件:

物体一离开平衡位置就会受到回复力的作用;阻力要足够小。

振动的过程

物体(或质点)在受到一定力的作用下,将离开平衡位置,产生一个位移;该力消失后,在回复力作用下,它将向平衡位置运动,并且还要越过平衡位置移动到相反方向的最大位移位置,然后再向平衡位置运动。这样一个完整运动过程称为一个“循环”或叫一次“全振动”。

振动的分类

周期性振动:每经过一定时间后,振动体总是回复到原来的状态(或位置)的振动

非周期性振动:不具有上述周期性规律的振动

振动的表征参数

周期、频率(振动的快慢),振幅(振动的强弱)

振幅A ——振动物体离开平衡位置的最大距离,叫做振动的振幅,用A 表示。

周期T ——当物体作往复运动时完成一次全振动所需要的时间,称为振动周期,用T 表示。常用单位为秒(s )。对于非周期性振动,往复运动已不再是周期性的,但周期这个物理量仍然可以反映这种运动的往复情况。

频率f ——振动物体在单位时间内完成全振动的次数,称为振动频率,用f 表示。常用单位为赫兹(Hz ),1赫兹表示1秒钟内完成1次全振动,即1Hz=1次/秒。此外还有千赫(kHz ),兆赫(MHz )。

1、谐振动

回复力

振子在振动过程中,所受重力与支持力平衡,振子在离开平衡位置 O 点后,只受到弹簧的弹力作用,这个力的方向跟振子离开平衡位置的位移方向相反,总是指向平衡位置,所以称为回复力。 胡克定律

在弹簧发生弹性形变时,弹簧振子的回复力F 与振子偏离平衡位置的位移x 大小成正比,且方向总是相反,即: 谐振动举例:

谐振动的运动方程:

F kx

=-

谐振动:位移随时间的变化符合余弦(或正弦)规律的振动。

谐振动的特点:

1、回复力与位移成正比而方向相反,总是指向平衡位置。

2、是一种理想化的运动,振动过程中无阻力,所以振动系统机械能守恒。

3、谐振动的振幅、频率和周期保持不变,其频率为振动系统的固有频率,是最简单、最基本的一种振动,任何复杂的振动都可视为多个谐振动的合成

2、阻尼振动

谐振动是理想条件下的振动,即不考虑摩擦和其它阻力的影响。

任何实际物体的振动,总要受到阻力的作用。由于克服阻力做功,振动物体的能量不断减少。同时,由于在振动传播过程中,伴随着能量的传播,也使振动物体的能量不断地减少。不符合机械能守恒定律

振幅或能量随时间不断减少的振动称为阻尼振动。

超声探头晶片后粘贴阻尼块

3、受迫振动

受迫振动:物体受到周期性变化的外力作用时产生的振动。如缝纫机上缝针的振动,汽缸中活塞的振动和扬声器中纸膜的振动等。

受迫振动刚开始时情况很复杂,经过一段时间后达到稳定状态,变为周期性的谐振动。其振动频率与策动力频率相同,振幅保持不变。

受迫振动的振幅与策动力的频率有关。

共振:当策动力频率P与受迫振动物体固有频率相同时,振幅最大。

探头:使高频电脉冲的频率等于压电晶片的固有频率,从而产生共振,这时压电晶片的电声能量转换效率最高。

受迫振动物体受到策动力作用,不符合机械能守恒。

超声探头中的压电晶片在发射超声波时:

在高频电脉冲激励下产生受迫振动;

在起振后受到晶片背面吸收块的阻尼作用,因此又是阻尼振动

2.1.2 机械波

机械波的产生

振动的传播过程,称为波动。波动分为机械波和电磁波两大类。

机械波的产生与传播过程

如图1.3所示的固体弹性模型。质点间以弹性力联系在一起的介质称为弹性介质。(固体、液体、气体)

当外力F作用于质点A时,A就会离开平衡位置,这时A周围的质点将对A产生弹性力使A回到平衡位置。当A回到平衡位置时,具有一定的速度,由于惯性A不会停在平衡位置,而会继续向前运动,并沿相反方向离开平衡位置,这时A又会受到反向弹性力,使A又回到平衡位置,这样质点A在平衡位置来回往复运动,产生振动。与此同时,A周围的质点也会受到大小相等方向相反的弹性力的作用,使它们离开平衡位置,并在各自的平衡位置附近振动。这样弹性介质中一个质点的振动就会引起邻近质点的振动,邻近质点的振动又会引起较远质点的振动,于是振动就以一定的速度由近及远地传播开来,从而就形成了机械波。

液体和气体不能用上述弹性力的模型来描述,其弹性波是在受到压力时体积的收缩和膨胀产生的。

产生机械波的两个基本条件

(1)要有作机械振动的波源。

(2)要有能传播机械振动的弹性介质

互相关联,振动是产生机械波的根源,机械波是振动状态的传播。波动中介质各质点并不随波前进,而是按照与波源相同的振动频率在各自的平衡位置上振动,并将能量传递给周围的质点。因此,机械波的传播不是物质的传播,而是振动状态和能量的传播。

机械波的主要物理量

(1)周期T和频率f:为波动经过的介质质点产生机械振动的周期和频率,机械波的周期和频率只与振源有关,与传播介质无关。波动频率也可定义为波动过程中,任一给定点在1秒钟内所通过的完整波的个数,与该点振动频率数值相同,单位为赫兹(Hz)。

(2)波长:波经历一个完整周期所传播的距离,称为波长,用表示。同一波线上相邻两振动相位相同的质点间的距离即为波长。波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离。波长的常用单位为米(m)或毫米(mm)。

(3)波速C:波动中,波在单位时间内所传播的距离称为波速,用C表示。常用单位为米/秒(m/s)或千米/秒(km/s)。

波速、波长和频率的关系式:

波长与波速成正比,与频率成反比。当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。

波动方程

当振源作谐振动时,所产生的波是最简单最基本的波。假设某一机械波在理想无吸收的均匀介质中沿x 轴正向传播,如图1.4所示。波速为C,在波线上取O点为计算距离x的原点,设O点的振动方程为:

图2.6 波动方程推导图

当振动从O点传播到B点时,B点开始振动,由于振动从O点传播到B点需要时间x/c秒,因此B点的振动滞后于O点x/c秒。即B点在t时刻的位移等于O点在(tx/c)时刻的位移:

波动方程,描述了波动过程中波线上任意一点在任意时刻的位移情况。

2.2 波的类型

2.2.1 按波型分类

根据波动传播时介质质点的振动方向相对于波的传播方向的不同,可将波动分为多种波型,在超声检测中主要应用的波型有纵波、横波、表面波和板波等。

1、纵波L

?介质中质点的振动方向与波的传播方向互相平行的波,称为纵波,用L表示。

?纵波中介质质点受到交变拉压应力作用并产生伸缩形变,故纵波亦称为压缩波。而且,由于纵波中的质点疏密相间,故又称为疏密波。

?凡能承受拉伸或压缩应力的介质都能传播纵波。固体介质能承受拉伸或压缩应力,因此固体介质可以传播纵波。液体和气体虽然不能承受拉伸应力,但能承受压应力产生容积变化,因此液体和气体介质也可以传播纵波。

2、横波S(T)

?介质中质点的振动方向与波的传播方向互相垂直的波,称为横波,用S或T表示。

?横波中介质质点受到交变的剪切应力作用并产生切变形变,故横波又称为切变波。

?只有固体介质才能承受剪切应力,液体和气体介质不能承受剪切应力,故横波只能在固体介质中传播,不能在液体和气体介质中传播。

?机械波课件\g2wlkj-10\横波和纵波的传播.swf

2.2.1 按波型分类

3.表面波R

?当介质表面受到交变应力作用时,产生沿介质表面传播的波,称为表面波,常用R表示,如图1.7所示。表面波是瑞利1887年首先提出来的,因此表面波又称瑞利波。

?表面波在介质表面传播时,介质表面质点作椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于波的传播方向。椭圆运动可视为纵向振动与横向振动的合成,即纵波与横波的合成。因此表面波同横波一样只能在固体介质中传播,不能在液体或气体介质中传播。

时,质点的振幅就已经很小了。因此,一般认为,表面波检测只能发现距工件表面两倍波长深度内的缺陷。

2.2.1 按波型分类

4.板波

在板厚与波长相当的簿板中传播的波,称为板波。

根据质点的振动方向不同可将板波分为SH波和兰姆波。

(1)SH波:SH波是水平偏振的横波在簿板中传播的波。簿板中各质点的振动方向平行于板面而垂直于波的传播方向,相当于固体介质表面中的横波。

(2)兰姆波:兰姆波又分为对称型(S型)和非对称型(A型),如图1.9所示。

对称型(S型):簿板中心质点作纵向振动,上下表面质点作椭圆运动、振动相位相反并对称于中心。非对称型(A型):簿板中心质点作横向振动,上下表面质点作椭圆运动、相位相同,不对称。

2.2.1 按波型分类

超声检测中常用的波型

2.2.2 按波形分类

波的形状(波形)是指波阵面的形状。

?波阵面:同一时刻,介质中振动相位相同的所有质点所联成的面称为波阵面。

?波前:某一时刻,波动所到达的空间各点所联成的面称为波前。

波前是最前面的波阵面,是波阵面的特例。任意时刻,波前只有一个,而波阵面却有很多。

?波线:波的传播方向称为波线。

在各向同性的介质中,波线恒垂直于波阵面或波前。

2.2.2 按波形分类

?据波阵面形状不同,可以把不同波源发出的波分为平面波、柱面波和球面波。

2.2.3 按振动的持续时间分类

波源振动的持续时间长短,连续波/脉冲波。

1.连续波

波源持续不断地振动所辐射的波称为连续波,超声波穿透法检测常采用连续波。

2.脉冲波

波源振动持续时间很短(通常是微秒数量级),间歇辐射的波称为脉冲波。目前超声检测中广泛采用的就是脉冲波。

脉冲波的频谱

?一个脉冲波可以分解为多个不同频率的谐振波的叠加。傅立叶变换

将复杂振动分解为谐振动的方法,称为频谱分析。

?频谱分析结果

频谱特征量主要有峰值频率、频带宽度和中心频率

?2.3 波的叠加、干涉和衍射

?2.3.1 波的叠加与干涉

?1.波的叠加原理

?当几列波在同一介质中传播时,如果在空间某处相遇,则相遇处质点的振动是各列波引起振动的合成,在任意时刻该质点的位移是各列波引起位移的矢量和。几列波相遇后仍保持自己原有的频率、波长、振动方向等特性并按原来的传播方向继续前进,好象在各自的途中没有遇到其他波一样,这就是波的叠加原理,又称波的独立性原理。如:

?2.波的干涉

?两列频率相同,振动方向相同,位相相同或位相差恒定的波相遇时,介质中某些地方的振动互相加强,而另一些地方的振动互相减弱或完全抵消的现象叫做波的干涉现象。产生干涉现象的波叫相干波,其波源称为相干波源。

?波的叠加原理是波的干涉现象的基础,波的干涉是波动的重要特征。在超声检测中,由于波的干涉,使超声波源附近出现声压极大极小值。

?3.机械波课件\g2wlkj-10\波的叠加和干涉.swf

?波的干涉计算

?现在讨论在空间某点P发生干涉加强或减弱的条件。波的干涉计算用图如下图所示。

?

?

?

?

?

?

?

?

?

?

?设有两个相干波源,它们的振动表达式分别为:

?

?

?

?合振动振幅的表达式:

?

?

?结论:

?(1)当两相干波的波程差等于波长的整数倍时,二者互相加强,合振幅达最大值。

?(2)当两相干波的波程差等于半波长的奇数倍时,二者互相抵消,合振幅达最小值。若A1=A2,则

A=0,即二者完全抵消。

2.4 超声波的传播速度

超声波在介质中的传播速度是表征介质声学特性的重要参数。

?超声波在介质中的传播速度与介质的弹性模量和密度有关。对特定的介质,弹性模量和密度为常数,故声速也是常数。不同的介质,有不同的声速。

?超声波波型不同时,介质弹性变形型式不同,声速也不一样。

2.4.1 固体介质中的声速

1.无限大固体介质中的声速

无限大固体介质是相对于波长而言的,当介质的尺寸远大于波长时,就可以视为无限大介质。

?在无限大的固体介质中,纵波声速为:

?在无限大的固体介质中,横波声速为:

?在无限大的固体介质中,表面波声速为:

所有固体介质的泊松比都在0~0.5之间。

(1)固体介质中的声速与介质的密度和弹性模量等有关,不同的介质,声速不同;介质的弹性模量愈大,密度愈小,则声速愈大。

(2)声速还与波的类型有关,在同一固体介质中,纵波、横波和表面波的声速各不相同,并且相互之间有以下关系:

CL>CS>CR

在同一种固体材料中,纵波声速大于横波声速,横波声速又大于表面波声速。

对于钢材1.8:1:0.9

2.4.1 固体介质中的声速

2.细长棒中的纵波声速在细长棒中(棒径d≤)轴向传播的纵波声速与无限大介质中纵波声速不同,细

长棒中的纵波声速为:

3.固体介质中声速与温度、应力、均匀性的关系

?固体介质中的声速与介质温度、应力、均匀性有关。一般固体中的声速随介质温度升高而降低。?固体介质的应力状况对声速有一定的影响,一般应力增加,声速增加,但增加缓慢。

?固体材料组织均匀性对声速的影响在铸铁中表现较为突出。铸铁表面与中心,由于冷却速度不同而具有不同的组织,表面冷却快,晶粒细,声速大;中心冷却慢,晶粒粗,声速小。此外,铸铁中石墨含量和尺寸对声速也有影响,石墨含量和尺寸增加,声速减少。

2.4.1 固体介质中的声速

4.兰姆波声速

?兰姆波分为对称型(S)和非对称型(A)两类。由于兰姆波传播时受到上下界面的影响,因此其声速与纵波、横波、表面波不同,它不仅与介质的性质有关,而且与板厚、频率等有关。对于特定的板厚和频率组合,还可有多个对称型和非对称型的振动模式,每个模式具有不同的波速。

?兰姆波声速分为相速度和群速度。

相速度是振动相位传播的速度,是对单一频率连续谐振波定义的传播速度,

群速度是指多个相差不多的频率的波在同一介质中传播时互相合成后的包络线的传播速度。

?兰姆波声速的有关因素与f·d、Cs、Cl有关。

对于确定的介质,Cs、Cl为定值,因此Cp仅是f·d的函数。对于某一个Cp值对应有无数个f·d值。

当f·d一定时,不同类型的兰姆波相速度Cp不同

当f·d一定时,不同类型的兰姆波群速度Cg不同

2.4.2 液体、气体介质中的声速

1.液体、气体中声速公式

由于液体和气体只能承受压应力,不能承受剪切应力,因此液体和气体介质中只能传播纵波,不能传播横波和表面波。液体和气体中的纵波波速为:

液体、气体介质中的纵波声速与其容变弹性模量和密度有关,介质的容变弹性模量愈大、密度愈小,声速就愈大。

2.液体介质中的声速与温度的关系

几乎除水以外的所有液体,当温度升高时,容变弹性模量减小,声速降低。唯有水例外,温度在74℃左右时声速达最大值,当温度低于74℃时,声速随温度升高而增加;当温度高于74℃时,声速随温度升高而降低。

CL=1557-0.0245(74-t)2

2.4.3 声速的测量

1.超声检测仪器测量法

对检测人员来说,用检测仪器测量声速是最简便的。用这种方法测量,可用单探头反射法,也可用双探头穿透法。可用于测量纵波声速,也可用于测量横波声速。

(1)检测仪按时间刻度:

(2)检测仪按深度刻度:对比法

精度不高,误差分析

2.4.3 声速的测量

2.测厚仪测量法

常用测厚仪分为共振式和脉冲反射式两种,利用这两种测厚仪来测量声速的方法有所不同。

(1)共振式测厚仪:

(2)脉冲反射式测厚仪:

2.5超声场的特征值

?充满超声波的空间或超声振动所波及的部分介质,叫超声场。

?超声场具有一定的空间大小和形状,只有当缺陷位于超声场内时,才有可能被发现。

?描述超声场的特征值(即物理量)主要有声压、声强和声阻抗。

2.4.1 固体介质中的声速

1.无限大固体介质中的声速

无限大固体介质是相对于波长而言的,当介质的尺寸远大于波长时,就可以视为无限大介质。

?在无限大的固体介质中,纵波声速为:

?在无限大的固体介质中,横波声速为:

?在无限大的固体介质中,表面波声速为:

所有固体介质的泊松比都在0~0.5之间。

(1)固体介质中的声速与介质的密度和弹性模量等有关,不同的介质,声速不同;介质的弹性模量愈大,密度愈小,则声速愈大。

(2)声速还与波的类型有关,在同一固体介质中,纵波、横波和表面波的声速各不相同,并且相互之间有以下关系:

CL>CS>CR

在同一种固体材料中,纵波声速大于横波声速,横波声速又大于表面波声速。

对于钢材1.8:1:0.9

2.4.1 固体介质中的声速

2.细长棒中的纵波声速在细长棒中(棒径d≤)轴向传播的纵波声速与无限大介质中纵波声速不同,细

长棒中的纵波声速为:

2.4.1 固体介质中的声速

3.固体介质中声速与温度、应力、均匀性的关系

?固体介质中的声速与介质温度、应力、均匀性有关。一般固体中的声速随介质温度升高而降低。?固体介质的应力状况对声速有一定的影响,一般应力增加,声速增加,但增加缓慢。

?固体材料组织均匀性对声速的影响在铸铁中表现较为突出。铸铁表面与中心,由于冷却速度不同而具有不同的组织,表面冷却快,晶粒细,声速大;中心冷却慢,晶粒粗,声速小。此外,铸铁中石墨含量和尺寸对声速也有影响,石墨含量和尺寸增加,声速减少。

2.4.1 固体介质中的声速

4.兰姆波声速

?兰姆波分为对称型(S)和非对称型(A)两类。由于兰姆波传播时受到上下界面的影响,因此其声速与纵波、横波、表面波不同,它不仅与介质的性质有关,而且与板厚、频率等有关。对于特定的板厚和频率组合,还可有多个对称型和非对称型的振动模式,每个模式具有不同的波速。

?兰姆波声速分为相速度和群速度。

相速度是振动相位传播的速度,是对单一频率连续谐振波定义的传播速度,

群速度是指多个相差不多的频率的波在同一介质中传播时互相合成后的包络线的传播速度。

?兰姆波声速的有关因素与f·d、Cs、Cl有关。

对于确定的介质,Cs、Cl为定值,因此Cp仅是f·d的函数。对于某一个Cp值对应有无数个f·d值。

当f·d一定时,不同类型的兰姆波相速度Cp不同

当f·d一定时,不同类型的兰姆波群速度Cg不同

1.液体、气体中声速公式

由于液体和气体只能承受压应力,不能承受剪切应力,因此液体和气体介质中只能传播纵波,不能传播横波和表面波。液体和气体中的纵波波速为:

液体、气体介质中的纵波声速与其容变弹性模量和密度有关,介质的容变弹性模量愈大、密度愈小,声速就愈大。

2.液体介质中的声速与温度的关系

几乎除水以外的所有液体,当温度升高时,容变弹性模量减小,声速降低。唯有水例外,温度在74℃左右时声速达最大值,当温度低于74℃时,声速随温度升高而增加;当温度高于74℃时,声速随温度升高而降低。

CL=1557-0.0245(74-t)2

2.4.3 声速的测量

1.超声检测仪器测量法

对检测人员来说,用检测仪器测量声速是最简便的。用这种方法测量,可用单探头反射法,也可用双探头穿透法。可用于测量纵波声速,也可用于测量横波声速。

(1)检测仪按时间刻度:

(2)检测仪按深度刻度:对比法

精度不高,误差分析

2.4.3 声速的测量

2.测厚仪测量法

常用测厚仪分为共振式和脉冲反射式两种,利用这两种测厚仪来测量声速的方法有所不同。

(1)共振式测厚仪:

(2)脉冲反射式测厚仪:

3.示波器测量法

2.6 超声波垂直入射到界面时的反射和透射

?超声波从一种介质传播到另一种介质时,在两种介质的分界面上,一部分能量反射回原介质内,称反射波;

?另一部分能量透过界面在另一种介质内传播,称透射波。

?在界面上声能(声压、声强)的分配和传播方向的变化都将遵循一定的规律。

2.6.1 单一平界面的反射率与透射率

当超声波垂直入射到光滑平界面时,将在第一介质中产生一个与入射波方向相反的反射波,在第二介质中产生一个与入射波方向相同的透射波。

?设入射波的声压为P0(声强为I0)、反射波的电压为Pr(声强为Ir)、透射波的声压为Pt(声强为It)。

界面上反射波声压P与入射波声压P0之比称为界面的声压反射率,用r表示,即r=Pr/P0。

界面上透射波声压Pt与入射波声压P0之比称为界面的声压透射率,用t表示,即t=Pt/P0。

?在界面两侧的声波,必须符合下列两个条件:

(1)界面两侧的总声压相等,即p0+pr=pt。(相位关系,力平衡)

(2)界面两侧质点振动速度幅值相等,即(p0-pr)/Z1=pt/Z2(能量平衡)

?由上述两边界条件和声压反射率、透射率定义得:

?解上述联立方程得声压反射率r和透射率t分别为:

2.6.1 单一平界面的反射率与透射率

?界面上反射波声强Ir与入射波声强I0之比称为声强反射率,用R表示。

界面上透射波声强It与入射波声强I0之比称为声强透射率,用T表示。

?超声波垂直入射到平界面上时,声压或声强的分配比例仅与界面两侧介质的声阻抗有关。由以上几式可以导出:

T+R=1 t-r=1

2.6.1 单一平界面的反射率与透射率

讨论:

当Z2>Z1时,如水/钢

当Z1>Z2时,如钢/水

当Z1>>Z2时,(如钢/空气界面)

当Z1≈Z2时,如普通碳钢焊缝的母材与填充金属之间

2.6.1 单一平界面的反射率与透射率

?以上讨论为超声波纵波垂直到单一平界面上的声压、声强反射率和透射率

?同样适用于横波入射的情况,但必须注意的是在固体/液体或固体/气体界面上,横波全反射。因为横波不能在液体和气体中传播。

2.6.2薄层界面的反射率与透射率

?超声检测时,经常遇到耦合层和缺陷薄层等问题,这些都可归结为超声波在薄层界面的反射和透射问题。此时,超声波是由声阻抗为Z1的第一介质入射到Z1和Z2界面,然后通过声阻抗为Z2的第二介质薄层射到Z2和Z3界面,最后进入声阻抗为Z3的第三介质。

?超声波通过一定厚度的异质薄层时,反射和透射情况与单一的平界面不同。异质薄层很薄,进入薄层内的超声波会在薄层两侧界面引起多次反射和透射,形成一系列的反射波和透射波薄层界面反射透射示意图

?超声波通过异质薄层时的声压反射率和透射率不仅与介质声阻抗和薄层声阻抗有关,而且与薄层厚度同其波长之比d2/λ2有关

2.6.2薄层界面的反射率与透射率

1.均匀介质中的异质薄层(Z1=Z3≠Z2)

?(1)当(n为整数)时,。这说明当薄层两侧介质声阻抗相等,薄层厚度为其半波长的整数倍时,超声波全透射,几乎无反射,好象不存在异质薄层一样。这种透声层常称为半波透声层。

?(2)(n为整数)时,即异质薄层厚度等于其四分之一波长的奇数倍时,声压透射率最低,声压反射率最高。

?图2-37与图2-38

2.薄层两侧介质不同的双界面

?(1)当(n为整数)时,。这说明超声波垂直入射到两侧介质声阻抗不同的薄层时,若薄层厚度等于半波长的整数倍,则通过薄层的声强透射率与薄层的性质无关,好象不存在薄层一样

?(2)(n为整数)时,且时,此时T=1,即声强透射率等于1,超声波全透射。直探头保护膜的设计

2.6.3 声压往复透射率

?在超声波单探头检测中,探头兼作发射和接收超声波。探头发出的超声波透过界面进入工件,在固/气底面产生全反射后再次通过同一界面被探头接收

?这时探头接收到的回波声压与入射波声压之比,称为声压往复透射率T往

?声压往复透射率与界面两侧介质的声阻抗有关,与从何种介质入射到界面无关。界面两侧介质的声阻抗相差愈小,声压往复透射率就愈高,反之就愈低。

?往复透射率高低直接影响检测灵敏度高低,往复透射率高,检测灵敏度高。反之,检测灵敏度低。

2.7 超声波倾斜入射到界面时的反射和折射

2.7.1 波型转换与反射、折射定律

?当超声波倾斜入射到界面时,除产生同种类型的反射和折射波外,还会产生不同类型的反射和折射波,这种现象称为波型转换

2.7.1 波型转换与反射、折射定律

当超声波垂直入射到光滑平界面时,将在第一介质中产生一个与入射波方向相反的反射波,在第二介质中产生一个与入射波方向相同的透射波。

1.纵波斜入射

当纵波L倾斜入射到界面时,除产生反射纵波L′和折射纵波L″外,还会产生反射横波S′和折射横波S″,如图1.30(a)所示。各种反射波和折射波方向符合反射、折射定律:

由于在同一介质中纵波波速不变,因此。又由于在同一介质中纵波波速大于横波波速,因此

(1)第一临界角

(2)第二临界角αⅡ:

2.7.1 波型转换与反射、折射定律

由αⅠ和αⅡ的定义可知:

①< αⅠ时,第二介质中既有折射纵波L″又有折射横波S″。

②αⅠ~αⅡ时,第二介质中只有折射横波S″,没有折射纵波L″,这就是常用横波探头制作和横

波检测的原理。

?≥αⅡ时,第二介质中既无折射纵波L″,又无折射横波S″。这时在其介质的表面存在表面波R,这就是常用表面波探头的制作原理。

例如,纵波倾斜入射到有机玻璃/钢界面时,有机玻璃中cL1=2730m/s,水中cL1=1480m/s,钢中:cL2=5900m/s,cS2=3230m/s。则第一、二临界角分别为:

由此可见有机玻璃横波探头楔块角度

有机玻璃表面波探头楔块角度≥。

2.7.1 波型转换与反射、折射定律

2.横波斜入射

当横波倾斜入射到界面时,同样会产生波型转换

增加到一定程度时,=90°,在第一介质中只有反射横波,没有反射纵波,即横波全反射,这时所对应的横波入射角称为第三临界角,用αⅢ表示

对于钢:cL1=5900m/s,CS1=3230m/s ,αⅢ

当≥33.2°时,钢中横波全反射。

2.7.2 声压反射率

1.纵波倾斜入射到钢/空气界面的反射

纵波倾斜入射,当左右时产生一个较强的变型反射横波。

2.横波倾斜入射到钢/空气界面的反射

当左右时,很低,较高。

当≥33.2°时,即钢中横波全反射

2.7.3 声压往复透射率

?超声检测中,常常采用反射法,超声波往复透过同一探侧面,因此声压往复透射率更具有实际意义。

超声波倾斜入射,折射波全反射,探头接收到的回波声压Pa 与入射波声压P0之比称为声压往复透射率,常用T表示,T=Pa/P0。

图2-45

图2-46

2.7.4 端角反射

?超声波在两个平面构成的直角内的反射叫做端角反射。在端角反射中,超声波经历了两次反射,当不考虑波型转换时,二次反射回波与入射波互相平行,即

?回波声压Pa与入射波声压P0之比称为端角反射率,用T端表示。

(1)纵波入射时,端角反射率都很低,这是因为纵波在端角的两次反射中分离出较强的横波。

(2)横波入射时,入射角或附近时,端角反射率最低。

时,端角反射率达100%。

?2.8超声波的聚焦与发散

?2.8.1 声压距离公式

?为了便于讨论,不考虑波型转换行为。

?1 .平面波

?平面波波束不扩散,而是互相平行,因此声压不随距离而变化。

?2. 球面波

?

?

?3. 柱面波

?柱面波的波阵面为同轴柱面,柱面波声场中某处质点的振幅与该点至波源的距离的平方根成反比,而声压与振幅成正比,因此柱面波的声压与距离的平方根成反比。

?2.8.2 球面波在平界面上的反射与折射

?1.单一的平界面上的反射

?

?2.双界面的反射

?前壁各次反射波声压比为

?

?后壁各次波的声压比

?

?实际检测中,当d较大时,超声波探头发出的超声波可视为球面波,示波屏上各次底面反射波的高度之比近似符合的规律

?2.8.2 球面波在平界面上的反射与折射

?3.单一平界面上的折射

?球面波入射到平界面上时,其折射波不再是严格的球面波了。只有当其张角较小时,可视为近似的球面波,图2-51

?折射波声压

?

?2.8.3平面波在曲界面上的反射与折射

?当平面波入射到曲界面上时,其反射波将发生聚焦或发散。

?

?反射波的聚焦或发散与曲面的凹凸(从入射方向看)有关。凹曲面的反射波聚焦,凸曲面的反射波发散。

?

?(1)平面波入射到球面时,其反射波可视为从焦点发出的球面波。

?

?(2)平面波入射到柱面时,其反射波可视为从焦轴发出的柱面波。

?

?实际检测中球形、柱形气孔的反射就属于以上两种情况

?

?2.8.3平面波在曲界面上的反射与折射

?2.平面波在曲界面上的折射

?平面波入射到曲界面上时,其折射波也将发生聚焦或发散,如图1.46。

?折射波的聚焦或发散不仅与曲面的凹凸有关,而且与界面两侧介质的波速有关。

?对于凹透镜,当c1c2时发散;

?对于凸透镜,当c1>c2时聚焦,当c1

?根据折射定理作图即可

?

?(1)平面波入射至球面透镜时

?

?(2)平面波入射到柱面透镜

?2.8.4球面波在曲界面上的反射和折射

?1.球面波在曲界面上的反射

?球面波入射到曲界面上,其反射波将发生聚焦或发散,如图1.47。凹曲面的反射波聚焦,凸曲面的反射波发散。

?(1)球面波在球面上的反射波

?(2)球面波在柱面上的反射波

?(图1.49)超声波径向检测空心圆柱体的情况,类似于球面波在凸柱面上的反射,反射波发散。

圆柱面上入射点处的反射回波声压总是低于同距离的平底面的反射声压

?2.球面波在曲界面上的折射

?球面波入射到曲界面上,其折射波同样会发生聚焦和发散

?球形界面:

?柱形界面:

?水浸检测柱形或球形工件聚焦检测

?2.9超声波的衰减

?超声波在介质中传播时,随着距离增加,超声波能量逐渐减弱的现象叫做超声波衰减。

?衰减的原因

?波束扩散、晶粒散射和介质吸收

? 1.扩散衰减

?

? 2.散射衰减

?

? 3.吸收衰减

?

?通常所说的介质衰减是指吸收衰减与散射衰减,不包括扩散衰减。

?1.衰减方程

?平面波

?

?

?

?2.衰减系数

?衰减系数α只考虑了介质的散射和吸收衰减,未涉及扩散衰减。对于金属材料等固体介质而言,介质衰减系数α等于散射衰减系数和吸收衰减系数之和。

?

?

?(1)介质的吸收衰减与频率成正比。

?(2)介质的散射衰减与f、d、F有关在实际检测中,当介质晶粒较粗大时,若采用较高的频率,将会引起严重衰减这就是晶粒较大的奥氏体钢和一些铸件检测的困难所在。

?(3)对于液体介质而言,主要是介质的吸收衰减。

?

?2.9.3衰减系数的测定

?薄板工件衰减系数的测定

?

?

?厚板或粗圆柱体衰减系数的测定

?

超声波探伤仪检测原理

超声波探伤仪检测原理

1、超声波探伤仪原理超声检测1、什么是无损探伤/无损检测?:(1)无损探伤是在不损坏工件或原材料工作状态的前提下,包装机械对被检验部件的表面和内部质量进行检查的一种测试手段。(2)无损检测: Nondestructive Testing(缩写 NDT) 2、常用的探伤方法有哪些?答:无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:常规无损检测方法有:-超声检测 Ultrasonic Testing(缩写 UT);-射线检测Radiographic Testing(缩写RT);-磁粉检测Magnetic particle Testing(缩写 MT);-渗透检验 Penetrant Testing(缩写 PT);-涡流检测Eddy current Testing(缩写 ET);非常规无损检测技术有:-声发射Acoustic Emission(缩写 AE);-泄漏检测Leak Testing(缩写 UT);-光全息照相Optical Holography;-红外热成象Infrared Thermography;-微波检测 Microwave Testing 3、超声波探伤的基本原理是什么?答:超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。代孕脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射(见图1 ),反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 4、超声波探伤与X射线探伤相比较有何优的缺点?答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对

简述全自动超声波无损检测方法

简述全自动超声波无损检测方法 摘要:全自动超声波检测技术(AUT)对于提高无损检测效率、保证无损检测质量,节约工程成本有着重要的意义,通过对AUT检测的特点,与传统检测手段进行了对比分析,阐述工程无损检测中AUT检测的通用做法。 关键词:全自动超声环焊缝检测 引言:AUT检测技术是一种新型的无损检测技术,在近几年的推广使用过程中得到了工程质检方的认可,在使用过程中各公司做法不一,本文通过多年AUT 检测工程应用经验总结归纳了AUT检测通用做法。 1、AUT检测方法适用范围 本文论述了环向焊缝全自动超声检测的要求。在AUT检测所得到结论的基础上分析评定环焊缝。根据工程临界判别法(ECA)来最终确定检测验收标准。 2 AUT检测方法步骤 2.1 外观检查 工程现场所有待检环焊缝在焊接完成后都要进行三方(监理、施工、检测)外观检查并且按照AUT检测相应标准的要求进行评定。 所有坡口应在机加工后进行焊接,并且确保焊接符合焊接工艺的要求,随后AUT全自动超声波检测应结合画参考线一起进行。 2.2 超声波检测 工程现场的所有环焊缝的全自动超声检测都要在整个焊缝圆周方向上进行,并按相应的验收标准进行评定。 3 超声波检测系统 AUT检测系统应该提供足够的检测通道的数量,保证仅扫查环焊缝一周,就可对该焊缝整个厚度上的所有区域进行全面检测。所有被选通道都应能显示一个线性A型扫查显示。检测的通道应该能按照通常如图1所示的检测区域评估被检焊缝。仪器的线性应按照相应标准来确定,每6个月测定一次。仪器的误差应该不大于实际满幅高的5%。这一条件应该适用于对数放大器及线性放大器。每一个检测的通道都应可以选择脉冲反射法或者直射法。每一个检测通道的闸门位置及两个闸门之间的最小跨度和增益都是可选择的。记录电位也是可以选择的,以显示记录的波幅和传播时间位于满幅高0~100%之间的信号。对于B扫查或者图像显示的资料记录也应该为0~100%。对于每个门都有两个可记录的输出信号。无论是模拟信号还是数字信号都包括信号的高度和渡越时间。它们都适于多通道记录仪或计算机数据采集软件的显示。 4 AUT的系统设置 4.1 AUT探头及探头灵敏度的确定 在工程现场的检测中用AUT对比试块选定该检测系统的合适当量。每个AUT 检测探头固定在扫查架相应位置上,保证中心距满足要求。分别调整扫查架上探头的位置、角度和激活晶片数,使所有探头在标准试块上的主反射体的信号都达到最大值。把所有检测探头的峰值信号都设置到仪器满屏的80%,此时显示的灵敏度数值就是该探头检测时的基准灵敏度。 4.2 闸门的设置 4.2.1 熔合区闸门的设置参照AUT对比试块上的标准反射体:闸门起点位置在坡口前大于等于3mm,闸门终点位置应大于焊缝上中心线位置1mm。闸门的起点和长度应记录在工艺文件中。

无损检测 超声波检测

超声波检测 华北科技学院机电工程学院 摘要:超声无损检测是在现代工业生产中应用的非常广泛的一种无损检测 方法,它对于提高产品的质量和可靠性有着重要的意义。尽管随着电子技 术的发展,国内出现了一些数字化的超声检测仪器,但其数据处理及扩展 能力有限,缺乏足够的灵活性。而虚拟仪器是近年来刚刚发展起来的一种 新的仪器构成方式,它是一种、通讯技术和测量技术相结合的产物,具有 很大的灵活性和扩展性,具有旺盛的生命力。 关键词:无损检测;超声波探伤;计算机技术;通讯技术 Abstract:As a kind of NDT(Non-Destructive Testing),UT (Ultrasonic Testing) is widely used in modern industry, which plays a very important role in improving the quality and the reliability of product. Although along with technical development in electronics, some digital UT instruments have been developed at home, its expand- ability and the ability of processing data limited. VI (Virtual Instru- ment) is a new Instrument structure developed recent years and is an outcome which combines the computer technique, the communication technique together with the measure technique, which has huge expandability, flexibility and the prosperous vitality. Keywords:NDT(Non-Destructive Testing) UT (Ultrasonic Testing) computer technique communication technique

超声波无损检测的发展

超声无损检测仪器的发展 超声检测仪器性能直接影响超声检测的可靠性,其发展与电子技术等相关学科的发展是息息相关的。计算机的介入,一方面提高了设备的抗干扰能力,另一方面利用计算机的运算功能,实现了对缺陷信号的定量、自动读数、自动识别、自动补偿和报警。20世纪80年代,新一代的超声检测仪器——数字化、智能化超声仪问世,标志着超声检测仪器进入一个新时代。 超声无损检测仪器将向数字化、智能化、图像化、小型化和多功能化发展。在第十三、十四世界无损检测会议仪器展览会、1996年中国国际质量控制技术与测试仪器展览会、1997年日本无损检测展览会等大型国际会议会展中,数字化、智能化、图像化超声仪最引人注目,显示了当今世界无损检测仪器的发展趋势。其中以德国Krauthammer公司、美国Panametrics公司、丹麦Force Institutes公司与美国PAC公司的产品最具代表性。真正的智能化超声仪应该是全面、客观地反映实际情况,而且可以运用频谱分析,自适应专家网络对数据进行分析,提高可靠性。提高超声检测中对缺陷的定位、定量和定性的可靠性也是超声检测仪器实现数字化、智能化急待解决的关键技术问题。 现代的扫查装置也在向智能化方向发展。扫查装置是自动检测系统的基础部分,检测结果准确性、可靠性都依赖于扫查装置。例如采用声藕合监视或藕合不良反馈控制方式提高探头与工件表面的耦合稳定度以及检测的可靠性。从20世纪90年代以来,出现的各种智能检测机器人,已经形成了机器人检测的新时代及工程检测机器人的系列与商业市场。例如日本东京煤气公司的蜘蛛型机器人,移动速度约60m/h ,重约140kg,采用16个超声探头可以对运行状态下的球罐上任意点坐标位置进行扫描。日本NKK公司研制的机器人借助管道内液体推力前进,可以测量输油管道腐蚀状况,其检测精度小于1mm。 丹麦Force研究所的爬壁机器人,重约10吨,采用磁吸附与预置磁条跟踪方式可检测各类大型储罐与船体的缺陷。 超声无损检测技术的发展 超声无损检测技术是国内外应用最广泛、使用频率最高且发展较快的一种无损检测技术, 体现在改进产品质量、产品设计、加工制造、成品检测以及设备服役的各个阶段和保证机器零件的可靠性和安全性上。世界各国出版的无损检测书

超声波无损检测基础原理

第1章绪论 1.1超声检测的定义和作用 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 作用:质量控制、节约原材料、改进工艺、提高劳动生产率 1.2超声检测的发展简史和现状 利用声响来检测物体的好坏 利用超声波来探查水中物体1910‘ 利用超声波来对固体内部进行无损检测 1929年,前苏联Sokolov 穿透法 1940年,美国的Firestone 脉冲反射法 20世纪60年代电子技术大发展 20世纪70年代,TOFD 20世纪80年代以来,数字、自动超声、超声成像 我国始于20世纪50年代初范围 专业队伍理论及基础研究标准超声仪器 差距 1.3超声检测的基础知识 次声波、声波和超声波 声波:频率在20~20000Hz之间次声波、超声波 对钢等金属材料的检测,常用的频率为0.5~10MHz 超声波特点: 方向性好 能量高 能在界面上产生反射、折射、衍射和波型转换 穿透能力强 超声检测工作原理 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件; 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; 改变后的超声波通过检测设备被接收,并可对其进行处理和分析; 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 超声检测工作原理 脉冲反射法: 声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。 通常用来发现和对缺陷进行评估的基本信息为: 1、是否存在来自缺陷的超声波信号及其幅度; 2、入射声波与接收声波之间的传播时间; 3、超声波通过材料以后能量的衰减。 超声检测的分类 原理:脉冲反射、衍射时差法、穿透、共振法 显示方式:A 、超声成像(B C D P) 波型:纵波、横波、表面波、板波

数字超声波探伤仪焊缝探伤实例DAC曲线绘制探伤步骤

数字超声波探伤仪焊缝探伤实例/DAC曲线绘制 探伤步骤: 一、探伤前的准备工作 1. 数字式超声探伤仪 目前市面上的探伤仪大都是数字机,数字机显示的是数字化的波形,具有检测速度快、精度高、可靠性高和稳定性好等特点。1983年德国KK公司推出了世界第一台数字超 声探伤仪,采用Z80作中央处理器,但其重达10公斤,体积很大,应用时需要车载、用户爬到很高的地方来操作,不太适用于野外作业。1986年后,工业化国家的超声探伤仪得到了迅猛发展,现代数字式超声探伤仪趋向小型化和图像化方向,如国内也已 推出的掌上型探伤仪,还有具有强大图像处理功能的TOFD探伤仪。这里选用的是市 场上的一般的数字探伤仪。 2.横波斜探头: 5M13×13K2 3.标准试块:CSK-IB 、CSK-3A 4.30mm厚钢板的对接焊缝 5.DAC参数:(1)DAC点数:d=5、10、15、20(mm)的4点(2)判废线偏移量:+5dB (3)定量线偏移量:-3dB (4)评定线偏移量:-9dB 6.耦合剂(如:机油、水、凡士林等) 二.探测面的选择焊缝一侧 三.开机 1.将探头和超声探伤仪连接 2.开启面板开关,开机自检,约5秒钟进入探伤界面。 (1)按键,使屏幕下方显示“基本”、“收发”、“闸门”、“通道”、“探头”五个功能主菜单。 (2)按“F1”键,进入“基本”功能组,将“基本”功能内的“探测范围”调为“150”,将“材料声速”调为“3230”,将“脉冲移位”调为“0.0,将“探头零点”调为“0.00”。 (3)按下F2键,进入“收发”功能组,将“收发”功能内的“探头方式”调为“单晶”,将“回波抑制”调为“0%”。(4)按下F3键,进入“闸门”功能组,将“闸门报警”调为“关”,将“闸门宽度”调为“20.0”,将“闸门高度”调为“50%”。(此条内容的调整可根据使用者的习惯而定)。(5)按下F4键,进入“通道”功能组,将“探伤通道”调为所需的未存储曲线的通道,如“No.1”,此时

无损检测超声波检测二级(UT)试题库带答案

无损检测 超声波试题(UT二级) 一、是非题 1.1 受迫振动的频率等于策动力的频率。√ 1.2 波只能在弹性介质中产生和传播。×(应该是机械波) 1.3 由于机械波是由机械振动产生的,所以波动频率等于振动频率。√ 1.4 由于机械波是由机械振动产生的,所以波长等于振幅。× 1.5 传声介质的弹性模量越大,密度越小,声速就越高。√ 1.6 材料组织不均匀会影响声速,所以对铸铁材料超声波探伤和测厚必须注意这一问题。√ 1.7 一般固体介质中的声速随温度升高而增大。× 1.8 由端角反射率试验结果推断,使用K≥l.5的探头探测单面焊焊缝根部未焊透缺陷,灵敏度较低,可能造成漏检。√ 1.9 超声波扩散衰减的大小与介质无关。√ 1.10 超声波的频率越高,传播速度越快。× 1.11 介质能传播横波和表面波的必要条件是介质具有切变弹性模量。√ 1.12 频率相同的纵波,在水中的波长大于在钢中的波长。× 1.13 既然水波能在水面传播,那么超声表面波也能沿液体表面传播。× 1.14 因为超声波是由机械振动产生的,所以超声波在介质中的传播速度即为质点的振动速度。× 1.15 如材质相同,细钢棒(直径<λ=与钢锻件中的声速相同。×(C细钢棒=(E/ρ)?) 1.16 在同种固体材料中,纵、横渡声速之比为常数。√ 1.17 水的温度升高时,超声波在水中的传播速度亦随着增加。× 1.18 几乎所有的液体(水除外),其声速都随温度的升高而减小。√ 1.19 波的叠加原理说明,几列波在同一介质中传播并相遇时,都可以合成一个波继续传播。× 1.20 介质中形成驻波时,相邻两波节或波腹之间的距离是一个波长。×(应是λ/4;相邻两节点或波腹 间的距离为λ/2) 1.21 具有一定能量的声束,在铝中要比在钢中传播的更远。√ 1.22材料中应力会影响超声波传播速度,在拉应力时声速减小,在压应力时声速增大,根据这一特性,可用超声波测量材料的内应力。√ 1.23 材料的声阻抗越大,超声波传播时衰减越大。×(成反比) 1.24 平面波垂直入射到界面上,入射声压等于透射声压和反射声压之和。× 1.25 平面波垂直入射到界面上,入射能量等于透射能量与反射能量之和。√ 1.26 超声波的扩散衰减与波型,声程和传声介质、晶粒度有关。× 1.27 对同一材料而言,横波的衰减系数比纵波大得多。√ 1.28 界面上入射声束的折射角等于反射角。× 1.29 当声束以一定角度入射到不同介质的界面上,会发生波形转换。√ 1.30 在同一固体材料中,传播纵、横波时声阻抗不一样。√(Z=ρ·C) 1.31 声阻抗是衡量介质声学特性的重要参数,温度变化对材料的声阻抗无任何影响。× 1.32 超声波垂直入射到平界面时,声强反射率与声强透射率之和等于1。√ 1.33 超声波垂直入射到异质界面时,界面一侧的总声压等于另一侧的总声压。√ 1.34 超声波垂直入射到Z2>Zl的界面时,声压透过率大于1,说明界面有增强声压的作用。× 1.35 超声波垂直入射到异质界时,声压往复透射率与声强透射率在数值上相等。√ 1.36 超声波垂直入射时,界面两侧介质声阻抗差愈小,声压往复透射率愈低。× 1.37 当钢中的气隙(如裂纹)厚度一定时,超声波频率增加,反射波高也随着增加。√(声压反射率也随频率增加而增加) 1.38 超声波倾斜入射到异质界面时,同种波型的反射角等于折射角。× 1.39 超声波倾斜入射到异质界面时,同种波型的折射角总大于入射角。

超声波无损检测技术的理论研究

毕业设计(论文) 题目超声波无损检测技术 的理论研究 系(院)物理与电子科学系 专业电子信息科学与技术 班级2006级4班 学生姓名李荣 学号2006080927 指导教师吴新华 职称讲师 二〇一〇年六月十八日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 二〇一〇年六月一十八日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 二〇一〇年六月一十八日

超声波无损检测技术的理论研究 摘要 本文首先针对波无损检测技术进行理论研究,简明扼要的介绍了超声波无损检测技术的研究意义和发展现状,超声波无损检测技术是当前一种较为先进的检测技术,应用领域更广,适用范围更宽。然后细致的分析了超声波无损检测技术的工作原理特性,基于超声波的优良特性,和传播机理,进行器件或工程的无损检测,并分析了超声波无损检测系统的噪声干扰来源,提出了降低噪声的方法。尝试用计算机模拟系统通过仿真软件来处理超声波无损检测过程中的庞大的数据信息。直观准确地定位缺陷的位置和类型。最后介绍了超声波在无损检测领域的两种典型应用,建筑方面,可以通过超声探头,利用声波的反射的折射来检测混凝土路基的厚度,电力系统方面,利用超声波无损检测技术确定次绝缘子的寿命定位绝缘子中缺陷的类型的具体位置,快速有效的解除安全隐患。 关键词:超声波;无损检测;计算机仿真;瓷绝缘子

无损检测超声检测公式汇总

无损检测超声检测公式 汇总 -CAL-FENGHAI.-(YICAI)-Company One1

超声检测公式 1.周期和频率的关系,二者互为倒数: T=1/f 2.波速、波长和频率的关系:C=f λ 或λ=f c ∶Cs ∶C R ≈∶1∶ 4.声压: P =P 1-P 0 帕斯卡(Pa )微帕斯卡(μPa )1Pa =1N/m 2 1Pa =106μP 6.声阻抗:Z =p/u =ρcu/u =ρc 单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s ) 7.声强;I =21Zu2=Z P 22 单位; 瓦/厘米2(W/cm 2)或 焦耳/厘米2·秒(J/cm 2·s ) 8.声强级贝尔(BeL )。△=lgI 2/I 1 (BeL ) 9.声强级即分贝(dB ) △=10lgI 2/I 1 =20lgP 2/P 1 (dB ) 10.仪器示波屏上的波高与回波声压成正比:△20lgP 2/P 1=20lgH 2/H 1 (dB ) 11.声压反射率、透射率: r=Pr / P0 t =Pt / P0 ?? ?=-=+21//)1(1Z t Z r t r r =12120Z Z Z Z P P r +-= t =122 02Z Z Z P P t += Z 1—第一种介质的声阻抗; Z 2—第二种介质的声阻抗 12.声强反射率: R= 2 12 1220???? ??+-==Z Z Z Z r I I r 声强透射率:T ()2122 14Z Z Z Z += T+R=1 t -r =1 13.声压往复透射率;T 往= 2 122 1)(4Z Z Z Z + 14.纵波斜入射: 1sin L L c α=1sin L L c α'=1n si S S c '=2sin L L c β=2sin S S c β CL1、CS1—第一介质中的纵波、横波波速; C L2、C S2—第二介质中的纵波、横波波速;αL 、α′L —纵波入射角、反射角; βL 、βS —纵波、横波折射角;α′S —横波反射角。 15.纵波入射时:第一临界角α: βL =90°时αⅠ=arcsin 21 L L c c 第二临界角α:βS =90°时αⅡ=arcsin 21S L c c 16.有机玻璃横波探头αL =°~°, 有机玻璃表面波探头αL ≥° 水钢界面 横波 αL =°~° 17.横波入射:第三临界角:当α′L=90°时αⅢ=arcsin 11 L S c c =°当αS ≥°时,钢中横波全反射。 有机玻璃横波入射角αS (等于横波探头的折射角βS )=35°~55°,即K=tg βS=~时,检测灵敏度最高。 18.衰减系数的计算 1. α=(Bn-Bm-20lg n/m)/2x(m-n) α—衰减系数,dB/m (单程); )(m n B B -—两次底波分贝值之差,dB ;δ为反射损失,每次反射损失约为(~1)dB ; X 为薄板的厚度 T :工件检测厚度,mm ;N :单直探头近场区长度,mm ;m 、n —底波反射次数

超声波无损检测概述

超声波无损检测概述

J I A N G S U U N I V E R S I T Y 超声波无损检测概述

2.2 国内研究情况 20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。上世纪80 年代初,我国研制生产的超声波探伤设备在测量精度、放大器线性、动态范围等主要技术指标方面已有很大程度的提高[3]。80 年代末期,随大规模集成电路的发展,我国开始了数字化超声检测装置的研制。近年来,我国的数字化超声检测装置发展迅速,已有多家专业从事超声检测仪器研究、生产的机构和企业(如中科院武汉物理研究所、汕头超声研究所、南通精密仪器有限公司、鞍山美斯检测技术有限公司等)[1]。目前,国内的超声超声检测装置正在向数字化、智能化的方向发展并且取得了一定的成绩。另外,国内许多领域(如航空航天、石油化工、核电站、铁道部等)的大型企业通过引进国外先进的成套设备和检测技术(如相控阵超声检测设备与技术和TOFD 检测设备与技术),既完善了国内的超声检测设备,又促进了超声无损检测技术的发展[5]。 2.3 超声波无损检测技术发展趋势 超声检测技术的应用依赖于具体检测工件的检测工艺和方法,同时,超声检测还存在检测的可靠性,缺陷的定量、定性、定位以及缺陷检出概率、漏检率、检测结果重复率等问题,这些对超声检测仪器的研制提出了更高要求。 为克服传统接触式超声检测的不足,人们开始探索非接触式超声检测技术,提出了激光超声、电磁超声、空气耦合超声等。为提高检测效率,发展了相控阵超声检测。随着机械扫描超声成像技术的成熟,超声成像检测也得到飞速发展。目前,超声检测仪器已明显向检测自动化、超声信号处理数字化、诊断智能化、多种成像技术的方向发展[5-7]。 3.超声波检测的基本原理 3.1超声波无损检测基本介绍 超声检测(UT)是超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就

无损检测案例分析(1)

焊缝无损检测缺陷图片一、气孔与圆缺 图8-1-1 分散的气孔 图8-1-2 密集气孔 图8-1-3 夹钨二、条形夹渣与条形气孔 图8-1-4 条形夹渣

图8-1-5 条形气孔 三、未焊透 图8-1-6 未焊透 四、未熔合 图8-1-7 未熔合 五、裂纹 图8-1-8 裂纹(transverse cracks:横向裂纹;longitudinal root crack:纵向根部裂纹)六、咬边

图8-1-9 内咬边 图8-1-10 外咬边七、内凹 图8-1-11 内凹 八、烧穿 图8-1-12 烧穿

焊缝无损检测案例分析 【案例1】无损检测工艺规程 1、背景 某天然气分输管网工程,要求射线检测100%。 2、问题描述 查无损检测项目部工艺规程《XX公司XX工程无损检测通用射线检测规程》,其中描述“……像质计的使用参照SY/T4109-2005,……射线评级参照SY/T4109-2005……,”等指导性话语;查其曝光曲线为固定时间,电压-厚度曲线,但其现规程中明确说明项目投入三台XXG2505定向射线机,但其曝光曲线只有一个,现场人员解释为三台机器为同一厂家生产,性能差不多。 3、问题分析 (1)工艺规程是相当于公司标准一级的文件,对于项目上的工艺规程,就应当相当于项目上的标准,是所有检测人员赖以编制工艺卡的依据,应当结合公司实际情况与设计指定标准的要求,对每一个方面的技术要求做出明文规定,而不能使用“参照XX标准”等术语。 (2)曝光曲线是反映每一台射线机在一定的透照工艺,胶片系统条件下其曝光时间、选用电压、透照厚度三者之间关系的曲线,虽然射线机厂家给定的曝光曲线是一个型号一个曲线,这不能说明这些射线机就可以共用一个曝光曲线,实际上,就是同一台机器在不同的使用时期,我们还要对其曝光曲线做出修正,这就是为什么,一定要一机一曲线。 4、问题处理 (1)重新编制工艺规程,将标准中的内容,根据工程的实际需要,加入到工艺规程中来,使工艺规程能切实地指导检测人员工作。 (2)要求检测单位对每一台设备做曝光曲线,并制定曝光曲线校验制度。 【案例2】无损检测工艺卡 1、背景 某5万方储油罐无损检测工程,施工规范为GB50128-2005,最底层板厚为24mm,最上层板厚为8mm。 2、问题描述 在检查工艺卡的过程中,发现以下内容:透照厚度填写为8~24,电压填写为150Kv~240kV,曝光时间填定为1~3min,查其现场操作记录,所有的工艺参数确实能包含在这些范围之内,现场人员解释说这样只是为了省事,其工艺卡没有技术上的问题。 3、问题分析 (1)工艺卡的内容必须要覆盖工程中所有检测对象,但绝不是像标准中一样用一个区间去覆盖,是一一对应的覆盖,一就是一,二就是二,如:厚度为8mm,电压填写150kV,曝光时间填写1min等,必须使现场检测人员,能准确无误地根据板厚,读出各项参数,拍出合格底片。 (2)现场操作记录中的数据可以说不是来自于工艺卡,而是来自于现场工作人员的经验,也

超声波探伤无损检测

超声波探伤无损检测 产品名称:OU5100数字式超声波探伤仪 ?产地:中国销售:沧州欧谱 ?简介:全数字便携式超声波探伤仪,它能够快速便捷、无损伤、精确 地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估 和诊断。既用于实验室,也用于工程现场检测。广泛应用于航空航天、 铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。 ? 沧州欧谱OU5100数字式超声波探伤仪是一款真彩显示全数字式超声波探伤仪,它能够快速便捷、无损伤、 精确地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估和诊断。既用于实验室,也用于 工程现场检测。本仪器广泛应用在各地特检院、建设工程质量检测站、锅炉压力容器制造、工程机械制造 业、钢铁冶金业、钢结构制造、船舶制造、石油天然气装备制造等需要缺陷检测和质量控制的领域,也广 泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。 仪器特点:功能全、性价比高。 一、执行标准: ◆国家标准: 1. JJG 746-2004《中华人民共和国国家计量检定规程-超声波探伤仪》 2. JB/T 10061-1999《A型脉冲反射式超声探伤仪通用技术条件》 3. JB/T 10062-1999《超声探伤用探头性能测试方法》 4. JB/T 9214-1999《A型脉冲反射式超声探伤系统工作性能测试方法》 5. Z2344-93《金属材料脉冲反射式超声探伤检验方法》) ◆欧洲标准(EN12668)包括有三个部分: 1. EN12668-1 无损检测-超声检验设备的特性与认证-第1部分:仪器 2. EN12668-2 无损检测-超声检验设备的特性与认证-第2部分:探头 3. EN12668-3 无损检测-超声检验设备的特性与认证-第3部分:综合设备 二、超声波探伤仪功能特点 ·发射脉冲宽度和强度可调; ·高精度定量、定位,满足了较近和较远距离探伤的要求;

超声波无损检测实例

超声波无损检测主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件后;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。超声波无损检测的原理图如下: 在日常的检测工作中,有一些工件由于表面粗糙、形状特殊等原因,不能用常见的直接接触法来进行超声波检测。对于这类的工件,不妨尝试使用液浸法超声波探伤。液浸探伤相对于直接接触法而言,有如下优势:

1. 当改变被检工件的尺寸或者形状时,不需要特殊的探头或楔块来匹配工件; 2. 可以较简单地连续调整声束入射角,这对形状复杂的结构件的异形表面或新的检测工艺的研究而言都是必须的; 3. 耦合液体可以连续使用; 4. 由于不需要紧密的接触,因此检测速度能够非常快; 5. 直接接触法探伤会因工件的表面形状、表面状况或尺寸的变化而产生比较大的耦合损失,液浸法则不会; 6. 水槽中整个浸没有助于排除表面波,因表面波不规则地增加来自外表面的较小不连续性信号; 7. 水槽提供延迟块以允许非常强的界面信号在弱信号返回到仪器之前就通过放大器。这一点当检测小尺寸管子和薄板时特别能显示出优越性。 主要缺点:主要缺点 ①要由有经验的人员谨慎操作,依赖于探伤人员的经验和分析判断,准确性差;②对粗糙、形状不规则、小、薄或非均质材料难以检查;③对所发现缺陷作十分准确的定性、定量表征仍有困难。

在液浸探伤法中,水作为一种易获取的耦合剂得到了很好的应用。因此,水浸探伤法是液浸探伤中最常用的一种检测方法。 下面通过一个铝压缩机旋转轮水浸探伤实例说明不同缺陷的水浸探伤波形显示: A、伪缺陷显示 水浸探伤中,始脉冲(由换能器激发)显示在最左边,接着是工件前表面的反射显示,当换能器沿轴方向移动时,折射声速恰好穿过U形槽的角并且产生伪缺陷波显示。 B、裂纹显示 将换能器沿轴向方向向右移动,在遇到裂纹时产生反射,此时屏幕显示波形如下图;

无损检测超声波二级考试题库

无损检测超声波题库 一.是非题:246题 二.选择题:256题 三.问答题:70题 四.计算题:56题 一.是非题(在题后括弧内,正确的画○,错误的画×) 由于机械波是由机械振动产生的,所以超声波不是机械波。(×) 只要有作机械振动的波源就能产生机械波。(×) 振动是波动的根源,波动是振动状态的传播。(○) 介质中质点的振动方向与波的传播方向互相垂直的波称为纵波。(×) 当介质质点受到交变剪切应力作用时,产生切变形变,从而形成横波。(○) 液体介质中只能传播纵波和表面波,不能传播横波。(×) 根据介质质点的振动方向相对于波的传播方向的不同,波的波形可分为纵波、横波、 表面波和板波等。(×) 不同的固体介质,弹性模量越大,密度越大,则声速越大(×) 同一时刻,介质中振动相位相同的所有质点所联成的面称为波前。(×) 实际应用超声波探头中的波源近似于活塞波振动,当距离波源的距离足够大时,活塞波类似于柱面波。(×) 超声波检测中广泛采用的是脉冲波,其特点是波源振动持续时间很长,且间歇辐射。(×) 次声波、声波、超声波都是在弹性介质中传播的机械波,在介质中的传播速度相同,他们的主要区别主要在于频率不同。(○) 同种波型的超声波,在同一介质中传播时,频率越低,其波长越长。(○) 分贝值差表示反射波幅度相互关系,在确定基准波高后,可以直接用仪器的衰减器读数表示缺陷波相对波高。(○) 一般固体中的声速随介质温度升高而降低。(○) 超声波在同一介质中横波比纵波检测分辨力高,但对于材料的穿透能力差。(○) 超声波在同一固体材料中,传播纵波、横波时声阻抗都相同。(×) 超声场中任一点的声压与该处质点传播速度之比称为声阻抗。(×) 固体介质的密度越小,声速越大,则它的声阻抗越大。(×) 在普通钢焊缝检测中,母材与填充金属声阻抗相差很小,若没有任何缺陷,是不会产生界面回波的。(○) 波的叠加原理说明,几列波在同一介质中传播并相遇时,可以合成一个波继续传播。(×) 超声波垂直入射到光滑平界面时,声强反射率等于声强透过率,两者之和等于1。 (×) 超声波垂直入射到光滑平界面时,界面一侧的总声压等于另一侧的总声压,说明能量守恒。 (×) 超声波垂直入射到光滑平界面时,在任何情况下,透射波声压总是小于入射波声压。(×) 超声波垂直入射到光滑平界面时,其声压反射率或透过率仅与界面两种介质的声阻抗有关。 (○)

无损探伤标准

《 无损探伤标准 一、通用基础 1、GB 5616-1985 常规无损探伤应用导则 2、GB/T 9445-1999 无损检测人员技术资格鉴定通则 3、GB/T 14693-1993 焊缝无损检测符号 4、GB 16357-1996 工业X射线探伤放射卫生防护标准 5、JB 4730-1994压力容器无损检测 6、DL/T675-1999 电力工业无损检测人员资格考核规则 二、# 三、射线检测 1、GB 3323-1987 钢熔化焊对接接头射线照相和质量分级 2、GB 5097-1985 黑光源的间接评定方法 3、GB 5677-1985 铸钢件射线照相及底片等级分类方法 4、GB/T 11346-1989 铝合金铸件X射线照相检验针孔(图形)分级 5、GB/T 11851-1996压水堆燃料棒焊缝X射线照相检验方法 6、GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分类 7、GB/T 无损检测术语射线检测 — 8、GB/T 12605-1990 钢管环缝熔化焊对接接头射线透照工艺和质量分级 9、GB/T 16544-1996 球形储罐γ射线全景曝光照相方法 10、GB/T 16673-1996 无损检测用黑光源(UV-A)辐射的测量 11、JB/T 7902-2000 线型象质计 12、JB/T 7903-1995工业射线照相底片观片灯 13、JB/T 泵产品零件无损检测泵受压铸钢件射线检测方法及底片的等级分类 14、JB/T 9215-1999 控制射线照相图像质量的方法 15、JB/T 9217-1999射线照相探伤方法 " 16、DL/T 541-1994 钢熔化焊角焊缝射线照相方法和质量分级 17、DL/T 821-2002 钢制承压管道对接焊接接头射线检验技术规程 18、TB/T6440-92 阀门受压铸钢件射线照相检验

超声检测

3.3.1超声波检测 本项目采用金属超声波探伤仪对焊缝进行超声波无损探伤,依据《钢结构工程施工质量验收规范》(GB50205-2001)进行抽样。依据《钢焊缝手工超声波探伤方法和探伤结果分级》(GB11345-89)焊缝质量进行评定。根据设计要求,焊缝内部缺陷采用超声波探伤。 一级、二级焊缝的质量等级及缺陷分级应符合下表规定。检查数量:全数检查。检验方法:检查超声波或射线探伤记录。 表1 一级、二级焊缝的质量等级及缺陷分级表 焊缝质量等级一级二级 内部缺陷超声波 检测 评定等级ⅡⅢ 检验等级B级B级 检测比例100% 20% 3.3.1.1 缺陷的定量评定方法 平板对接焊缝检测采用标准GB/T11345-89《钢焊缝手工超声波探伤方法和探伤结果分级》中的“当量法”评定其大小,即将所发现的缺陷与对比试块中一定的规则形状的人工反射在同样的探测条件下比较:如果两者的埋藏深度相同,而所发现的缺陷发射波高与人工反射波高又相同,则该人工反射体的反射尺寸即称为所发现的缺陷的当量尺寸。当量法在使用时需要有若干笨重的对比试块,很不方便。为了克服这一点,逐渐发展了用曲线DAC图,如图1所示。 图1 距离波幅曲线(DAC)曲线图 GB/T11345-89《钢焊缝手工超声波探伤方法和探伤结果分级》中的相关规定如下(参见表2、3)。 (1)最大反射波幅位于II区的缺陷,根据缺陷指示长度,按表1的规定予以评级。 (2)最大反射波幅不超过评定线的缺陷,均评为I级。 (3)最大反射波幅超过评定线的缺陷,检验者判定为裂纹等危害性缺陷时,无论其波幅和尺

寸为何,均评定为IV。 (4)反射波幅位于I区的非裂纹缺陷,均评为级I级。 (5)反射波幅位于III区的缺陷,无论其指示长度为何,均评定为IV级。 表2 距离波幅曲线的灵敏度 表3 缺陷等级分类 对于母材壁厚不小于4mm,球径不小于20mm,管径不小于60mm焊接空心球及球管焊接接头;母材壁厚不小于3.5mm,管径不小于48mm螺栓球节点杆件与锥头或封板焊接接头;支管管径不小于89mm、壁厚不小于6mm、局部二面角不小于30°,支管壁厚外径比在13%以下的圆管相贯节点碳素结构钢和低合金高强度结构钢焊接接头的超声波探伤及质量分级,基本规定:最大反射波幅在DAC曲线Ⅱ区的缺陷,其指示长度小于10mm时,按5mm计。在测定范围内,相邻两个缺陷间距小于8mm时,两个缺陷指示长度之和作为单个缺陷的指示长度;间距大于8mm时,分别计算。 缺陷分类及质量等级;超声波探伤结果的缺陷探伤结果的缺陷按Ⅰ-Ⅳ四个级别评定,除

无损检测超声波检测二级试题库(UT)带答案

无损检测 超声波试题(UT) 一、是非题 受迫振动的频率等于策动力的频率。√ 波只能在弹性介质中产生和传播。×(应该是机械波) 由于机械波是由机械振动产生的,所以波动频率等于振动频率。√ 由于机械波是由机械振动产生的,所以波长等于振幅。× 传声介质的弹性模量越大,密度越小,声速就越高。√ 材料组织不均匀会影响声速,所以对铸铁材料超声波探伤和测厚必须注意这一问题。√ 一般固体介质中的声速随温度升高而增大。× 由端角反射率试验结果推断,使用K≥的探头探测单面焊焊缝根部未焊透缺陷,灵敏度较低,可能造成漏检。√ 超声波扩散衰减的大小与介质无关。√ 超声波的频率越高,传播速度越快。× 介质能传播横波和表面波的必要条件是介质具有切变弹性模量。√ 频率相同的纵波,在水中的波长大于在钢中的波长。× 既然水波能在水面传播,那么超声表面波也能沿液体表面传播。× 因为超声波是由机械振动产生的,所以超声波在介质中的传播速度即为质点的振动速度。× 如材质相同,细钢棒(直径<λ=与钢锻件中的声速相同。×(C细钢棒=(E/ρ)?) 在同种固体材料中,纵、横渡声速之比为常数。√ 水的温度升高时,超声波在水中的传播速度亦随着增加。× 几乎所有的液体(水除外),其声速都随温度的升高而减小。√ 波的叠加原理说明,几列波在同一介质中传播并相遇时,都可以合成一个波继续传播。× 介质中形成驻波时,相邻两波节或波腹之间的距离是一个波长。×(应是λ/4;相邻两节点或波腹间 的距离为λ/2) 具有一定能量的声束,在铝中要比在钢中传播的更远。√ 材料中应力会影响超声波传播速度,在拉应力时声速减小,在压应力时声速增大,根据这一特性,可用超声波测量材料的应力。√ 材料的声阻抗越大,超声波传播时衰减越大。×(成反比)

无损检测超声探伤UT

无损检测超声探伤UT基础讲义

培训教材之理论基础 第一章无损检测概述 无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。 射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。射线对人体不利,应尽量避免射线的直接照射和散射线的影响。 超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。 磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。 渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。 第2页共58页

涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。 磁粉、渗透和涡流统称为表面检测。 第二章超声波探伤的物理基础 第一节基本知识 超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。 物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。振动的传播过程,称为波动。波动分为机械波和电磁波两大类。机械波是机械振动在弹性介质中的传播过程。超声波就是一种机械波。 机械波主要参数有波长、频率和波速。波长 :同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单 第3页共58页

超声波检测行业标准表

超声波检测行业标准表 无损检测资源网整理

GB 3947-83 声学名词术语 GB/T1786-1990 锻制园并的超声波探伤方法 GB/T 2108-1980 薄钢板兰姆波探伤方法 GB/T2970-2004 厚钢板超声波检验方法 GB/T3310-1999 铜合金棒材超声波探伤方法 GB/T3389.2-1999 压电陶瓷材料性能测试方法纵向压电应变常数d33的静态测试 GB/T4162-1991 锻轧钢棒超声波检验方法 GB/T 4163-1984 不锈钢管超声波探伤方法(NDT,86-10) GB/T5193-1985 钛及钛合金加工产品(横截面厚度≥13mm)超声波探伤方法(NDT,89-11)(eqv AMS2631) GB/T5777-1996 无缝钢管超声波探伤检验方法(eqv ISO9303:1989) GB/T6402-1991 钢锻件超声波检验方法 GB/T6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T6519-2000 变形铝合金产品超声波检验方法 GB/T7233-1987 铸钢件超声探伤及质量评级方法(NDT,89-9) GB/T7734-2004 复合钢板超声波检验方法 GB/T7736-2001 钢的低倍组织及缺陷超声波检验法(取代YB898-77) GB/T8361-2001 冷拉园钢表面超声波探伤方法(NDT,91-1) GB/T8651-2002 金属板材超声板波探伤方法 GB/T8652-1988 变形高强度钢超声波检验方法(NDT,90-2) GB/T11259-1999 超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92) GB/T11343-1989 接触式超声斜射探伤方法(WSTS,91-4) GB/T11344-1989 接触式超声波脉冲回波法测厚 GB/T11345-1989 钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2~3) GB/T 12604.1-2005 无损检测术语超声检测代替JB3111-82 GB/T12604.1-1990 GB/T 12604.4-2005 无损检测术语声发射检测代替JB3111-82 GB/T12604.4-1990 GB/T12969.1-1991 钛及钛合金管材超声波检验方法 GB/T13315-1991 锻钢冷轧工作辊超声波探伤方法 GB/T13316-1991 铸钢轧辊超声波探伤方法 GB/T15830-1995 钢制管道对接环焊缝超声波探伤方法和检验结果分级 GB/T18182-2000 金属压力容器声发射检测及结果评价方法 GB/T18256-2000 焊接钢管(埋弧焊除外)—用于确认水压密实性的超声波检测方法(eqv ISO 10332:1994) GB/T18329.1-2001 滑动轴承多层金属滑动轴承结合强度的超声波无损检验 GB/T18604-2001 用气体超声流量计测量天然气流量 GB/T18694-2002 无损检测超声检验探头及其声场的表征(eqv ISO10375:1997) GB/T 18696.1-2004 声学阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法 GB/T18852-2002 无损检测超声检验测量接触探头声束特性的参考试块和方法(ISO12715:1999,IDT) GB/T 19799.1-2005 无损检测超声检测1号校准试块 GB/T 19799.2-2005 无损检测超声检测2号校准试块 GB/T 19800-2005 无损检测声发射检测换能器的一级校准 GB/T 19801-2005 无损检测声发射检测声发射传感器的二级校准 GJB593.1-1988 无损检测质量控制规范超声纵波和横波检验 GJB1038.1-1990 纤维增强塑料无损检验方法--超声波检验 GJB1076-1991 穿甲弹用钨基高密度合金棒超声波探伤方法 GJB1580-1993 变形金属超声波检验方法 GJB2044-1994 钛合金压力容器声发射检测方法 GJB1538-1992 飞机结构件用TC4 钛合金棒材规范 GJB3384-1998 金属薄板兰姆波检验方法

相关主题
文本预览
相关文档 最新文档