当前位置:文档之家› 高等量子力学

高等量子力学

高等量子力学
高等量子力学

3.1 (做题人:韩丽芳 校对人:胡相英) (好)

幺正算符也有本征矢量。证明幺正算符的本征值都是绝对值是1的复数;幺正算符的两个本征矢量,若所属本征值不同亦必正交。

证明: 设算符U

为幺正算符,ψ为其任意本征矢量,u 为对应的本征值。 即

ψψu U =

ψψψψψψψψu u U U U U *+===

因0≠ψψ,所以1=*

u u 即 1=u

即证得幺正算符的本征值都是绝对值是1的复数。

设算符U 为幺正算符的两个本征值为1u 、2u ,对应的矢量分别为1ψ、2ψ,且

21u u ≠。

111ψψu U = 11

111

ψψu U =

-

222ψψu U = 22

211

ψψu U =

- 因为幺正算符1-+

=U U

则有

21212121ψψψψψψu u U U *+==

212

1211ψψψψu u UU *

+

=

=

所以

01212121=???

?

?

?-**ψψu u u u 因为012

121≠-

*

*

u u u u

,故021=ψψ,即 1ψ

和2ψ正交。

即证得幺正算符的两个本征矢量,若所属本征值不同亦必正交。

3.2 投影于某一子空间的投影算符P ,既然是厄米算符,它的本征值是什么?有无简并?本证子空间是什么?(好)

解:投影于某一子空间的投影算符∑==m

i i i

P 1,设全空间是n 维的,且n m <。

则本征值方程

ψλψψ==∑=m

i i i

P 1

其中λ为本征值,

ψ为相应的本征态。 则

ψλψλψ2

2==P P ⑵ 由幺正算符等幂性P P =2

ψψP P =2

⑶ 由⑴、⑵和⑶式得λλ=2

,所以1=λ或0=λ。 即求得投影算符的本征值是1或0。

当1=λ时,本征失量是i ,其中m i ,2,1=。所以是简并的,本征子空间S 是由这m 个基矢构成的矢量空间。

当0=λ时,本征矢量是与i 正交的矢量。所以也是简并的,本征子空间是S 空间的补空间。 #

练习3.3 证明若算符的本征值谱中有零本征值,则这个算符肯定没有逆。

证明:假设算符A 有逆,则在值域中取一任意|φ>,则定义域有|ψ>存在 即ψφφ-

==AA 1

已知A 的全部本征值和相应的本征矢量:i i i a A ψφ= i=1,2,3…,

∴(

ψφ-

-

==A a AA

算符A 存在零本征值,即00=?=φa a ∴对于任意本征矢量()ψ

φa A -

≠与()ψφ

-=A a 矛盾

∴假设不成立,即算符的本征值谱中有零本征值,这个算符肯定没有逆。 #

练习3.4 根据完全性和封闭性的定义,分别证明:在n 维空间中的一个完全矢量集{i ψ},

(i ψ归一化但彼此不一定正交,i=1,2,3…,n ),若从其中去掉一个矢量,例如

去掉 1ψ,就不再是完全集。(做题者:杨涛 审题人:吴汉成)

证明:假设在n 维空间中的一个完全集{}i

ψ去掉一个矢量1

ψ

后仍是完全集

∴新的矢量集

{}

2

3,,...n

ψ

ψψ是线性无关的,

2

2

n

n

i i i i i i c ψψψψψ====∑∑

我们把1ψ加入完全矢量集{

}23,,...n ψψψ成立一个新集合{}i

ψ,

{23,,...n ψψψ是完全集。则1

ψ

肯定能表为23,,...n ψψψ的线性叠加

∴新集合{}i

ψ是线性相关的与它是线性无关相矛盾。

在n 维空间中的一个完全集{}i

ψ去掉一个矢量1

ψ

后不是完全集

#

3.5、在有限维空间中,有A 和B 两个相互对易的厄米算符。它们的全部线性无关的正交归一化本征矢量字分别为{αi 和{β

i :

j

i i

i m i b i B m a i a i A ,3,2,1,3,2,1====ββ

βαα

i m ,j m 分别为本征值i a 和j b 的简并度(它们也可以等于1)。

(1)证明 ia j j ji ββαβ

∑=

是A 和B 的共同本征矢量。它们是否归一化?彼此是否正交?

(2) 全部不为零的ija 的总数是多少?它们是线性相关的还是线性无关的?

(做题:陈捷狮,审查人:刘强。) 解:(1)ααββαββαβ

β

ji a i j j a i j j A

ji A i i ===∑∑

ααββαββαβ

β

ji b i j j b i j j B

ji B j j ===∑∑

所以:αji 是A 和B 的共同的本征矢量。

由于1==?

??

? ??=∑∑∑*

ia ia j j j j i j j i j j jia jia βββ

βαββ

αββ

β

β

β

他们是归一的。

由于A 和B 作用在αji 的本征值不同,所以彼此是正交。

(2)全部不为零的ija 的总数是j i m m 。它们是线性无关的。 #

喀兴林高等量子力学习题6、7、8

练习 6.1 在ψ按A 的本征矢量{}i a 展开的(6.1)式中,证明若ψ 是归一化的,则 1=∑*i i i c c ,即A 取各值的概率也是归一化的。(杜花伟) 证明:若ψ是归一化的,则1=ψψ。根据(6.1)式 ∑=i i i c a ψ, ψi i a c = 可得 1===∑∑* ψψψψ i i i i i i a a c c 即A 取各值的概率是归一化的。 # 练习6.2 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变. (2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美) (1)证明:在定态中i E i H i = , Λ3,2,1=i 则 ()t E i i i i t η -=ψ 所以 i A i e i A e A t E i t E i i i ==-η η ψψ. 即所有物理量的平均值不随时间变化. (2)两个定态的叠加不一定是定态.例如 ()()()t E i t E i e x v e x u t x 21,η η --+=ψ 当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. # 6.3证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立: ) (]),([)()](,[X f X i P X f P f P i P f X ?? =?? =ηη (解答:玉辉 核对:项朋) 证明:(1)

) ()()()()()()()()](,[P f P i P i P f P i P f P f P i P i P f P f P i X P f P Xf P f X ??=??-??+??=??-??=-=ηηηηηηψψ ψψψ ψψ ψψ 所以 )()](,[P f P i P f X ?? =η (2) ) () ()())(())(()()())(()()(]),([X f X i X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ??=?? --??--??-=?? --??-=-=ηηηηηηψψψψψ ψψ ψψ 所以 )(]),([X f X i P X f ?? =η # 练习6.4 下面公式是否正确?(解答:玉辉 核对:项朋) ),()],(,[P X f P i P X f X ?? =η 解:不正确。 因为),(P X f 是X 的函数,所以)],(,[P X f X =0 # 练习6.5 试利用Civita Levi -符号,证明:(孟祥海) (1)00=?=?L X ,L P (2)[]0=?P X L, (3)()()P X X P P X P X L ?-??-=ηi 22 2 2 证明: (1)∑∑∑∑=== ?ijk k j i ijk k j jk ijk i i i i i P X P P X P L P εε L P

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

量子力学讲义第二章讲义

第二章 一维势场中的粒子 §2.2 方 势 一、一维运动 当粒子在势场V (x ,y ,z )中运动时,其 Schrodinger 方程为: 22 [(,,)](,,)(,,)2V x y z x y z E x y z m ψψ-?+= 若势可写成: V (x ,y ,z ) = V 1(x ) + V 2(y ) + V 3(z ) 形式, 2212 [()]()()2x d V x X x E X x m dx -+= 2222 [()]()()2y d V y Y y E Y y m dy -+= 2232 [()]()()2z d V z Z z E Z z m dz -+= ψ(x ,y ,z ) = X (x ) Y (y ) Z (z ) ψ1(x ) x y z E E E E =++ 二、一维无限深势阱 0(0)()(0,) x a V x x x a ?<?? 这是定态问题 一维无限深势阱(0~a )的求解 解:(1)列出各势域的 S — 方程 22 2 [()]()()2d V x x E x m dx ψψ-+= 20222 2 2202 22()0202()0I I II II III III d m V E dx d mE dx d m V E dx ψψψψψψ?--=???+=???--=?? 00E V << 0()V →∞ ,令k = )(0>k ,β=方程可简化为:22 2 222 222 000I I II II III III d dx d k dx d dx ψβψψψψβψ?-=????+=???-=??

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

清华大学量子力学讲义Lecture14[1]

3. 系综与密度算符 1)纯系综和混合系综 相同的物理体系构成系综,例如由具有自旋的粒子构成的系综。 一个自旋为1/2的粒子的自旋态(方位角,αβ) /2/2(,)(,)(,)cos sin 22i i c c e e ααβ β χαβαβχαβχχχ-++--+-=+=+, 其中,χχ+-是?z s 的本征态, cos(/2)sin(/2) i c c e αββ+-=。 如果所有粒子的自旋都取相同方向,则称体系是极化系统,构成的系综是纯系综。 如果粒子的自旋不在同一方向,则构成的系综叫混合系综。例如自旋向上的粒子数占70%,自旋向下的粒子数占30%,体系是部分极化。一个自旋方向完全随机的系综,其自旋向上,向下的几率各有50%,整的表现是相互抵销,自旋为零,完全没极化。 2)系综平均与态密度算符 系统的力学量平均值 ?A A ααα=, 这里态α是固定的,是量子平均。进入任意表象B , ,' ?''b b A b b A b b ααα=∑, 对表象的维数求和。 系综平均 [ ]A w A ααα=∑ , 这里w α是体系处于态α的几率,显然满足归一化条件 1w αα =∑, 是统计平均,求和指标不是对表象的维数,而是对态。例如自旋1/2的粒子构成的系综,自旋表象的维数为2,但不同粒子的自旋态可以有很多取向,求和就是对不同的取向。

[],,','??''''b b b b A w b b A b w b b b A b αααααααα??== ??? ∑∑∑。 定义态密度算符 ?w αα ρ αα=∑, 它在表象B 的矩阵元 '?''bb b w b b αα ρρ αα==∑, []() ,'??????''b b b A b b b A b b A b tr A ρ ρρ==≡∑∑。 这是量子统计力学的基本公式。注意:表象变换不改变矩阵的求迹,上式不依赖于表象的选取。 在连续表象,例如坐标表象,密度算符的矩阵元 *'?''()(')xx x x w x x w x x αααααα ρρααψψ===∑∑ , 系综平均 []() 3????A tr A d x x A x ρρ==? 。 密度矩阵满足归一化条件 ,,? 1 b b tr w b b w b b w w αααααααα ρ ααα α=====∑∑∑∑完备性条件 态的量子归一化条件 态的统计归一化条件 这里用到了归一化条件1α=和表象的完备性条件1b b b =∑。 设密度算符?ρ的本征态为θ, 22 ?,??ρ θθθρθρθθθθ=== 对于纯系综,所有系统都取同一个态n ,

高等量子力学习题.

高等量子力学习题 1、 对于一维问题,定义平移算符()a D x ,它对波函数的作用是() ()()a x x a D x -=ψψ,其中a 为实数。设()x ψ的各阶导数存在,试证明()dx d a x e i p a a D -=?? ? ??= ?exp 。 2、 当体系具有空间平移不变性时,证明动量为守恒量。 3、 若算符()x f 与平移算符()a D x 对易,试讨论()x f 的性质。 4、 给定算符B A ,,证明[][][]....,,! 21 ,++ +=-B A A B A B Be e A A ξξ。 5、 给定算符C B A 和、,存在对易关系[]C B A =,,同时[][]0,,0,==C B C A 。证明Glauber 公式C A B C B A B A e e e e e e e 2 12 1 ==-+。 6、 设U 为幺正算符,证明U 必可分解成iB A U +=,其中A 和B 为厄密算符,并满足 122=+B A 和[]0,=B A 。试找出A 和B ,并证明U 可以表示为iH e U =,H 为厄密 算符。 7、 已知二阶矩阵A 和B 满足下列关系:02 =A ,1=+++AA A A ,A A B + =。试证明 B B =2,并在B 表象中求出矩阵A 、B 。 8、 对于一维谐振子,求湮灭算符a ?的本征态,将其表示为谐振子各能量本征态n 的线性叠加。已知1?-=n n n a 。 9、 从谐振子对易关系[ ]1,=+ a a 出发,证明a e ae e a a a a λλλ--=+ +。 10、 证明谐振子相干态可以表示为 0*a a e ααα-+=。 11、 谐振子的产生和湮灭算符用a 和+ a 表示,经线性变换得+ +=va ua b 和 ++=ua va b ,其中u 和v 为实数,并满足关系122=-v u 。试证明:对于算符b 的任 何一个本征态,2 =???p x 。 12、 某量子体系的哈密顿量为,() 223 2 35++++= a a a a H ,其中对易关系[]1,=-≡++ + a a aa a a 。试求该体系的能量本征值。 13、 用+ a ?和a ?表示费米子体系的某个单粒子态的产生和湮灭算符,满足基本对易式

量子力学讲义第三章讲义

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-? , 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ? =-? 不对易

证明:(1) ?()x xp x i x ψψ?=-? i x x ψ? =-? (2) ?()x p x i x x ψψ?=-? i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i -= ,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

量子力学第一章习题答案

第一章 1.1 由黑体辐射公式导出维恩位移定律: 能量密度极大值所对应的波长λm 与温度T 成反 比,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。 解:黑体辐射的普朗克公式为:) 1(833 -=kT h e c h ν νν πρ ∵ v=c/λ ∴ dv/dλ= -c/λ2 又 ∵ ρv dv= -ρλdλ ∴ ρλ=-ρv dv/dλ=8πhc/[λ5(e hc/λkT -1)] 令x=hc/λkT ,则 ρλ=8πhc(kT/hc)5x 5/(e x -1) 求ρλ极大值,即令dρλ(x)/dx=0,得: 5(e x -1)=xe x 可得: x≈4.965 ∴ b=λm T=hc/kx ≈6.626 *10-34*3*108/(4.965*1.381*10-23) ≈2.9*10-3(m K ) 1.2√. 在0 K 附近,钠的价电子能量约为3电子伏,求其德布罗意波长。 解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J 故其德布罗意波长为: 07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ? 1.3 √.氦原子的动能是E= 32 KT (K B 为波尔兹曼常数),求T=1 K 时,氦原子的德布罗意波长。 解:h = 6.626×10-34 J ·s , 氦原子的质量约为=-26-2711.993104=6.641012 kg ???? , 波尔兹曼常数K B =1.381×10-23 J/K 故其德布罗意波长为: λ = 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2 ≈0 1.2706A 或λ= 而KT E 23 =601.270610A λ-==? 1.4利用玻尔-索末菲量子化条件,求: a ) 一维谐振子的能量: b ) 在均匀磁场作圆周运动的电子轨道的可能半径。 解: a )解法一:设一维谐振子的质量为m ,广义坐标为 q=Acos(ωt+φ) 根据玻尔—索末菲量子化条件 ∮pdq = nh 得:∮m(dq/dt)dq = m ωA 2∮sin 2θd θ=m ωA 2π=nh ∴ A 2 =nh/(πm ω)=2nh/m ω (其中h=h/2π) 又 ∵ 一维谐振子的周期 T =2π(m/k)0.5

量子力学期末考试试卷及答案

量子力学期末试题及答案 红色为我认为可能考的题目 一、填空题: 1、波函数的标准条件:单值、连续性、有限性。 2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。 3、一个量的本征值对应多个本征态,这样的态称为简并。 4、两个力学量对应的算符对易,它们具有共同的确定值。 二、简答题: 1、简述力学量对应的算符必须是线性厄米的。 答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。 2、一个量子态分为本征态和非本征态,这种说法确切吗? 答:不确切。针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。 3、辐射谱线的位置和谱线的强度各决定于什么因素? 答:某一单色光辐射的话可能吸收,也可能受激跃迁。谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。 三、证明题。

2、证明概率流密度J不显含时间。 四、计算题。 1、

第二题: 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球, 计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r r πε=-() )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r E d r e r U )( ???????≥≤=??=)( 4 )( ,43441 02 003003303 420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε

高等半导体物理讲义

高等半导体物理 课程内容(前置课程: 量子力学,固体物理) 第一章能带理论,半导体中得电子态 第二章半导体中得电输运 第三章半导体中得光学性质 第四章超晶格,量子阱 前言:半导体理论与器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。 1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念得提出,使得固体能带得计算大为简化。利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。用赝势方法得到了几乎所有半导体得比较精确得能带结构。1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥) * 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究 1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。 1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。 1990 英国得Canham首次在室温下观测到多孔硅得可见光光致发光,使人们瞧到了全硅光电子集成技术得新曙光。近年来,各国科学家将选择生成超薄层外延技术与精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新得物理现象与得到更好得器件性能。在器件长度小于电子平均自由程得所谓介观系统中,电子输运不再遵循通常得欧姆定律,电子运动完全由它得波动性质决定。人们发现电子输运得AharonovBohm振荡,电子波得相干振荡以及量子点得库仑阻塞现象等。以上这些新材料、新物理现象得发现产生新得器件设计思想,促进新一代半导体器件得发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 1012/cm3 , Dislocation densities <103 /cm3 Size 20 inches (50 cm) in diameter P V 族 S, Te, Se VI 族 ?二元化合物, 1.IIIV族化合物: GaAS系列,闪锌矿结构, 电荷转移 GaAs, 1、47 eV InAs 0、36 eV GaP, 2、23 eV GaSb, 0、68 eV GaN, 3、3 eV BN 4、6 eV AlN 3、8 eV

吉林大学高等量子力学习题答案共11页word资料

高等量子力学习题和解答 ? 量子力学中的对称性 1、 试证明:若体系在线性变换Q ?下保持不变,则必有0]?,?[=Q H 。这里H ?为 体系的哈密顿算符,变换Q ?不显含时间,且存在逆变换1?-Q 。进一步证明,若Q ?为幺正的,则体系可能有相应的守恒量存在。 解:设有线性变换Q ?,与时间无关;存在逆变换1?-Q 。在变换 若体系在此变换下不变,即变换前后波函数满足同一运动方程 ?''?t t i H i H ?ψ=ψ?ψ=ψ h h 进而有 2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R z e ρ的矩阵表示。 解: 'cos sin 'sin cos 'O xyz z d x x d y d y x d y d z z θθθθθ -=+=-+=考虑坐标系绕轴转角 用矩阵表示 '10'10'00 1x d x y d y z z θθ?????? ? ???=- ? ??? ? ?????? ??? 还可表示为 '()z e r R d r θ=r 3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n ρ 转θ d 角, 在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψρ =。试导出转动算符),(θd n U ρ 的表达式,并由此说明,若体系在转动),(θd n U ρ 下保持不变,则体系的轨道角动量为守恒量。 解:从波函数在坐标系旋转变换下的变化规律,可导出旋转变换算符

()z e U d θr 利用 (')()()z e r U d r θψ=ψ 及 (')()r Rr ψ=ψr r 可得 ()1z e z i U d d L θθ=-r h 通过连续作无穷多次无穷小转动可得到有限大小的转动算符 绕任意轴n 转θ角的转动算符为 1U U U -+=? 为幺正算符 若 (')()()z e r U d r θψ=ψr r r 则必有 1 (')()()()()[,] z z e e z H r U d H r U d i H r d H L θθθ-==+r r r r r h 若哈密顿量具有旋转对称性,就有[,]0z H L =→角动量守恒 4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋 1=S 。 解:矢量函数在旋转变换下 后式代入前式 '(')(')[](')[](')x x y y x y z z r r e d e r d e e r e θθψ=ψ++ψ-++ψr r r r r r r r r r 又 '(')'(')'(')'(')x x y y z z r r e r e r e ψ=ψ+ψ+ψr r r r r r r r 比较得 '(')(')(') ?[1]()[1]()[1]()() x x y z x z y z x y r r d r i i d L r d d L r i d L r d r θθ θθθθψ=ψ-ψ=-ψ--ψ=-ψ-ψr r r r r h h r r h 类似可得 ?'(')()[1]()?'(')[1]()y x z y z z z i r d r d L r i r d L r θθθψ=ψ+-ψψ=-ψr r r h r r h

高等量子力学考试知识点

1、黑体辐射: 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。如果一个物体能吸收投射到它表面上的全部辐射,即吸收系数为1时,则称这个物体为黑体。 光子可以被物质发射和吸收。黑体向辐射场发射或吸收能量hv的过程就是发射或吸收光子的过程。 2、光电效应(条件): 当光子照射到金属的表面上时,能量为hv的光子被电子吸收。 临界频率v0满足 (1)存在临界频率v0,当入射光的频率v

7、一维无限深势阱(P31) 8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。 一维无限深势阱给出的波函数全部是束缚态波函数。 从(2.4.6)式还可证明,当n分别是奇数和偶数时,满足 即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是x的奇函数,我们称这时的波函数具有奇宇称。 9、谐振子(P35) 10、在量子力学中,常把一个能级对应多个相互独立的能量本征函数,或者说,多个相互独立的能量本征函数具有相同能量本征值的现象称为简并,而把对应的本征函数的个数称为简并度。但对一维非奇性势的薛定谔方程,可以证明一个能量本征值对应一个束缚态,无简并。 11、半壁无限高(P51例2) 12、玻尔磁子 13、算符 对易子 厄米共轭算符 厄米算符:若,则称算符为自厄米共轭算符,简称厄米算符 性质:(1)两厄米算符之和仍为厄米算符 (2)当且仅当两厄米算符和对易时,它们之积才为厄米算符,因为 只在时,,才有,即仍为厄米算符

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。 (2)如按这种理解 ),()(),()(),(2211t x t c t x t c t x ψψψ+=

高等量子力学第一章习题

?k ijk j i S i S S ε=],[2322212S S S S ++=> >=+0|)(!1 |n b n n ∫=++?x x x x e e d ****2φφφφπ φ高等量子力学第一章习题: 1、两个态矢量|+>和|->形成完全集。在它们所构成的Hilbert 空间中定义如下三个算符: 试证明它们满足如下对易和反对易关系: 并求出两个态矢量|+>和|->之间的翻转变换算符及算符的表 达式 2、二能级系统的哈密顿算符一般可表达为: H =a|1><1|+b|2><2|+c|1><2|+d|2><1| 其中|1>和|2>分别表示二能级的状态,形成正交归一集。 问:H 的厄密性对系数a,b,c,d 有何限制?求该系统的能量本征值及相应的本征态矢量(表示为|1>和|2>的线性叠加)。 3、已知一线性谐振子在其哈密顿表象中的本征态矢量为 其中,基态|0>满足b|0>=0,并且b 和b +与其坐标和动量算符的关系为 试求态矢量|n>转换到坐标表象表达式。 4、设某系统的哈密顿算符为:H(t)=a 1(t)J ++a 2(t)J 0+a 3(t)J - 其中a i (t),i=1,2,3为任意时间t 的函数,J +,J 0,J -为SU(1,1)群的生成元,其满足下述对易 关系:[J +,J -]=-2J 0,[J 0,J ±]=±J ± 试证明该系统的时间演化算符可表示为: U(t,0)=exp[C 1(t)J +]exp[C 2(t)J 0]exp[C 3(t)J -],并导出确定C i (t)的方程.。 5、已知算符b 和b +的对易关系为[b ,b +]=1,在b +b 对角表象的本征态矢量为 且基态满足b|0>=0,引入算符b 的本征态b|z>=z|z> 试求归一化态矢量|z>在b +b 对角表象的表示式,由基矢量组|z>构成的表象称作为相干态表象,试求态矢量|n>在相干态表象的波函数 6、题的已知条件与题5相同,并可利用题5的结果,试证明: (i )相干态表象的基矢量不具有正交性,并说明其原因。(ii)相干态表象的基矢组是完备的,完备性条件由下式给出式中,积分元由z=x+iy d 2z=dxdy 给出,证明过程中可以利用的公式有: (iii)不存在算符b +的本征右矢量。)(||||2 1+><+=?S )(||||2 3?><+=?S )(||||22?><+?+> >=+0|)(!1 |n b n n )(2b b x +=+μω?)(2 b b i p ?=+?μω∫=><1 ||2z z z d π

量子力学习题答案.

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论(一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数

(二)的情形 令 ,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为 由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数

2.3 以势阱底为零势能参考点,如图所示 (1) ∞ ∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 ∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成 由波函数归一化条件得 所以波函数 (2) ∞∞ 左中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为其中 其解为 由在右边波函数的有界性得为零 ∴ 再由连续性条件,即由 得 则 得 得 除以得 再由公式 ,注意到 令 ,

完整word版,量子力学试题(2008年)含答案,推荐文档

2008~2009郑州大学物理工程学院电子科学与技术专业 光电子方向量子力学试题(A 卷) (说明:考试时间120分钟,共6页,满分100分) 计分人: 复查人: 一、填空题:(每题 4 分,共 40 分) 1. 微观粒子具有 波粒 二象性。 2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=h ν, p=/h λ 。 3.根据波函数的统计解释,dx t x 2 ),(ψ的物理意义为:粒子在x —dx 范围内的几率 。 4.量子力学中力学量用 厄米 算符表示。 5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i =h 。 6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量 F 所得的数值,必定是算符F ?的 本征值 。 7.定态波函数的形式为: t E i n n e x t x η -=)(),(?ψ。 8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。 9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。 10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2 η± 。

二、证明题:(每题10分,共20分) 1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明: z y x L i L L? ] ?, ?[η = ] ? ? , ? ? [ ] ?, ?[ z x y z y x p x p z p z p y L L- - = ] ? ? , ? [ ] ? ? , ? [ z x y z x z p x p z p z p x p z p y- - - = ] ? , ? [ ] ? , ? [ ] ? , ? [ ] ? , ? [ z y x y z z x z p x p z p z p z p x p y p z p y+ - - = ] ? , ? [ ] ? , ? [ z y x z p x p z p z p y+ = y z z y z x x z p p x z p x p z p p z y p z p y?] ? , [ ] ? , ?[ ?] ? , [ ] ? , ?[+ + + = y z x z p p x z p z p y?] ? , [ ] ? , ?[+ = y z y z x z x z p p x z p p z x p z p y p p yz? ?] , [ ?] ?, [ ?] , ?[ ] ?, ?[+ + + = y x p i x p i y?) ( ?) (η η+ - = ] ? ? [ x y p y p x i- =η z L i?η =

相关主题
文本预览
相关文档 最新文档