当前位置:文档之家› ANSYS Beam188单元应用

ANSYS Beam188单元应用

ANSYS Beam188单元应用
ANSYS Beam188单元应用

Beam188/189单元基于Timoshenko梁理论(一阶剪切变形理论:横向剪切应变在横截面上是常数,也就是说,变形后的横截面保持平面不发生扭曲)而开发的,并考虑了剪切变形的影响,适合于分析从细长到中等粗细的梁结构。该单元提供了无约束和有约束的横截面的翘曲选项。

Beam188是一种3D线性、二次或三次的2节点梁单元。Beam189是一种3D二次3节点梁单元。每个节点有六个或者七个自由度,包括x、y、z 方向的平动自由度和绕x、y、z 轴的转动自由度,还有一个可选择的翘曲自由度。该单元非常适合线性、大角度转动或大应变非线性问题。

beam188的应力刚化选项在任何大挠度分析中都是缺省打开的,从而可以分析弯曲、横向及扭转稳定问题(进行特征值屈曲分析或(采用弧长法或非线性稳定法)破坏研究)。

Beam188/beam189单元支持弹性、塑性,蠕变及其他非线性材料模型。这种单元还可以采用多种材料组成的截面。该单元还支持横向剪力和横向剪应变的弹性关系,但不能使用高阶理论证明剪应力的分布变化。下图是单元几何示意图:该单元的几何形状、节点位置、坐标体系和压力方向如图所示,beam188 由整体坐标系的节点i 和j 定义。

对于Beam188梁单元,当采用默认的KEYOPT(3)=0,则采用线性的形函数,沿着长度用了一个积分点,因此,单元求解量沿长度保持不变;当KEYOPT(3)=2,该单元就生成一个内插节点,并采用二次形函数,沿长度用了两个积分点,单元求解量沿长度线性变化;当KEYOPT(3)=3,该单元就生成两个内节点,并采用三次形函数,沿长度用了三个积分点,单元求解量沿长度二次变化;

当在下面情况下需要考虑高阶单元内插时,推荐二次和三次选项:

1)变截面的单元;

2)单元内存在非均布荷载(包含梯形荷载)时,三次形函数选项比二次选项提供更好的结果。(对于局部的分布荷载和非节点集中荷载情况,只有三次选项有效);

3)单元可能承受高度不均匀变形时。(比如土木工程结构中的个别框架构件用单个单元模拟时)

Beam188单元的二次和三次选项有两个限制:

1)虽然单元采用高阶内插,但是b eam188的初始几何按直线处理;

2)因为内节点是不可影响的,所以在这些节点上不允许有边界(或荷载或初始)条件。

由于这些限制,所以如果b eam189模型的中间节点作用有边界(或荷载或初始)条件或者中间节点不在

单元中点时,需要注意beam188的二次选项和beam189的差异。同样,beam188的三次选项不同于传统三次(Hermitian)梁单元。

未变形的状态决定了计算扭转作用的St.Venant 翘曲函数,该翘曲函数用来定义屈服后的剪应变。Ansys

在没有提供选项来重新计算在分析过程中变形状态的横截面扭转剪力分布和横截面可能的部分塑性屈服。因此,由扭转作用引起的大的非弹性变形需要谨慎处理和验证。在这样的情况下,推荐采用solid 或者sh ell 单元来模拟。

Beam188 可以在没有方向节点的情况下被定义。在这种情况下,单元的x 轴方向为i 节点指向j 节点。对于两节点的情况,默认的y 轴方向按平行x-y 平面自动计算。对于单元平行与z 轴的情况(或者斜度在0.01%以内),单元的y 轴的方向平行与整体坐标的y 轴(如图)。用第三个节点的选项,用户可以定

义单元的x 轴方向。如果两者都定义了,那么第三节点的选项优先考虑。第三个节点(K),如果采用的话,将和i、j 节点一起定义包含单元x 轴和z 轴的平面(如图)。如果该单元采用大变形分析,需要注意这个

第三号节点紧紧在定义初始单元方向的时候有效。

Beam188/beam189 提供在积分点和界面节点输出的选项。你可以要求紧紧在截面的外表面输出。(PR SSOL 打印截面节点和截面积分点结果。应力和应变在截面的截面打印,塑性应变,塑性作用,蠕变应力在截面的积分点输出。

当与单元相关的材料有非弹性的行为或者当截面的温度在截面中有变化,基本计算在截面的积分点上运行。对于更多的普通的弹性的运用,单元运用预先计算好的单元积分点上的截面属性。无论如何,应力和应变通过截面的积分点输出来计算。

如果截面指定为ASEC 亚类,仅仅广义的应力和应变(轴力、弯距、横向剪切、弯曲、剪应力)能够输出。3-D 轮廓线和变形形状不能输出。ASEC 亚类紧紧可以作为细矩形来显示来定义梁的方向。

Beam188/beam189 能够对组合梁进行分析,(例如,那些由两种或者两个以上材料复合而成的简单的实体梁)。这些组件被假设为完全固接在一起的。因此,该梁表现为一单一的元件。

多材料截面能力仅仅在梁的行为假定(铁木辛哥或者伯努力欧拉梁理论)成立的时候能运用。

用其他的话说,支持简单的传统铁木辛哥梁理论的扩展。在这些地方可能应用到:

& #8226; 双层金属带

& #8226; 带金属加固的梁

& #8226; 位于不同材料组成的层上的传感器

Beam188/beam189 计算在截面刚度水平上的弯距和扭距的耦合。横向的剪切也作为一个独立的量来

计算。这对于分层的组合物和夹层量可能会有很大的影响,如果街头处不平衡。

Beam188/189 没有用高阶理论来计算剪切应力的变更贡献,如果这些作用必须考虑的话,就需要运用ANSYS 实体单元。

要使beam188/beam189 用于特殊的应用,作试验或者其他的数值分析。在合适验证后使用对于组合

截面的约束扭曲的选项

对于质量矩阵和一致荷载向量的赋值,比刚度矩阵使用的规则更高阶积分规则被使用到。单元支持一致质量矩阵和集中质量矩阵。用LUMPM,ON 命令来激活集中质量矩阵。一致质量矩阵时默认使用的。每单位长度的附加质量将用ADDMAS 截面控制来输入,参见"BEAM188 Input Summary"。

在节点(这些截面定义了单元的x 轴)上施加力,如果重心轴和单元的x 轴不是共线的,施加的轴力将产生弯距。如果质心和剪切中心不是重合的,施加的剪切力将导致扭转应力和弯曲。因而需要设置节点在那些你需要施加力的位置。可以适当的使用secoffset 命令中的offsety 和offsetz 自变量。默认的,ansys

会使用量单元的质心作为参考轴。

单元荷载在Node and Element Loads 被描述。压力可能被作为单元表面力被输入,就像Figure 188. 1: "BEAM188 Geometry"中带圈的数字所示。正的压力指向单元内部。水平压力作为单元长度的力来输入。端部的压力作为力输入。

当keyopt(3)=0 的时候(默认),beam188 基于线性多项式,和其他的基于厄密多项式的单元(例如bea

m44)不同,一般来说要求网格划分要细化。

当keyopt(3)=2,ansys 增加了一个中间积分点在内插值图标,有效的使得单元成为基于二次型功能的铁木辛哥梁。这个选项迫切被要求,除非这个单元作为刚体使用,而且你必须维持和一阶shell 单元的兼

容性。线性变化的弯距被经且的表现。二次选项和beam189 相似,有如下的不同:

& #8226; 不论是否使用二次选项,beam188 单元最初始的几何总是直线。

& #8226; 你不能读取中间节点,所以边界条件/荷载不能在那些节点描述。

均布荷载是不允许描述偏移的。不支持非节点的集中力。用二次选项(keyopt (3)=2 当单元大和契型

截面相关。

温度可以作为单元的体力在梁的每个端部节点的三个位置输入,单元的温度在单元的x 轴被输入(T(0,0),和在离开x 轴一个单元长度的y 轴(T(1,0)),和在离开x 轴一个单元长度的z 方向(T(0,1))。第一

坐标温度T(0,0) 默认是TUNIF。如果所有的温度在第一次以后是没有指明的,那么它们默认的就为第一

次输入的温度。如果所有i 节点的温度均输入了,j 节点的都没有指明,那么j 节点的温度默认的是等于i 节点的温度。对于其他的输入模式,没有指明的温度默认的是TUNIF。

你可以对该单元通过istress 和isfile 命令来定义初始应力状态。要获取更多的信息,可以参考ANSY S Basic Analysis Guide的Initial Stress Loading。可以替换的,你可以设置keyopt(10)=1 来从用户的子程序ustress 来读取出初始应力。关于用户子程序的详细资料,参见ANSYS User Programmable Features 的指南。

应力刚化作用在单元中没有自动计算,如果对应力刚化作用需要非对称矩阵,使用nropt,unsym。

在"BEAM188 Input Summary"给出单元的输入总结。

BEAM188 Input Summary

节点

I, J, K (K, 方向点,可选但被要求)

自由度

UX, UY, UZ, ROTX, ROTY, ROTZ if KEYOPT(1) = 0 UX, UY, UZ, ROTX, ROTY, ROTZ, WA RP if KEYOPT(1) = 1 Section Controls

截面控制

TXZ, TXY, ADDMAS (See SECCONTROLS) (TXZ and TXY default to A*GXZ and A*GXY, res pectively, where A = cross-sectional area) TXZ 和TXY 默认分别是A×GXZ 和A×GXY,这里A 是截面面积Material Properties

材料属性

EX, (PRXY or NUXY), ALPX, DENS, GXY, GYZ, GXZ, DAMP

表面力

压力

face 1 (I-J) (-z normal direction),

face 2 (I-J) (-y normal direction),

face 3 (I-J) (+x tangential direction),

face 4 (J) (+x axial direction),

face 5 (I) (-x direction).

(用负数表示作用方向相反)

I 和j 是端节点

体力

温度

T(0,0), T(1,0), T(0,1) at each end node

特殊特征

Plasticity 塑性

Viscoelasticity 粘弹性

Viscoplasticity 粘弹性

Creep 蠕变

Stress stiffening 应力刚化

Large deflection 大挠曲

Large strain 大应变

Initial stress import 初始应力引入

Birth and death (requires KEYOPT(11) = 1) 单元的生死(要求keyopt(11)=1) Automatic selection of element technology 自动选择单元技术。支持下列用TB 命令相关的数据表种类: BISO,MISO, NLISO, B KIN, MKIN, KINH, CHABOCHE, HILL, RATE, CREEP, PRONY,SHIFT, CAST, and USER.

Note

对于材料模型细节可以参见ANSYS, Inc. Theory Reference 对于更多的关许单元技术选择的信息可以参见Automatic Selection of Element Technologies 和ETCONTROL

KEYOPT(1)

扭转自由度

0 --

默认;六个自由度,不限制扭转

1 --

7 个自由度(包括扭转),双力矩和双曲线被输出

KEYOPT(2)

截面缩放比例

0 --

默认;截面因为轴线拉伸效应被缩放;当大变形开关打开的时候被调用。

1 --

截面被认为是刚性的(经典梁理论)

KEYOPT(3)

插值数据

0 --

默认;线性多项式。要求划分细致。

2 --

二次型(对于铁木辛哥梁单元有效)运用中间节点(中点点用户无法修改)来提高单元的精度,能够精确的表示线性变化的弯距。

KEYOPT(4)

剪应力输出

0 --

默认;仅仅输出扭转相关的剪应力

1 --

仅仅输出弯曲相关的横向剪应力。

2 --

紧紧输出前两种方式的组合状态。

KEYOPT(6)

在单元积分点输出控制

0 --

默认;输出截面力、应变、和弯距

1 --

和keyopt(6)=0 相同,加上当前的截面单元

2 --

和keyopt(6)=1 相同加上单元基本方向(X、Y、Z)

3 --

输出截面力、弯距和应力、曲率,外推到单元节点。

Note

仅仅当outpr ,esol 是激活状态的时候,Keyopt(6)通过keyopt(9) 来激活。当keyopt(6) 、(7)、(8)和(9)都激活的时候,在单元输出中的应变是总应变。这个“总”包括温度应变。当单元材料是有塑性的时候,能够提供塑性应变和塑性作业。在/post1,可替换的运用prssol 命令。

KEYOPT(7)

输出控制在截面积分点(当截面的亚类为ASEC 的时候不可用)

0 --

默认;无

1 --

最大和最小应力、应变

2 --

和keyopt(7)=1 相同,加上每个截面点山的应力和应变。

KEYOPT(8)

输出控制在截面节点(当截面亚类为ASEC 的时候不可用)

0 --

默认;无

1 --

最大和最小应力、应变

2 --

和keyopt(8)=1 相同,加上沿着截面外表面的应力和应变。

3 --

和keyopt(8)=1 相同,加上每个截面节点的应力和应变。

KEYOPT(9)

在单元节点和截面节点外推数值用的输出控制(当节点亚类为ASEC 的时候不可用) 0 --

默认;无

1 --

最大和最小应力、应变

2 --

和keyopt(9)=1 相同,加上沿着截面外边缘的应力应变

3 --

和keyopt(9)=1 相同,加上所有截面节点的应力和应变。

KEYOPT(10)

用户定义初始应力

0 --

无用户子程序来提供初始应力(默认)

1 --

从用于子程序ustress 来读取初始应力。

Note

参考Guide to ANSYS User Programmable Features帮助用户书写子程序。KEYOPT(11)

设置截面属性

0 --

自动计算是否能够提前积分截面属性。(默认)

1 --

用户单元数值积分(在生/死功能的时候要求)

KEYOPT(12)

契型截面处理

0 --

线性变化的契型截面分析;截面属性在每个积分点计算(默认),这种方法更加精确,但是计算量大。

1 --

平均截面分析;对于契型截面单元,截面属性仅仅在中点计算。这是划分网格的阶数的估计,但是,速度快。

Beam188 的输出数据

这种单元用两种方式计算输出

& #8226; 节点唯一和反应包括全部节点的计算。

& #8226; 附加的单元输出在Table 188.1: "BEAM188 Element Output Definitions" 描述。

在需要的地点,ansys 要求keyopt(8)=2 和keyopt(9)=2,参考ANSYS Basic Analysis Guide来找到查看结果的方法。

要看beam188 的3-D 变形形状,运用OUTRES,MISC 或者OUTRES 命令,所有的静态和瞬态分析的命令。要观察模态分析和特征值屈曲分析的3-D 模态形状,必须用激活单元结果扩展模态(MXPAND 命令Elcalc=YES 的选项)

对于梁设计很常规的是使用轴力成分,轴力由轴向荷载和在各个端点的弯曲独立提供。因此,beam1 88 提供线性的应力输出作为它的SMISC 输出命令的一部分,由下面的定义来指示:

SDIR 是轴力引起的应力分量。

SDIR=FX/A,这里FX 是轴力(SMISC 的数值为1 和14),A 表示截面面积。

SBYT 和SBYB 是弯曲应力分量。

SBYT = -MZ * ymax / Izz

SBYB = -MZ * ymin / Izz

SBZT = MY * zmax / Iyy

SBZB = MY * zmin / Iyy

这里MY、MZ 是弯距(SMISC 数值是2、15、3、16)。坐标ymax, ymin, zmax, 和zmin 是y 和z 坐标的最大和最小值。数值Iyy 和Izz 是截面惯性距。对于ASEC 梁截面,ANSYS 用最大和最小截面尺度,对于ASEC 种类的截面,最大最小的Y 和Z 方向直接分别假定在+0.5 到-0.5。

单元应力的相应定义:

EPELDIR = EX EPELBYT = -KZ * ymax

EPELBYB = -KZ * ymin

EPELBZT = KY * zmax

EPELBZB = KY * zmin

这里EX、KY 和KZ 是总应力和曲率(SMISC 数值是7,8,9, 20,21 和22)

输出的应力仅仅对于单元的弹性行为严格有效。Beam188 总是组合应力来支持非线性材料的行为。当单元和非线性材料相关的时候,组合应力最好作为线性近似来对待,应该谨慎的说明。

单元运用以下符号输出定义表格:

在name 列的冒号表示该项目可以通过构成名字的方法来获得[ETABLE, ESOL]。第0 列表示该项有效的说明在文件Jobname.OUT 中。R 列表示该项的结果显示在results 文件中。

无论在0 还是R 列中,Y 表示该项一直是可用的。数值表示描述哪里该项是选择性提供的脚注,-表示该项不提供。

Beam188/beam189 基于三应力成分的表述。

.单轴

.双向剪切成分

剪切应力由扭转和横向荷载引起。Beam188/beam189 基于一阶剪切变形理论,和广泛知道的铁木辛哥梁理论。横向剪切应变对于截面是常数,因此基于横向剪应力剪切能量。建立通过提前确定的梁横截面剪应力分布系数重新分布,可以用于输出的目的。默认的,ansys 将仅仅输出扭转荷载导致的剪应力,ke yopt(4) 用来激活由屈曲和横向荷载引起的剪切应力的输出。

横向剪应力的分布的精度和截面模型的单元划分精度直接成比例关系(为了定义翘曲、剪切重心和其他截面几何属性)。截面边缘的牵引自由状态仅仅在截面定义合适的模型适用。

默认的,ansys 运用划分网格的密度(对于截面模型),这个密度提供扭转硬化、翘曲硬化和惯性属性、剪切中心定义的精确结果。默认的网格划分运用对于非线性材料的计算也是合适的。然而,如果由横向力引起的剪应力分布如果要十分精确的捕捉的话需要更多的截面模型的定义。注意:增加截面网格划分的尺寸,并不是导致更大的计算量,如果相关的材料是线性的话。Sectype 和secdata 命令描述允许定义截面网格划分的密度。

横向剪应力分布计算忽略了泊松比的效应。泊松比对剪切修正因子和剪切应力分布有轻微的影响。

Beam188 假定和约束

梁不能0 长度

默认的(keyopt(1)=0)翘曲约束效应假定为忽略的。

截面失效和折叠不计算。

转动自由度在集中质量矩阵时不计算,如果存在偏移的话。

对于土木工程建立框架模型和典型多层结构模型而言每个构件运用单一单元时一种普通的实践。因为横向位移的三次插值,beam4 和beam44 对于这样一种方法更合适。然而,如果beam188 需要有那样的需要,确定对于每个构件运用几种单元。Beam188 包括横向剪力的效应。

单元采用完整的牛顿-拉夫森方法计算最好(那是默认的计算控制选项)。对于非线性问题,那由大转动决定,要求不可以使用pred,on。

注意仅仅可以分析适当厚度的梁。参考"BEAM188 Input Data"来获取更多信息。

当一种截面有多种材料复合的时候,/eshape 用来提出应力等值线(和其他数值),单元平均通过材料边缘的应力。为了限制这样的行为,在材料周围运用小截面元。没有输入选项来通过这样的行为。

当用SSTIF,ON 定义应力强化时,在几何非线性分析(NLGEOM,ON) 适用。在几何线性分析中是忽略的(NLGEOM,OFF)。预应力可以通过pstres 命令激活。

结构设计基本荷载计算

荷载 1.墙体荷载: 1). 外墙(烧结页岩多孔砖容重14.0 kN/m3):(卫生间除外) 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 考虑建筑节能0.6kN/m2取∑: 4.64kN/m2 考虑装修抹灰取∑: 4.7kN/m2 G=4.7kN/m2×(H--梁高)×0.8= 内墙(加气混凝土砌块8.0 kN/m3):(卫生间除外) 20厚混合砂浆:17×0.020=0.34 kN/m2 200厚墙体:8.0×0.20=1.60 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.24 kN/m2 考虑装修抹灰取∑: 2.3kN/m2 G=2.3kN/m2×(H--梁高)= 女儿墙(烧结页岩多孔砖容重14.0 kN/m3): 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 G=4.04kN/m2×H+压顶自重= 2). 卫生间外墙(烧结页岩多孔砖容重14.0 kN/m3):

外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 内墙面砖:0.5 kN/m2 ∑: 4.54 kN/m2 考虑建筑节能0.6kN/m2取∑: 5.14kN/m2 G=5.14kN/m2×(H--梁高)= ). 卫生间内隔墙(烧结页岩多孔砖容重14.0 kN/m3): 单面面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 100厚墙体:14.0×0.20=1.40 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.64 kN/m2 G=3.14kN/m2×(H--梁高)= 2.屋面荷载: 1). 种植屋面:(从上到下) 300厚种植土:16×0.3=4.8 kN/m2 干铺聚酯纤维无纺布一层:0.10 kN/m2 (3+3)双层SBS改性沥青防水卷材:0.35 kN/m2 20厚憎水膨胀珍珠岩找坡:4×(0.02+10×2%)=0.88 kN/m2 60厚岩棉板: 2.5×0.06=0.15 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 150厚结构板:27×0.15=4.05kN/m2 10厚板底抹灰:10×0.020=0.2 kN/m2 ∑:10.88kN/m2

有限元单元的选择

单元类型的选择 单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)beam3是2D的梁单元,只能解决2维的问题。 2)beam4是3D的梁单元,可以解决3维的空间梁问题。 3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell 单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。 除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。通常情况下,shell63单元就够用了。 3.实体单元的选择。 实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。常用的实体单元类型有solid45, solid92,solid185,solid187这几种。 其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。 实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢? 如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。 新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。

Beam188-189用法

梁的概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元可以效率更高的求解。 两种新的有限元应变单元,BEAM188和BEAM189,提供了更强大的非线性分析能力,更出色的截面数据定义功能和可视化特性。参阅ANSYS Elements Reference中关于BEAM188和BEAM189的描述。 何为横截面? 横截面定义为垂直于梁的轴向的截面形状。ANSYS提供了有11种常用截面形状的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9结点的数值模型来确定梁的截面特性(lyy,lzz等),并求解泊松方程得到弯曲特征。横截面和用户自定义截面网格划分将存储在横截面库文件中。可以用LATT命令将梁横截面属性赋给线实体。这样,横截面的特性将在用BEAM188或BEAM189对该线划分网格时包含进去。 如何生成横截面 用下列步骤生成横截面: 1.定义截面并与代表相应截面形状的截面号关联。 2.定义截面的几何特性数值。 ANSYS中提供了下表列出的命令完成生成、查看、列表横截面和操作横截面库的功 能:参阅ANSYS Commands Reference可以得到横截面命令的完整集合。 定义截面并与截面号关联 使用SECTYPE命令定义截面。下面的命令将截面号2与定义号的横截面形状(圆 柱体)关联: 命令:SECTYPE,2,BEAM,CSOLID SECDATA,5,8 SECNUM,2 GUI: Main Menu>Preprocessor>Settings>-Beam-Common Sects Main Menu>Preprocessor>-Attributes-Define>Default Attribs 要定义自己的横截面,使用子形状(ANSYS提供的形状集合)MESH。要定义带特殊 特性如lyy和lzz的横截面,使用子形状ASEC。 定义横截面的几何特性数值 使用SECDATA命令定义横截面的几何数值。下面的命令将用SECTYPE命令定义的尺寸 赋值给横截面。CSOLID形状有两个尺寸:半径和周长上的格栅数目。 命令:SECDATA,4,6 GUI: Main Menu>Preprocessor>Sections>-Beam-Common Sects 用BEAM188/BEAM189单元划分线实体 在用BEAM188/BEAM189单元划分线实体前,要定义一些属性,包括: l 要划分线的梁单元类型 l 生成梁单元的横截面特性号 l 以梁单元轴向为基准的横截面定位 l 生成梁单元的材料特性号

结构设计荷载计算(模板)

第三医院荷载计算 面层荷载 一、屋面荷载:(上人屋面) 25厚水泥花砖0.60(kN/m2) 20厚水泥砂浆20×0.020=0.40(kN/m2) 防水层0.40(kN/m2) 20厚水泥砂浆找平层20×0.020=0.40(kN/m2) 水泥焦渣找坡层 1.60(kN/m2) 60厚高密度聚苯板保温层2×0.06=0.12(kN/m2) 水泥砂浆找平层0.40(kN/m2) 120厚钢筋混凝土屋面板25×0.12=3.00(kN/m2) 170厚钢筋混凝土屋面板2) 吊顶0.50(kN/m2) 静荷载总计2) 活荷载总计(上人屋面) 2.00(kN/m2) 二、首层楼面荷载:

隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计10.50(kN/m2) 活荷载(考虑施工堆载)总计 5.00(kN/m2) 三、首层(CT、MRI有地沟)楼面荷载 100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计8.00(kN/m2) 活荷载总计8.00(kN/m2) CT、MRI围护墙恒荷载30.00(kN/m2) 四、四层以下楼面荷载:(生化、免疫、试验室、护士站等) 隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2) 结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2) 结构层170厚钢筋混凝土板2) 吊顶0.50(kN/m2) 静荷载总计2)

有限元分析中常用单元类型与单位制

SOLID45 3-D结构实体单元 产品:MP ME ST <> <> PR <> <> <> PP ED SOLID45单元说明 solid45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度. 单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变能力。有用于沙漏控制的缩减积分选项。有关该单元的细节参看ANSYS, 理论参考中的SOLID45部分。类似的单元有适用于各向异性材料的solid64单元。Solid45单元的更高阶单元是solid95。 图 45.1 SOLID45几何描述 SOLID45输入数据 该单元的几何形状、结点位置、坐标系如图45.1: "SOLID45 几何描述"所示。该单元可定义8个结点和正交各向异性材料。正交各向异性材料方向对应于单元坐标方向。单元坐标系方向参见坐标系部分。 单元荷载参见结点和单元荷载部分。压力可以作为表面荷载施加在单元各个表面上,如图45.1: "SOLID45 几何描述"所示。正压力指向单元内部。可以输入温度和流量作为单元节点处的体载荷。节点 I 处的温度 T(I) 默认为 TUNIF。如果不给出其它节点处的温度,则默认等于 T(I)。对于任何其它的输入方式,未给定的温度默认为 TUNIF。对于流量的输入与此类似,只是默认值用零代替了TUNIF。 KEYOPT(1)用于指定包括或不包括附加的位移形函数。KEYOPT(5)和KEYOPT(6)提供不同的单元输出选项(参见单元输出部分)。

当KEYOPT(2)=1时,该单元也支持用于沙漏控制的均匀缩减(1点)积分。均匀缩减积分在进行非线性分析时有如下好处: ?相对于完全积分选项而言,单元刚度集成和应力(应变)计算需要更少的CPU时间,而仍能获得足够精确的结果。 ?当单元数量相同时,单元历史存储记录(.ESAV 和 .OSAV)的长度约为完全积分(2×2×2)的1/7。 ?非线性分析的收敛性通常远比采用额外位移形状的完全积分要好;即,KEYOPT(1) = 0, KEYOPT(2) = 0。 ?分析结果不会受(由塑性或其它不可压缩材性引起的)体积锁死的影响。 采用均匀缩减积分有以下缺点: ?当采用相同网格进行弹性分析时,结果显然不如完全积分方法精确。 ?采用单层单元时不能很好的得到结构的弯曲特性(例如,一根悬臂梁,受横向集中力,采用单层单元)。建议采用4层单元。 当采用均匀缩减积分选项时(KEYOPT(2) = 1 –这和SOLID185用KEYOPT(2) = 1是一样的),应对总能量 (ETABLE命令,SENE 标识符)和沙漏造成的伪能量 (ETABLE命令,AENE 标识符) 进行比较以检查结果的精度。如果沙漏能与总能量之比小于 5%,结果一般是可以接受的。如果该比值超过5%,则需细化网格。也可以在求解阶段用OUTPR,VENG 命令控制总能量和沙漏能。更多说明见ANSYS理论手册。 可用ISTRESS或者ISFILE命令给单元施加初始应力状态。更多信息参见ANSYS基础分析纸指南中的施加初始应力部分。你也可以用KEYOPT(9) = 1来从用户子程序中读取初应力USTRESS。关于用户子程序的细节,参见《ANSYS UPF 指南》。 在进行几何非线性分析时,可以使用SOLCONTROL,,,INCP 命令来包含压力的影响。在线性特征值屈曲分析中自动包括压力载荷刚度效应。如果需要非对称的压力载荷刚度效应矩阵,使用NROPT,UNSYM 命令。 该单元的输入概要参见"SOLID45 输入数据摘要". 单元输入数据的一般性描述参见单元输入部分。 SOLID45单元输入数据摘要 节点 I,J,K,L,M,N,O,P 自由度 UX,UY,UZ 实常数 HGSTF-沙漏控制因子,仅当KEYOPT(2) = 1时需要设置。 注: 有效值为任意正数,默认为1.0。建议值为1到10之间。 材料参数 EX, EY, EZ, PRXY, PRYZ, PRXZ (或NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (或CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP 表面载荷 压力—

ansys中的Beam188单元中文说明

BEAM188中文说明 BEAM188 — 3-D 线性有限应变梁 (基于Ansys 5.61的help) MP ME ST PR PP ED 元素描述 BEAM188 适用于分析细长的梁。元素是基于Timoshenko 梁理论的。具有扭切变形效果。 BEAM188 是一个二节点的三维线性梁。BEAM188 在每个节点上有6或7个自由度,(自由度)数目的变化是由KEYOPT(1)来控制的。当KEYOPT(1) = 0时(默认), 每节点有6个自由度。分别是沿x,y,z的位移及绕其的转动。当KEYOPT(1) = 1时,会添加第七个自由度(翘曲量) 。 此元素能很好的应用于线性(分析),大偏转,大应力的非线性(分析)。BEAM188包含应力刚度,在默认情况下,在某些分析中由NLGEOM来打开。在进行弯曲(flexural),侧向弯曲(lateral), 和扭转稳定性(torsional stability)分析时,应力刚度应该是被打开的。 BEAM188 能够采用SECTYPE, SECDATA, SECOFFSET, SECWRITE,和SECREAD来定义任何截面(形状)。. 弹性(elasticity),蠕变(creep),和塑性(plasticity)模型都是允许的(不考虑次截面形状)。 图1. BEAM188 3-D 线性有限应变梁 输入数据

(元素的)几何形状,节点为止,即元素坐标系图示于BEAM188。BEAM188在模型坐标系中是由节点I 和节点J 来定义的。节点K 是必需的元素方向点定义。有关方向点的相关信息详见Generating a Beam Mesh With Orientation Nodes在ANSYS Modeling and Meshing Guide中。于LMESH和LATT命令说明中可见节点K 的自动定义的详细说明。 在空间中这是一个没有量纲的元素。截面形状是用SECTYPE和SECDATA命令(详见ANSYS Commands Reference )来独立定宓摹C恳桓鼋孛嫘巫淳 囟ㄒ桓?ID 号(SECNUM)。截面号是特定的元素属性。 梁元素是基于Timoshenko 梁理论的,这是一个一阶切应变理论:横向切应变在截面中是常量;也就是说截面在变形后仍是平面。BEAM188是一阶Timoshenko 梁元素,它用一个点在长度上来(代替截面)。应此当在节点I 和J 上使用SMISC参数的话会显示每个端点节点的形心。BEAM188 能被用于细长(slender)或粗壮(stout???)的梁。因为一阶切应变理论的限制,自有适当厚度的梁能被分析。梁结构上的细长比(GAL2/(EI)) 能够用来判断是否采用此元素: G切变模数 A截面面积 L构件长度 EI弯曲刚度 在整体(偏移)距离而不是单个元素的情况下记录这个比值是重要的。悬臂梁受向下的负载提供了悬臂梁在受向下的负载的情况下横向切应变的一个估评。虽然这个结果不能外推到所有的情况,但可以作为一个指导。我们推荐细长比应大于30 。 图2. 悬臂梁受向下的负载 细长比(GAL2/(EI)>30)Timoshenko/

ANSYS_Beam188单元应用

Beam188/189单元基于Timoshenko梁理论(一阶剪切变形理论:横向剪切应变在横截面上是常数,也就是说,变形后的横截面保持平面不发生扭曲)而开发的,并考虑了剪切变形的影响,适合于分析从细长到中等粗细的梁结构。该单元提供了无约束和有约束的横截面的翘曲选项。 Beam188是一种3D线性、二次或三次的2节点梁单元。Beam189是一种3D二次3节点梁单元。每个节点有六个或者七个自由度,包括x、y、z 方向的平动自由度和绕x、y、z 轴的转动自由度,还有一个可选择的翘曲自由度。该单元非常适合线性、大角度转动或大应变非线性问题。 beam188的应力刚化选项在任何大挠度分析中都是缺省打开的,从而可以分析弯曲、横向及扭转稳定问题(进行特征值屈曲分析或(采用弧长法或非线性稳定法)破坏研究)。 Beam188/beam189单元支持弹性、塑性,蠕变及其他非线性材料模型。这种单元还可以采用多种材料组成的截面。该单元还支持横向剪力和横向剪应变的弹性关系,但不能使用高阶理论证明剪应力的分布变化。下图是单元几何示意图:该单元的几何形状、节点位置、坐标体系和压力方向如图所示,beam188 由整体坐标系的节点i 和j 定义。 对于Beam188梁单元,当采用默认的KEYOPT(3)=0,则采用线性的形函数,沿着长度用了一个积分点,因此,单元求解量沿长度保持不变;当KEYOPT(3)=2,该单元就生成一个内插节点,并采用二次形函数,沿长度用了两个积分点,单元求解量沿长度线性变化;当KEYOPT(3)=3,该单元就生成两个内节点,并采用三次形函数,沿长度用了三个积分点,单元求解量沿长度二次变化; 当在下面情况下需要考虑高阶单元内插时,推荐二次和三次选项: 1)变截面的单元; 2)单元内存在非均布荷载(包含梯形荷载)时,三次形函数选项比二次选项提供更好的结果。(对于局部的分布荷载和非节点集中荷载情况,只有三次选项有效); 3)单元可能承受高度不均匀变形时。(比如土木工程结构中的个别框架构件用单个单元模拟时) Beam188单元的二次和三次选项有两个限制: 1)虽然单元采用高阶内插,但是beam188的初始几何按直线处理; 2)因为内节点是不可影响的,所以在这些节点上不允许有边界(或荷载或初始)条件。

05-结构设计荷载取值的归纳和总结

结构设计荷载取值的归纳和总结: 注:荷载规范里面存在加“*”,需参照“建筑装修面层做法”“全国民用建筑工程技术措施” 一、关于板荷载 (1)楼板 1、一般楼板(不带地暖):[恒]:自重+(为普通细石砼楼面) [活]:*用途 *空洞周围一跨、长度较长的建筑的板厚适当加大120且配筋采用双层双向配筋。 悬挑楼板[活]:取+,大房间取 2、带地暖楼板:[恒]:自重+(常80厚采暖层) [活]:*用途 3、*根据活动的人和设施状况,民用建筑楼面活荷载取值原则 ①活动的人很少, ②活动的人较多且有设备, ③活动的人很多且有较重设备, ④活动的人很集中,有时很挤或有较重设备, ⑤活动的性质比较剧烈, ⑥储存物品的仓库, ⑦有大型的机械设备,~ 4、各种用途的[活]荷载: A.*1(1) 住宅、宿舍、旅馆、办公楼(视情况取~)、医院病房、 托儿所、幼儿园: *1(2) 试验室、阅览室、会议室、医院门诊室: 休息室:(含贵宾休息室) EMI试验室:(经验) 网络通信室:(经验) 会所:(一般房间取,活动的人较多的房间取比较合适) ①学校建筑: 书画教室 琴房 音乐培训室 耳光室 广播室 阶梯教室:(全国) 科技教室 多媒体教室 乒乓球室 信息服务箢 便利店 道具间 多功能厅 跆拳道练习馆 屋顶溜冰场 器材间 ①医院(全国民用建筑工程设计技术措施-结构): X光室:1、30MA移动式X光机 2、200MA诊断X光机 3、200kV治疗机 4、X光存片室 口腔科:1、201型治疗台及电动脚踏升降椅 2、205型、206型治疗台及3704型椅 消毒室:1、1602型消毒柜 2、2616型治疗台及3704型椅 消毒室:3000型、3008型万能手术床及3001型骨科手术台 产房:设3009型产房 血库:设D-101型冰箱 A0.* 11 走廊、门厅: (1)住宅、宿舍、旅馆、医院病房、托儿所、幼儿园: (2)办公楼、餐厅、医院门诊部 (3)教学楼及其他可能出现人员密集的情况 (电梯门外审查师要求) A1.* 12 楼梯:(楼梯部分另详) (1)多层住宅 (2)其他(消防疏散楼梯常用) A2.* 10 浴室、卫生间、盥洗室:(卫生间部分另详) A3.* 13 阳台:(阳台部分另详) (1)可能出现人员密集的情况 (2)其他 B.*2 教室、食堂、餐厅、一般资料档案室:(用餐地方) *9 厨房(1)餐厅的:(做饭地方) (2)其他的:(一般) C.*3(1) 礼堂、剧场、影院、有固定座位的看台: *4(2) 无固定座位的看台: 房:*3(2) 公共洗衣房: *5(1) 健身房、演出舞台: *7 通风机房、电梯机房:(电梯部分另详) 空调机房: 发电机房、变配电房:10 库房、药房等*房: 微机电子计算机房 D.*4(1) 商店、展览厅、车站、港口、机场大厅及其旅客等候车室: *5(2) 运动场、舞厅: 厅:(应该指住宅厅) E.*6(1) 书库、档案室、贮藏室:(当>2m,每米高[活]≥m2) *6(2) 密集柜书库:(无过道) 资料室: 住宅书房: F.*8 汽车通道及客车停车库: 客车:(1)单向板(Ln≥2m)和双向板(Ln≥3mx3m) (2)双向板、无梁楼盖(Ln≥6mx6m) 消防车: (1)单向板(Ln≥2m)和双向板(Ln≥3mx3m) (2)双向板、无梁楼盖(Ln≥6mx6m) 客车:载人<9人;消防车:满载总重300kN的大型卡车 不符合上述情况,直接按车轮局部荷载计算板内力, 客车局部荷载(*);消防车60/(*) 地下室小型汽车停车库:; (2)楼梯 1、板厚取0:[恒]:(平台板取,注意荷载两边倒) [活]:(消防楼梯、其他按荷规;*密集人流≥) 2、也可以将荷载分成均布/集中荷载加到梁上。 3、电梯间外面板的活荷载(小空间/大空间) 4、钢梯悬挑板:[恒]:自重+(考虑到栏杆等) [活]: (3)卫生间、隔墙 1、一般卫生间降板50~100(高差、荷载详建筑面层做法);箱降卫生间降板 350 2、[恒]:A.普通卫生间:[恒]:自重+(前室/蹲位间,共卫) B.沉箱卫生间:[恒]:自重+(经验) 3、[活]:A.*不带浴缸:(第1项/其他民用、公共) B.带浴缸、坐厕、按摩式浴缺: C.分隔蹲公共卫生间(包含填料、隔墙):实际 4、上面为普通楼面[恒]+ [活]计算,也可以把[恒]增加,[活]按普通卫 生间考虑。[恒]/ [活]:[~]/[]。 5、*对固定隔墙的自重应按恒载考虑,可将其荷载转化为面[恒]+2(视 实际) *非固定隔墙的自重可取每延米长墙重的1/3作为楼面[活]的附加 值,且≥ kN/m2(但[活]>4时,≥ kN/m2)。 (4)阳台、露台、厨房、集分水器间、水电井 1、阳台:[恒]:自重+(详隔墙与建施)当阳台下面为房间时取 * [活]:(一般情况/人群密集) 2、露台:[恒]:自重+(详隔墙与建施)当露台下面为房间时取 [活]: 3、厨房:[恒]:自重+(详建施) * [活]:(一般的/餐厅的) 4、集分水器间:[恒]:自重+(详建施) [活]:(建议取) 5、水电井:[恒]:自重+(详建施) [活]: (5)空调板、凸窗、楼面挑板、雨篷板、防火挑檐 1、空调板:板厚常取100:[恒]:自重+(砼板+抹灰=) [活]:(单个/双个空调). 2、凸窗:[恒]:自重+(不确定) [活]: 3、楼面挑板:[恒]:自重+(不确定) [活]: 4、雨篷板: [恒]:自重+(砼板+抹灰=) [活]:. 5、空调板、雨篷板等悬挑板均折成线荷载加到梁上,荷载:[恒]+[使 用荷载](无特殊荷载常取∑总=);钢雨篷 kN/m 6、防火挑檐:,取恒线恒载m (6)屋面(100~120厚) 1、平屋面:[恒]:自重+(详建施,比较正式取;简单做法也取) 1

Beam188

Beam188 3 维线性有限应变梁单元 Beam188 单元描述 Beam188 单元适合于分析从细长到中等粗短的梁结构,该单元基于铁木辛哥梁结构理论,并考虑了剪切变形的影响。 Beam188 是三维线性(2 节点)或者二次梁单元。每个节点有六个或者七个自由度,自由度的个数取决于KEYOPT(1)的值。当KEYOPT(1)=0(缺省)时,每个节点有六个自由度;节点坐标系的x、y、z 方向的平动和绕x、y、z 轴的转动。当KEYOPT(1)=1 时,每个节点有七个自由度,这时引入了第七个自由度(横截面的翘曲)。这个单元非常适合线性、大角度转动和/并非线性大应变问题。 当NLGEOM 打开的时候,beam188 的应力刚化,在任何分析中都是缺省项。应力强化选项使本单元能分析弯曲、横向及扭转稳定问题(用弧长法)分析特征值屈曲和塌陷)。 Beam188/beam189 可以采用sectype、secdata、secoffset、secwrite 及secread 定义横截面。本单元支持弹性、蠕变及素性模型(不考虑横截面子模型)。这种单元类型的截面可以是不同材料组成的组和截面。 Beam188 从 6.0 版本开始忽略任何实参数,参考seccontrols 命令来定义横向剪切刚度和附加质量。 单元坐标系统(/psymb,esys)与beam188 单元无

关。 下图是单元几何示意图: BEAM188 输入数据 该单元的几何形状、节点位置、坐标体系如图“BEAM Geometry”所示,beam188 由整体坐标系的节点i 和j 定义。 节点K 是定义单元方向的所选方式,有关方向节点和梁的网格划分的信息可以参见ANSYS Modeling and Meshing Guide中的Generating a Beam Mesh With Orientation Nodes。参考lmesh 和latt 命令描述可以得到k 节点自动生成的详细资料。 Beam188 可以在没有方向节点的情况下被定义。在这种情况下,单元的x 轴方向为i 节点指向j 节点。对于两节点的情况,默认的y 轴方向按平行x-y 平面自动计算。对于单元平行与z 轴的情况(或者斜度在0.01%以内),单元的y 轴的方向平行与整体坐标的y 轴(如图)。用第三个节点的选项,用户可以定义单元的x 轴方向。如果两者都定义了,那么第三节点的选项优先考虑。第三个节点(K),如果采用的话,将和i、j 节点一起定义包含单元x 轴和z 轴的平面(如图)。如果该单元采用大变形分析,需要注意这个第三号节点紧紧在定义初始单元方向的时候有效。 梁单元是一维空间线单元。横截面资料用sectype 和secdata 命令独立的提供,参见ANSYS Structural Analysis Guide 的Beam Analysis and Cross Sections 看详细资料。截面与单元用截面ID 号(SECNUM)来关联,截面号是独立的单元属性。除了等截面,还可以用sectype 命令中的锥形选项来定义锥形截面(参考Defining a Tapered Beam)。 单元基于铁木辛哥梁理论,这个理论是一阶剪切变形理论;横向剪切应力在横截面是不变的,也就是说变形后横截面保持平面不发生扭曲。Beam188 是一阶铁木辛哥梁单元,沿着长度用了一个积分点,用默认的KEYOPT(3)设置。因此,在i 和j 节点要求SMISC 数值的时候,中间数值在两端节点均输出。当KEYOPT(1)设置为2,两个积分点作为延长的线性变量被运用。 Beam188/beam189 单元可以用在细长或者短粗的梁。由于一阶剪切变形的限制,只有适度的“粗”梁可以分析。梁的长细比(GAL2/(EI))可以用来判定单元的适用性,这里: G 剪切模量 A

结构设计荷载计算(模板)

大同第三医院荷载计算 面层荷载 一、屋面荷载:(上人屋面) 25厚水泥花砖0.60(kN/m2) 20厚水泥砂浆20×0.020=0.40(kN/m2) 防水层0.40(kN/m2) 20厚水泥砂浆找平层20×0.020=0.40(kN/m2) 水泥焦渣找坡层 1.60(kN/m2) 60厚高密度聚苯板保温层2×0.06=0.12(kN/m2) 水泥砂浆找平层0.40(kN/m2) 120厚钢筋混凝土屋面板25×0.12=3.00(kN/m2) 170厚钢筋混凝土屋面板 2) 吊顶0.50(kN/m2) 静荷载总 计2) 活荷载总计(上人屋面) 2.00(kN/m2) 二、首层楼面荷载: 内隔墙折算板面荷载 2.50(kN/m2) 1

100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计10.50(kN/m2) 活荷载(考虑施工堆载)总计 5.00(kN/m2) 三、首层(CT、MRI有地沟)楼面荷载 100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计8.00(kN/m2) 活荷载总计8.00(kN/m2) CT、MRI围护墙恒荷载30.00(kN/m2) 四、四层以下楼面荷载:(生化、免疫、试验室、护士站等) 内隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2) 结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2) 结构层170厚钢筋混凝土板 2) 吊顶0.50(kN/m2) 静荷载 总计2) 活荷载总计 2.50(kN/m2) 2

beam188不能用于计算单轴对称截面梁的弯扭失稳问题(参考模板)

beam188不能用于计算单轴对称截面梁的弯扭失稳问题? 题:用beam188单元求单轴对称H型截面梁在纯弯作用下的线性屈曲特征值。 题目条件: 截面高度:300mm 上翼缘:150*12mm 下翼缘:80*12mm 腹板厚度:10mm 构件长度:3000mm 弹性模量:E=68000MPa 泊松比:0.315 两端铰接,简支,端部可自由翘曲 打开Beam188的翘曲自由度 计算结果:Mcr=50.17 kN*m 根据经典弹性理论,βy=97.25mm(正值,由于上翼缘较大,受压),Mcr=85.93kN*m 结果明显错误。于是将上下翼缘颠倒,再计算之。即: 上翼缘:80*12mm 下翼缘:150*12mm 计算结果仍然是:Mcr=50.17 kN*m 根据经典弹性理论,βy=-97.25mm(负值,由于上翼缘较小,受压),Mcr=29.22kN*m 最后,经典弹性理论的计算公式中,直接取βy=0.0 mm(不考虑Wagnar效应),可得Mcr=50.11kN*m,这样才和Ansys计算结果相近。 结论:beam188不能用于计算单轴对称截面梁的弯扭失稳问题。 (也许我还没有找到某个开关,先暂时下此结论。望有高手指教) 再以板单元建立模型验证: 单元采用SHELL63,上翼缘大时,得Mcr=50.12 kN*m 颠倒过来,上翼缘小时,得Mcr=29.20 kN*m 结论:板单元可以用于计算单轴对称截面梁的弯扭失稳问题。也再次验证了beam188的计算错误。 2007-12-18 04:30 #1 warsheep 助理工程师

精华 0 积分 70 帖子 33 水位 70 技术分 0 忘了说明:Ansys版本为8.0 支座位置位于截面形心上。 2007-12-18 10:12 #2 wilsonweic 助理工程师 精华 0 积分 70 帖子 35 水位 70 技术分 0 用beam188/189单元进行线性弯扭屈曲分析,结果不可靠。除了你所说的单轴对称截面外,事实上,双轴对称截面梁的线性弯扭屈曲分析结果也不准确。虽然所涉及的只是线性屈曲分析,但是,我们有理由怀疑,beam188/189非线性弯扭屈曲分析的结果也不一定准确。条件允许的话,最好用壳单元分析结果进行校核。 我分别用beam188单元和shell181单元对两端简支和两端固支的双轴对称截面纯弯梁进行了特征值屈曲分析,分析结果与理论屈曲荷载进行了对比。用beam188分析时,分别考虑了KEYOPT1=0和KEYOPT1=1两种情况。结果显示shell181分析的结果与理论值吻合良好,而beam188分析的结果误差很大(见附件)。 相关的内容还可参见https://www.doczj.com/doc/d210575224.html,/viewthread ... mp;bpg=1&age=30 2007-12-18 18:26 #3 mqiao 助理工程师 精华 0 积分 69 帖子 34

ansys有限元BEAM188单元

第七章练习3.钢架结构有限元分析。单元类型:BEAM188。 1.定义文件名 Utility Menu→File→Change Jobname… 2.定义单元类型 ⑴设置分析类型:Main Menu→Preferences,→ Structural。 ⑵定义单元类型:Main Menu→Preprocessor→ Element Type→Add/Edit/Delete,BEAM188。 3.定义材料力学参数 Main Menu→Preprocessor→Material Props→ Material Models,Structural→Linear→Elastic→Isotropic,弹性模量EX=2.1e5(N/mm2即MPa),泊松比PRXY=0.3。 4.定义BEAM188截面形状 Main Menu:Preprocessor→Sections→Beam→Common Sectns,使ID=1,Name=S1,在Sub-Type中选择匚(槽形)截面形状。按所给截面参数输入W1、W2、W3、t1、t2、t3。截面单元网格精度:coarse即0。5.创建几何模型 ⑴Main Menu:Preprocessor→Modeling→Create→Keypoints→In Actice CS,定义关键点1(0,0,0), 2(0,1000,0),3(1200,1000,0),4(1200,0,0) 。 打开关键点号及线号:Utility Menu→PlotCtrls→Numbering,KP= On;LINK=On。 ⑵Main Menu:Preprocessor→Modeling→Create→Lines→Straight Line,连接点1-2,2-3,3-4,生成三条线。 ⑶Main Menu:Preprocessor→Modeling→Copy→Lines,沿Z正向拷贝上面三条线,ITIME=2,DZ=800。 ⑷Main Menu:Preprocessor→Modeling→Create→Lines→Straight Line,连接点2—6,3—7,生成二条线。 ⑸Main Menu:Preprocessor→Modeling→Operate→Booleans→Divide→Line into N Ln’s,将四条水平线二等分,即NDIV=2,创建集中载荷作用点9,10,11,12。 6.划分网格 ⑴创建方向点:沿Z向拷贝点2、3任一距离,作为四条竖直线及与总体X轴平行的几条线的方向点。 Preprocessor→Modeling→Copy→Lines,选择点2、3,ITIME=2,DZ=-300,得到点13、14。 定义这几条线的属性:Main Menu→Preprocessor→Meshing→MeshTool,在Element Attributes的下拉列表中选Lines,→Set,选择X=0的二条竖直线(L1、L4)及与总体X轴平行的线(L2、L9,L5、L10),→OK,进入Line Attributes窗口,将单元类型编号 1 BEAM4、单元截面号1 S1赋给选中的线。勾选Pick Orientation Keypoint(s)选项成为“Yes”,→OK,用鼠标拾取方向点即关键点13,OK。同样,再为X=1200的二条竖直线(L3、L6)定义方向点14。 与总体坐标Z轴平行的几条线(L7、L11,L8、L12)其单元Z轴沿总体X轴方向,故将关键点3沿X轴正向copy一定距离得到关键点15,以点15作为这几条直线的方向点,操作同上。 ⑵ 定义单元边长 Main Menu:Preprocessor→Meshing→MeshTool,在MeshTool 的第三栏Size Controls中单击Lines 对应的Set按扭,→Pick All,输入单元边长SIZE=200,OK,回到MeshTool对话框,→Mesh,→Pick All。

结构设计荷载计算范例

楼面恒载计算 10厚水泥砂浆面层: 0.01X20=0.2 KN/m2 20厚水泥砂浆找平层: 0.02X20=0.4 KN/m2 现浇楼板(120厚): 0.12(0.13)25=3.0 KN/m2 混合砂浆平顶: 0.02X17=0.34 KN/m2 合计: 3.94 KN/m2 设计取值:4.5 KN/m2 屋面恒载计算 平屋面(建筑找坡): 50厚C30细石混凝土: 0.05X25=1.25 KN/m2 SBS防水卷材: 0.1 KN/m2 20厚水泥砂浆找平层: 0.02X20=0.4 KN/m2 30厚复合发泡水泥板: 0.03X4=0.12 KN/m2 20厚水泥砂浆找平层: 0.02X20=0.4 KN/m2 找坡: 1.0 KN/m2 现浇楼板120厚: 0.12X25=3.0KN/m2 混合砂浆平顶: 0.012X17=0.21 KN/m2 合计: 6.48 KN/m2 设计取值:7.5 KN/m2 填充墙荷载计算 外墙 外墙涂料: 0.05KN/m2 5厚聚合物抗裂砂浆 0.05*17=0.85 KN/m 30厚复合发泡水泥板 0.03*2.2=0.066 KN/m 200厚A5.0砂加气混凝土砌块: 0.20X6.5=1.3 KN/m2 20厚水泥水泥石灰砂浆: 0.02X17=0.34 KN/m2 合计: 2.61 KN/m2 设计取值:3.5 KN/m2

内墙 20厚水泥水泥石灰砂浆: 0.02X17=0.34 KN/m2 蒸压粉煤灰加气混凝土砌块(200厚及100厚): 0.20(0.10)X6.5=1.3 (0.65) KN/m2 20厚水泥水泥石灰砂浆: 0.02X17=0.34 KN/m2 合计: 1.98 (1.33) KN/m2 设计取值:2.5(1.8) KN/m2 本工程为框架结构,楼梯参与整体计算

用beam188模拟梁和柱子,用solid45单元模拟基础

我现在有个问题:用beam188模拟梁和柱子,用solid45单元模拟基础。采用cerig命令连接两种单元。求解时总出错,请大侠帮忙看看。命令流如下: /filename,lianxi /units,si /prep7 et,1,beam188 et,2,solid45 sectype,1,beam,rect secdata,0.55,0.55 sectype,2,beam,rect secdata,0.25,0.55 r,1 mp,ex,1,2.8e10 mp,nuxy,1,0.2 mp,dens,1,2500 mp,ex,2,3.0e10 mp,nuxy,2,0.2 mp,dens,2,2500 k,100,20,0,20 k,1,0,0,0 k,7,0,0,18 kfill,1,7 kgen,2,1,7,,6 l,1,7 l,8,14 lsel,s,loc,z,0.01,18 latt,1,1,1,,100,,1 lesize,all,0.5 lmesh,all lsel,u,,,all l,2,9 lgen,6,3,,,,,3 latt,1,1,1,,100,,2 lesize,all,0.5 lmesh,all lsel,u,,,all save !基础 /pnum,volu,1

block,-0.6,0.6,-0.6,0.6,-1.0,0 vgen,2,1,,,6 block,0.6,5.4,-0.6,0.6,-1.0,0 vglue,all !基础划分 !Y 方向1 vsel,s,loc,z,-1.0,-0.01 vsel,r,loc,x,-0.6,0.6 vsel,r,loc,y,-0.6,0.6 vatt,2,,2 aslv lsla lesize,all,0.5 mshape,0,3D mshkey,1 vmesh,all vsel,u,,,all allsel vsel,s,loc,z,-1.0,-0.01 vsel,r,loc,x,5.4,6.6 vsel,r,loc,y,-0.6,0.6 vatt,2,,2 aslv lsla lesize,all,0.5 mshape,0,3D mshkey,1 vmesh,all vsel,u,,,all allsel vsel,s,loc,z,-1.0,0 vsel,r,loc,x,0.6,5.4 vsel,r,loc,y,-0.6,0.6 vatt,2,,2 aslv lsla lesize,all,0.5 mshape,0,3D mshkey,1 vmesh,all vsel,u,,,all

相关主题
文本预览
相关文档 最新文档