当前位置:文档之家› 相位差检测(特制材料)

相位差检测(特制材料)

相位差检测(特制材料)
相位差检测(特制材料)

目录

一、题目要求 (2)

二、方案设计与论证 (2)

2.1移相电路 (2)

2.2检测电路 (3)

2.3显示电路 (3)

三、结构框图等设计步骤 (4)

3.1设计流程图 (4)

3.2电路图 (5)

3.2.1移相电路图 (6)

3.2.2检测电路图 (6)

3.2.3显示电路图 (7)

四、仿真结果及相关分析 (9)

4.1移相效果 (9)

4.2相位差波形 (9)

4.3相位差度数 (9)

五、误差分析 (10)

5.1误差分析 (10)

六、总结与体会 (10)

七、参考文献 (11)

八、附录 (11)

8.1元器件清单 (11)

一、题目要求

设计一个相位差检测电路,该电路可测试一个经过移相电路的信号(正弦波)移相后与原信号间存在的相位差,可由测试电路检测并显示。要求:

1)设计移相电路;

2)设计检测电路,可以使用MCU或者Labview;

3)使用模拟式检测方法,将相位差信号转换成直流电压或者直流电流信号

进行检测;

4)要求分析系统最后的精度。

二、方案设计与论证

2.1移相电路

此次相位差检测电路的移相部分主要由RC移相电路构成,而RC移相电路主要利用了电容器的电流超前电压90度这一特性。

RC滞后移相电路是电阻器在前面,电容器在后面。输入信号从电阻器进入,输出信号是从电容器上输出。因为电容器要充电,所以电压要比电流滞后90度,等电容充满电后才有电压。输出电路是与电容器并联电压相等,所以输出电路的电压也滞后电流。RC超前移相电路是电容器在前面,电阻器在后面,电容器一样充电电压会滞后电流90度。

由于输入信号经过RC电路后,其幅值有一定的衰减,为了达到移相但不改变其幅值,我们在移相电路后追加了相应的放大器,以保证信号波形不变。

2.2 检测电路

相位差的测量可以采用多种方法:一、将两个信号用模拟乘法器做乘法运算,得到的信号通过低通滤波器,将直流量分离出来,直流电压的大小反映了两个信号的相位差。二、采用两个比较器对信号进行过零比较,然后测量出两个上升沿之间的时间间隔,用时间间隔除以周期再乘以360就可以得到相位差。一般高精度的相位差测量都是用第二种方法。还有一种就是定性地观察,将两个信号接到双踪示波器的输入,得到李萨如图形,通过图形的形状可以判断相位差大概是是什么程度。另外还可以将相位差转化直流电压或电流信号进行检测。

2.3 显示电路

目前广泛使用的是直读式数字相位计,其原理是基于时间间隔测量法,通过相位-时间转换器,将相位差为ψ的两个信号(分别称参考信号和被测信号)转换成一定的时间间隔τ的起始和停止脉冲。然后用电子计数器测量其时间间隔。如果让电子计数器的时钟脉冲频率倍乘36*10n (n 为正整数),则显示值即为以度为单位的相位差值,其简单原理如图所示。也可以用相位—频率转换器,把两信号之间的相位差变成频率,用电子计量器测量。此外可采用相位-电压转换器,把相位转换为电压,用电压表测量。

以上是时间间隔测量基本的原理,其间隔时间为 T 0N t =?

式中,N 是在t ψ时间内计数脉冲的个数;T 0是时标信号周期。

360?

?=T

t ?? 360f 360T N f T N 00???=?=? 式中,f 为被测信号频率,f 0为时标信号频率。

若让计数器在1s 内连续计数,即1s 内有f 个门控信号,则其累计数为N 1=f*N.

f N f 3600?=?

f 360N 01fN ?==?,则N f 3601

0?

=? 若取时标频率f 0=360Hz ,则 )

(?==?N N 3601

1360? 可见,计数器在1s 内脉冲的累计数就是以度为单位的两个被测信号的相位差。若取f 0=3600Hz ,则每个计数脉冲表示0.1°,可以提高测量准确度。

三、 结构框图等设计步骤

3.1 设计流程图 开始

移相设计

相位差检测

计数

检测正确锁存

显示读数

结束

Y

N

3.2电路图

3.2.1移相电路图

3.2.2检测电路图

3.2.3显示电路图

四、仿真结果及相关分析

4.1移相效果

4.2相位差波形

4.3相位差度数

五、误差分析

5.1误差分析

相位差测量数字化的优点在于硬件成本低、适应性强、对于不同的测量对象只需要改变程序的算法,且精度一般优于模拟式测量。在电工仪表、同步检测的数据处理以及电工实验中,常常需要测量两列同频率信号之间的相位差。例如,电力系统中电网并网合闸时,需要求两电网的电信号的相位差。相位差测量的方法很多,典型的传统方法是通过示波器测量,这种方法误差较大,读数不方便。为此,我们设计了一种基于锁相环倍(分)频的相位差测量仪,该仪器以锁相环倍(分)频电路为核心,实现了工频信号相位差的自动测量及数字显示,误差相对于模拟测量方式比较小。

六、总结与体会

此次课程设计以实现用数字式方法通过数码管直接显示相位差为目的,做成的相位差检测仪。我们使用了两级RC移相器加一个运放器做成了移相电路,使用电容滤波的方法。然后采用74LS74D触发器将两个输入信号转化为方波信号,并通过函数信号发生器将相位差波形显示出来。接着使用74HC192作为计数器,捕获单元实现信号的数据采集,最后通过74HC373作为锁存器将相位差锁定。经过数据处理后通过数码管直接显示出来。该相位计测量相位差理论范围是0~180,数码管显示范围为0~999.此次设计最大的特点是将两路信号通过74LS74双稳态触发器转换成一路脉冲信号,而脉冲信号的宽度为信号的相位差,使得设计方案的精准度提高。

相位差检测电路

课程设计报告 课程电子测量与虚拟仪器 题目相位差检测电路 系别物理与电子工程学院 年级08级专业电子科学与技术 班级08电科(3)班学号0502083(02 14 23 24)学生姓名崔雪飞陈祥刘刚李从辉 指导教师徐健职称讲师 设计时间2011-4-25~2011-4-29

目录 第一章绪论 (2) 第二章题目及设计要求 (3) 2.1题目要求 (3) 2.2设计要求 (3) 第三章方案设计与论证 (4) 3.1移相电路设计 (4) 3.2检测电路设计 (4) 3.3显示电路设计 (5) 第四章结构框图等设计步骤 (6) 4.1设计流程图 (6) 4.2模块分析 (7) 4.2.1 移相电路 (7) 4.2.2 检测电路 (7) 4.2.3 显示电路 (8) 4.3结果显示 (9) 4.4总电路图 (11) 第五章误差分析 (12) 第六章总结体会 (13) 第七章参考文献 (14) 附录 (15)

第一章绪论 随着电子技术和计算机技术的发展,电子设计自动化(E-DA) 技术使得电子电路设计人员在计算机上能完成各种电路的设计,性能分析和有关参数的测试等大量的工作。Multi-sim2001是加拿大InteractiveImageTechnologies公司2001年推出的Multisim最新版本,是一个专门用于仿真与设计的工具软件,它丰富的元件库中提供数千种电路元件,随时可以调用;它提供了多种测试仪器仪表,可方便的对电路参数进行测试和分析。移相器在新一代移动通信、电子战、有源相控阵和智能天线等系统中获得广泛的应用。移相器在电子系统中的主要作用是调整系统接收 /发射时电路中的信号相位。本文将介绍用Multisim软件的部分集成电路和控制部件等各种元件来完成移相电路的设计和仿真。 使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 相位差的测量是研究网络相频特性中必不可少的重要方面,如何使相位差的测量快速、精确已成为生产科研中重要的研究课题。 测量相位差的方法很多,主要有:用示波器测量;把相位差转换为时间间隔,先测量出时间间隔,再换算为相位差;把相位差转换为电压,先测量出电压,再换算为相位差;与标准移相器进行比较的比较法(零示法)等。在测量相位差中主要有四种方法,即用示波器测量相位差、相位差转换为时间间隔进行测量、相位差转换为电压进行测量、零示法测量相位差。在此课程设计中主要用到的是相位差转换成计数脉冲数进行测量。

工程材料力学性能-第2版课后习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

检测正弦信号相位差算法的研究(精)

检测正弦信号相位差算法的研究 程捷 (中国计量学院信息工程系, 杭州310034 摘要本文基于最小二乘原理和FFT 的选频特性, 讨论了二种测量正弦信号相位差的方法。该算法适用于短信号序列的相位测量。实验结果表明这二种算法具有数据处理量少, 准确度高的特点。关键词相位检测FFT 最小二乘法 一、引言 有直读法, 本文基于最小二乘原理和快速傅里叶变换(FFT 的选频特性, 提出了用最小二乘法和FFT 检测正弦信号相位差的算法。影响算法的主要因素是采样点数。利用最小二乘法数据处理量少, 准确度高, 而利用FFT 来检测相位差, 算法过程简捷。 二、算法的理论分析 11最小二乘相位测量的算法 假设有两正弦信号v 1(t 、v 2(t 被采样频率f s 采样, 得到一组M 个采样点。待处理的信号如下式所示: v 1(t =V 1sin (Ξt +Υ1 v 2(t =V 2sin (Ξt +Υ2 (1 展开上式可得 v 1(t =C 0sin Ξt +C 1co s Ξt v 2(t =D 0sin Ξt +D 1co s Ξt (2 其中: C 0=V 1co s Υ1, C 1=V 1sin Υ1 D 0=V 2co s Υ2, D 1=V 2sin Υ2故有 V

1C 2 +C 21 , Υ1=arc tg C 0 +〔1-sgn (C 0 2 V 2 D 20+D 2 1, 2tg D 0 2 (3 , C j 、D j 参数(j =0, 1 。为此, 需要应用最小二乘法。根据C j 、D j 参 数总的测量残差平方和最小, 用求偏导数的方法得到C j 、D j 参数的最小二乘估计。 假设信号频率为f =50H z , 采样频率为f s , 选取一定量的采样数据(取决于周期数K 的值 , 则M =I N T (Kf s f =I N T (KN , 这里, I N T 表示取整。采样间隔为?=1 f s , 对连续的 正弦信号按一定的时间间隔?进行采样, 得到 v i (n ? (i =1, 2, ; n =1, 2, …M 。对v 1(t 计算出各采样点值v 1(t 0 , v 1(t 1 , …, v 1(t M -1 , 可得到 v 1(t 的测量残差为: v i =C 0sin Ξt i +C 1co s Ξt i -v 1(t i i =0, 1, …, M -1 (4

测量电感及电容上电流和电压的相位差

测量电感及电容上电流和电压的相位差&测量电容上电流和电压 的相位差 上海中学高二(9)王晓欣、徐烨婷 指导教师杨新毅 实验目的:运用TI-83对电容电路进行实验,测量电容电路中电压与电流之间的相位差,了 解电容电感的性质。 实验原理 对于电阻R1,电流与电压成正比。电压v=Vsinωt,则i= Vsinωt /R。由于电阻R1mR1m1与电容串联,因此两者的电流相等。i= i= Vsinωt /R,电容的电流波形图与电阻的电压L1R1m1波形图的周期、初相位都相同,只在幅值上有所不同。因为只需观察电容的电流电压波形图 周期与初相位的关系,因此可以将电阻的电流波形图与电容的电压波形图进行对比,得出电 容的电压与电流的关系。 实验过程 1. 开机方法: ?用专用接线连接TI—83Plus和CBL。 ?按ON键打开TI—83Plus电源。

?按应用功能键APPS,进入Applications界面(见图1)。 图1 按数字键4选择Physics功能(见图2)。 图2 按ENTER回车键,进入主菜单(见图3)。 图3 2. 探头设定: ?将两个电压探头分别插入CH1,CH2两个插口中,打开CBL电源。 ?在Main Menu下按1选择SET UP PROBES,进入探头设定 菜单(见图4)。在NUMBER OF PROBES菜单中按2选择 图4 TWO。 在SELECT PROBE中按7选择MORE(见图5),再按3(见图6)将第一个探头选择为VOLTAGE。按ENTER 重复以上操作,将第二个探头也设为VOLTAGE。回到主菜 图5 单(见图7)。

图6 图7 3. 参数设定 在Main Menu下按2选择2:COLLECT DATA。在DATA COLLECTION中按2选择2:TIME GRAPH(见图8)。 图8 在ENTER TIME BETWEEN SAMPLES IN SECONDS:后输入时间间隔0.0005。在ENTER NUMBER OF SAMPLES:后输入取样个数100(见图9)。 图9 按ENTER对实验设置进行确认(见图10)。 图10 在CONTINUE中按1选择USE TIME SETUP,用以上设置图11 进行实验(见图11)。 4. 连接电路

流量计相位差检测方法

科氏质量流量计相位差检测新方法 郑德智 樊尚春 邢维巍 (北京航空航天大学仪器科学与光电工程学院 北京 100083) 摘要 基于科氏质量流量计的工作机理和实际工作情况下的信号频谱分析,提出了切实可行的相位差检测新方法。设计了改进的FI R数字滤波器,实现了对原始输出信号的实时滤波处理,有效地抑制了噪声的干扰,为科氏质量流量计的高精度测量提供了保证。同时该新方法提高了系统的动态品质。实验结果表明,所提出的方法和设计的信号处理系统具有实用价值。 关键词 科氏质量流量计 FI R滤波器 相位差检测 中图分类号 T H814+.6 文献标识码 A 学科分类与代码 460.4030 The Novel Method of Phase Difference Detection in Coriolis Mass Flowmeter Zheng Dezhi Fan Sha ngchun Xing Weiw ei (School of Instrumentation,Beihang University,Beijing100083,China) Abstract Based on the sensing mechanism of Co riolis mass flow meter and analyzing signal spect rum in actual w orki ng,the nov el applied method is devised fo r phase diff erence det ectio n.The improv ed FIR filt er i s designed and used for fil tering o rigi nal sig nals,so the noi se is rest rained ef fectiv ely and the measurement precision of the mass flowmeter is guaranteed.M eanwhile,the dynamic response perfo rmance of the syst em is improved by this novel method.The experimental resul ts showed that the method is well worthy applying. Key words Co riolis mass flow meter FIR filter Phase dif ference det ection 1 引 言 科里奥利质量流量计(以下简称为科氏质量流量计,即CM F)是一种利用被测流体在振动测量管内产生与质量流量成正比的科氏力为原理所制成的一种直接式质量流量仪表。CM F直接敏感被测流体的质量流量,同时可以检测流体的密度、体积流量,是一种应用广泛的新型多功能流量测量仪表。 图1中双U型管工作在谐振状态,流体在管中沿箭头方向流动。由于哥氏效应(Coriolis Effect)的作用,U型管产生关于中心对称轴的一阶扭转“副振动”。该一阶扭转“副振动”相当于U型管自身的二阶弯曲振动。同时,该“副振动”直接与所流过的“质量流量(kg/s)”成比例。因此,通过检测U型管的“合成振动”在B,B’两点的相位差就可以得到流体的质量流量[1~2] 。 图1 U型管质量流量计工作机理 质量流量和相位差的关系为: Q m k=K h B B(1)式中:Q m 为流过管子的质量流量(kg/s); 第26卷第5期 仪 器 仪 表 学 报 2005年5月本文于2003年9月收到,系国家自然科学基金(60274039)资助项目。

工程材料力学性能 东北大学

课后答案 第一章 一、解释下列名词 材料单向静拉伸载荷下的力学性能 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。包辛格效应可以用位错理论解释。 第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。 其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。可以从河流花样的反“河流”方向去寻找裂纹源。解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。派拉力:位错交互作用力(a 是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。) 2.2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏

基于集成运放的相位差检测电路设计

课程设计名称:电子技术课程设计 题目:基于集成运放的相位差检测 电路设计 学期:2016-2017学年第2学期 专业: 班级: 姓名: 学号: 指导教师: 辽宁工程技术大学

课程设计成绩评定表

摘要 本课程设计主要要求是设计一个基于集成运放的相位差检测电路。整流滤波电路是提供直流电源的。首先,要把信号源进行移相,用到RC移相电路,配合上集成运放,然后同时把移相之前的信号源和移相之后的信号源给两个过零比较器,结果输出的不是高电平就是低电平,完成了对模拟信号转化成数字信号的任务。他们先异或,接着通过和一个来自555定时器的信号进行与逻辑,然后给在和计数器的clk端进行与逻辑,完成对周期长度和计时器的控制,达到采样的目的,最后数码管显示相位差。完成了相位差检测的功能。

目录 1、综述 2、原理及技术指标 3、单元电路设计及参数计算 3.1整流滤波电路 3.2 RC移相电路 3.3 555定时器电路 3.4计数器显示部分 3.5 参数计算 4、仿真 5、设计比较 6、结论 7、设计体会 参考文献

1 综述 振幅、频率和相位是描述正弦交流电的三个“要素”。以电压为例,其函数关系为 u=Umsin(ωt+φ0) 式中:U m 为电压的振幅;ω为角频率;φ0为初相位。 设φ=ωt+φ0,称为瞬时相位,它随时间改变,φ0是t=0时刻的瞬时相位值。两个角频率为ω1,ω2的正弦电压分别为 u 1=U m1sin(ω1t +φ1) u 2=U m2sin(ω2t +φ2) 它们的瞬时相位差为 Θ=(ω1t +φ1)- (ω2t +φ2) =(ω1-ω2)t+(φ1-φ2) 显然,两个角频率不相等的正弦电压(或者电流)之间的瞬时相位差是时间t的函数,它随时间改变而改变。当两正弦电压的角频率ω1=ω2=ω时,有 Θ=φ1-φ2 由此可见,两个频率相同的正弦量间的相位差是常数,等于两正弦量的初相位之差。在实际的工作之中,经常需要研究诸如放大器、滤波器等各种器件的频率特性,即输出、输入信号间的幅度比随频率的变化(幅频特性)和输出、输入信号间的相位差随频率的变化关系(相频特性)。尤其在图像信号传输与处理、多元信号的相干特性显得更为重要。 相位差的测量是研究网络相频特性中必不可少的重要方面,如何使相位差的测量快速、精确已成为生产科研中重要的研究课题。 测量相位差的方法很多,主要有:用示波器测量;把相位差转换为时间间隔,先测量出时间间隔,再换算为相位差;把相位差转换为电压,先测量出电压,再换算为相位差;与标准移相器进行比较的比较法(零示法)等。在测量相位差中主要有四种方法,即用示波器测量相位差、相位差转换为时间间隔进行测量、相位差转换为电压进行测量、零示法测量相位差。

如何使用相关技术测量相位差

如何使用相关技术测量相位差 测量两个周期信号之间的相位差通常需要采用诸如气象、计算和通信 等方面的科学技术。示波器提供了执行这种测量的快速简单方法。遗憾的是, 示波器的噪声、带宽和时间分辨率会限制其测量的精度。 示波器的采样率决定了其时间分辨率的大小。例如对于一个100MHz 的信号来说,相位上的1 度相当于时间上的27ps。很明显,对于1 度的相位测量精度,示波器的采样时间必须小于这个数值,因此采样率要求高于36GHz,这个数字已经超出了大多数示波器的指标范围。为了演示这种测量方法,我们选 用了Analog Arts 的SA985 USB 示波器,这种示波器具有100GHz 的采样率和1GHz 的带宽。你可以选用满足你应用时间要求的任何示波器开展这种测量。 就是有了合适的示波器,你也必须使用专门的技术才能获得精确的相位测量结果。 示波器的时间标线(人们经常用利萨茹曲线(对信号执行数学运算可以 增强相位测量性能。参考文献1、2 和3 中描写的技术就是这种运算操作的一 些例子。虽然每种方法可能适合某些应用,但测量结果还受到本文讨论范围之 外的其它多种因素影响。此外,这些技术大部分是针对正弦信号的。在诸如测 量FPGA 内部锁相环(PLL)产生的各种时钟相位性能等应用中,这些技术精度明显不高。 一种简单且精确的方法是对信号进行相关运算。相关运算是一种直接的 数学操作。有许多论文(参考文献4)对相关操作及其应用作过全面彻底的解释。由Aanlog Arts 公司开发的一种C#算法就是这种技术的一种实现。相关运算的一个关键优势在于能够发现大多数其它类型信号之间的相位差。这种技术 可以达到的精度主要受限于信号周期的相对精度和示波器的采样率。对于采样

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

相位差检测

目录 一、题目要求 ........................................................ 错误!未定义书签。 二、方案设计与论证 ............................................ 错误!未定义书签。 移相电路 ......................... 错误!未定义书签。 检测电路 ......................... 错误!未定义书签。 显示电路 ......................... 错误!未定义书签。 三、结构框图等设计步骤................. 错误!未定义书签。 设计流程图........................ 错误!未定义书签。 电路图 ........................... 错误!未定义书签。 移相电路图................... 错误!未定义书签。 检测电路图................... 错误!未定义书签。 显示电路图................... 错误!未定义书签。 四、仿真结果及相关分析................. 错误!未定义书签。 移相效果 ......................... 错误!未定义书签。 相位差波形........................ 错误!未定义书签。 相位差度数........................ 错误!未定义书签。 五、误差分析........................... 错误!未定义书签。 误差分析 ......................... 错误!未定义书签。 六、总结与体会......................... 错误!未定义书签。 七、参考文献........................... 错误!未定义书签。 八、附录............................... 错误!未定义书签。 元器件清单........................ 错误!未定义书签。

相位差检测

课程设计报告 课程电子测量与虚拟仪器课程设计 题目相位差检测电路 系别物理与电子工程学院 年级2008 专业电子科学与技术班级 2 学号 学生姓名 指导教师职称讲师 设计时间2011-3-28~2011-4-1

第一章绪论 (2) 1.1 相位差检测电路的介绍 (2) 1.2 相位差测量的简单介绍 (2) 第二章相位差检测电路 (3) 2.1 移相电路的设计 (3) 2.2 利用MULTISIM设计检测移相电路 (5) 2.2.1 仿真电路虚拟仪器参数调整 (6) 2.2.2移相电路的仿真与分析 (7) 2.3将相位差信号转换成直流电压信号检测 (9) 2.3.1将相位差信号转换成直流电压信号检测的原理 (9) 2.3.2 电路图及具体原理分析 (9) 2.3.3 仿真过程 (10) 2.3.4 系统测量的误差分析 (12) 主要参考文献 (13) 附录 (13)

第一章绪论 1.1 相位差检测电路的介绍 设计一个相位差检测电路,该电路可测试一个经过移相电路的信号(正弦波)移相后与原信号间存在的相位差,可由测试电路检测并显示。要求:设计移相电路;设计检测电路,可以使用MCU或者Labview;使用模拟式检测方法,将相位差信号转换成直流电压或者直流电流信号进行检测;要求分析系统最后的精度。 在此次的电子测量与虚拟仪器课程设计中,我们设计的相位差检测电路主要有两个模块,由这两个模块来实现对相位差的检测并用相应的器件来实现。第一个模块为移相电路,移相电路主要由两个放大器组成。一个放大器可以实现对输入信号进行0~900的移相,那么两个放大器可以实现对输入信号进行0~1800的移相。移相电路的结构比较简单,只要对放大器相应知识进行了解便能很快的设计出移相电路。在移相电路中还应用到了变位器和电容。通过调节变位器可以逐步实现每个度数的相位差;电容的作用则是实现对输入信号的滤波和使放大器工作在稳定的区域。第二个模块则是实现相位差的显示。此部分的模块主要由二极管、异或门以及放大器组成。二极管的作用是使信号工作在正负管压降之间,使电路快速的运行和工作。异或门有三个,异或门的作用主要是实现将信号与基准信号进行比较,将相位差转换成电压差的方法,然后通过电压表将电压显示,最后将电压放大一百倍即使所求的相位差。 1.2 相位差测量的简单介绍 振幅、频率和相位是描述正弦交流电的三个“要素”。以电压为例,其函数关系为 u=U m sin(ωt+φ0) 式中:U m 为电压的振幅;ω为角频率;φ0为初相位。 设φ=ωt+φ0,称为瞬时相位,它随时间改变,φ0是t=0时刻的瞬时相位值。两个角频率为ω1,ω2的正弦电压分别为

一种软件测量相位差方法研究

一种软件测量相位差方法研究 作者:杨明1姜万东1宋国云2 (1.珠海万力达电气股份有限公司,广东珠海 519085; 2.酒泉超高压输变电公司,甘肃酒泉 735000) 摘要:传统测相位的办法是通过定时采样信息,经过快速傅立叶变换进行分析,这种做法要求采样点是整个周期的信息,还要进行复杂的作商、求反正切计算,运算量大,对系统时间造成一些浪费。作者根据传统测量方法进行拓展,提出了一种新颖的相位差测量方法,计算量小,用时少,精度高,特别适用于单片机环境下的软件测相位使用。 关键词:相位差;快速傅立叶变换(FFT);单片机;软件测相位 相位差测量是工频交流电气测量技术的一个很重要的部分,电力系统中研究相位差是实现系统并列、准同期、无扰动合闸等工艺的重要前提条件,对系统稳定运行具有重要的意义。 传统的软件测相位的办法是通过定时采样一个周波的信息,利用快速傅立叶变换(FFT),将两个电气测量量的实部、虚部求出,然后对虚部差、实部差之商经过一次反正切计算,得出相位差。该方法运算量大,对系统资源浪费严重,对一些时间性要求比较苛刻的场合应用有局限性。为解决这一矛盾,本文利用考核过零点的时间差,求的相位差,研究数字滤波器,对提高测量精度有重要的意义。 1 信号采样 电气测量一般为50Hz的正弦波,为了满足测量精度、获得充裕的系统应用时间,本方 15电角度。通过单片机的定时中断,法使用的是每周24点的采样密度,既每个采样间隔是 读取中断时刻AD中各路模拟量的数值,分别储存至相应的寄存器数组中,如通道A、B的寄存器分别为AD_BUF_A[order]、AD_BUF_B[order],其中order表示采样点次序,通道A、B采样点次序严格一致。 相位测量对所测的电气量的谐波要求比较严格,所以采样电路的前级的滤波措施要得当,专门的带通滤波器电路,可以很好地解决谐波问题,但是由于滤波回路会产生一些相角偏移,所以滤波器件的选型要严格。为了使测量误差尽可能的降低,为此,软件的滤波措施也要考虑。 2采样数据处理 以通道A为基本相位,研究通道A与通道B过零点的时间差,进而求解两者之间的相位

相位差检测

目录 一、题目要求 (2) 二、方案设计与论证 (2) 2.1移相电路 (2) 2.2检测电路 (2) 2.3显示电路 (3) 三、结构框图等设计步骤 (4) 3.1设计流程图 (4) 3.2电路图 (5) 3.2.1移相电路图 (6) 3.2.2检测电路图 (6) 3.2.3显示电路图 (7) 四、仿真结果及相关分析 (8) 4.1移相效果 (8) 4.2相位差波形 (8) 4.3相位差度数 (8) 五、误差分析 (9) 5.1误差分析 (9) 六、总结与体会 (9) 七、参考文献 (10) 八、附录 (10) 8.1元器件清单 (10)

一、题目要求 设计一个相位差检测电路,该电路可测试一个经过移相电路的信号(正弦波)移相后与原信号间存在的相位差,可由测试电路检测并显示。要求: 1)设计移相电路; 2)设计检测电路,可以使用MCU或者Labview; 3)使用模拟式检测方法,将相位差信号转换成直流电压或者直流电流信号 进行检测; 4)要求分析系统最后的精度。 二、方案设计与论证 2.1移相电路 此次相位差检测电路的移相部分主要由RC移相电路构成,而RC移相电路主要利用了电容器的电流超前电压90度这一特性。 RC滞后移相电路是电阻器在前面,电容器在后面。输入信号从电阻器进入,输出信号是从电容器上输出。因为电容器要充电,所以电压要比电流滞后90度,等电容充满电后才有电压。输出电路是与电容器并联电压相等,所以输出电路的电压也滞后电流。RC超前移相电路是电容器在前面,电阻器在后面,电容器一样充电电压会滞后电流90度。 由于输入信号经过RC电路后,其幅值有一定的衰减,为了达到移相但不改变其幅值,我们在移相电路后追加了相应的放大器,以保证信号波形不变。 2.2检测电路 相位差的测量可以采用多种方法:一、将两个信号用模拟乘法器做乘法运算,得到的信号通过低通滤波器,将直流量分离出来,直流电压的大小反映了两个信号的相位差。二、采用两个比较器对信号进行过零比较,然后测量出两个上升沿之间的时间间隔,用时间间隔除以周期再乘以360就可以得到相位差。一般高

金属材料机械性能检测

金属材料机械性能检测 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensile strength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yield strength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yield strength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。

测量相位差的主要方法

一二测量相位差的方法主要有哪些? 测量相位差可以用示波器测量,也可以把相位差转换为时间间隔,先测量出时间间隔,再换算为相位差,可以把相位差转换为电压,先测量出电压,再换算为相位差,还可以与标准移相器进行比较的比较法(零示法)等方法。 怎么用示波器来测量相位差? 应用示波器测量两个同频正弦电压之间的相位差的方法很多,本节介绍具有实用意义的直接比较法。将u1、u2分别接到双踪示波器的Y1通道和Y2通道,适当调节扫描旋钮和Y增益旋钮,使荧光屏显示出如图2.42所示的上、下对称的波形。 比较法测量相位差 设u1过零点分别为A、C点,对应的时间为t A、t C;u2过零点分别为B、D点,对应的时间为t B、t D。正弦信号变化一周是360°,u1过零点A比u2过零点B提前t B-t A出现,所以u1超前u2的相位。 u1超前u2的相位,即u1与u2的相位差为 (2.56) T为两同频正弦波的周期; ΔT为两正弦波过零点的时间差。 数字式相位计的结构与工作原理是什么?

三数字相位计框图 将待测信号u1(t)和u2(t)经脉冲形成电路变换为尖脉冲信号,去控制双稳态触发电路产生宽度等于ΔT的闸门信号以控制时间闸门的启、闭。晶振产生的频率为fc的正弦信号,经脉冲形成电路变换成频率为fc的窄脉冲。 在时间闸门开启时通过闸门加到计数器, 得计数值n,再经译码,显示出被测两信号的相位差。这种相位计可以测量两个信号的“瞬时”相位差,测量迅速,读数直观、清晰。 数字式相位计称做“瞬时”相位计,它可以测量两个同频正弦信号的瞬时相位,即它可以测出两同频正弦信号每一周期的相位差。 基于相位差转换为电压方法的模拟电表指示的相位计的测量原理是什么? 如图2.44所示,利用非线性器件把被测信号的相位差转换为电压或电流的增量,在电压表或电流表表盘上刻上相位刻度,由电表指示可直读被测信号的相位差。转换电路常称做检相器或鉴相器。常用的鉴相器有差接式相位检波电路和平衡式相位检波电路两种。 数字相位计框 图

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

数字相位差测量仪的设计

目录 1.设计任务书。 2.设计方案概述。 3.V/f变换测量相位差角的工作原理。 4.电路的组成及参数选择。 4.1整形电路及信号C的形成。 4.2滤波电路的参任务计划书。 4.3V/f变换电路的设计。 4.4 89C52内部资源的利用。 5.应用实例。 6.结论。 7.总结。 一、设计任务书 (一)任务 设计仿真一数字相位计 (二)主要技术指标与要求: (1)输入信号频率为0HZ~250HZ可调 (2)输入信号的幅度为0.5V (3)采用数码管显示结果,相位精确到0.1° (4)采用外部5V直流电源供电 (三)对课程设计的成果的要求(包括图表) 设计电路,安装调试或仿真,分析实验结果,并写出设计说明书。要求图纸布局合理,符合工程要求,所有的器件的选择要有计算依据。 二、设计方案概述 根椐设计任务书的要求,我们参考了一些相关资料书,经过小组的讨论分析,提出了一种用v/f变换测量交流电的相位差的新方法:首先产生出其幅度正比与相位差大小的直流电,再有v/f变换器转换成反映相位差大小的频率信号,在单片机的配合下,最终得到相位差。这种方法具有分辨率高,适应与大范围的各种输入频率等优点。 正弦交流电电信号相位差的测量可以用多种方法实现。比较直接的数字式测量方法是在已知信号周期的前提下用定时的方法测得相位差角对应的时间,然后根据已知的周期将其换算成相位差角度。但

是,这种方法的测量精度依赖于定时器的精度和分辨率。在信号频率较高或频率虽不高但相位差较小时,都可以出现较大的误差。另外,由于直接测量得到的是时间,相位差角要由这一中间结果与信号的周期运算后才能得到,所以周期的测量不可缺少,其测量的精度也将影响相位差的精度。 在此用一种新的思路进行相位差的测量,用v/f变换器把相位差转换成一个其频率与之成正比的脉冲列,通过计算在一定时间内的脉冲个数测量相位差角。这种测量方法与信号的周期无关,可以得到较高的精度。题达到了0.1的测量精度,与此同时工业运行控制中现场操作,修改和设置等问题也得到了很好的解决,以上这些都在工业运行中得到了厂方的认可。存在的问题主要是本仪器通用性很不强,很难在更大的范围应用和推广,只能运用与某些特定的企业。今后的工作主要硬件和软件的改进上,列入增加一些通用行很强的功能模块。 3.V/f变换测量相位差角的工作原理 首先将输入的两个同频率但存在着相位差的信号进行整形,使之变成方波。如图1示A和B 再对A,B进行异或处理, 异或输出信号C 的脉冲宽度则反映相位差角.C 的脉宽T1对应的电角度是相位差角,C 的周期T2 是信号周期T 的1/2.如果信号角频率为w 则T1= /w. C为幅值为U 的方波其平均值Ud=UT1/T2=U 由此可见,C 的平均值( 亦即直流分量)仅与相位差角和脉冲幅 度有关与信号周期无关

相关主题
文本预览
相关文档 最新文档