当前位置:文档之家› 概率的定义

概率的定义

概率的定义
概率的定义

概率的定义

概率是随机事件出现的可能性的量度,是概率论最差不多的概念之一、人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这基本上概率的实例、

概率的严格定义

设E 是随机试验,S 是它的样本空间、关于E 的每一事件A 赋于一个实数,记为P (A ),称为事件A 的概率、那个地方P (·)是一个集合函数,P (·)要满足以下条件:

〔1〕非负性:关于每一个事件A ,有P (A )≥0;

〔2〕规范性:关于必定事件S ,有P (S )=1;

〔3〕可列可加性:设A 1,A 2……是两两互不相容的事件,即关于i ≠j ,Ai

∩Aj =φ,〔i ,j =1,2……〕,那么有P 〔A 1∪A 2∪……〕=P 〔A 1〕+P 〔A 2〕+……

概率的古典定义

假如一个试验满足两条:

〔1〕试验只有有限个差不多结果;

〔2〕试验的每个差不多结果出现的可能性是一样的、

如此的试验,成为古典试验、

关于古典试验中的事件A ,它的概率定义为:

P (A )=n

m ,n 表示该试验中所有可能出现的差不多结果的总数目、m 表示事件A 包含的试验差不多结果数、这种定义概率的方法称为概率的古典定义、

概率的统计定义

在一定条件下,重复做n 次试验,nA 为n 次试验中事件A 发生的次数,假

如随着n 逐渐增大,频率n

nA 逐渐稳定在某一数值p 附近,那么数值p 称为事件A 在该条件下发生的概率,记做P (A )=p 、那个定义成为概率的统计定义、

从概率的统计定义能够看到,数值p 确实是在该条件下刻画事件A 发生可能性大小的一个数量指标、由于频率n

nA 总是介于0和1之间,从概率的统计定义可知,对任意事件A ,皆有0≤P (A )≤1,P (Ω)=1,P (Φ)=0、Ω、Φ分别表示必定事件〔在一定条件下必定发生的事件〕和不可能事件〔在一定条件下必定不发生的事件〕、

第一章 概率统计基础知识(2)概率的古典定义与统计定义

二、概率的古典定义与统计定义 二、概率的古典定义与统计定义(p5-11) 确定一个事件的概率有几种方法,这里介绍其中两种最主要的方法,在历史上,这两种方法分别被称为概率的两种定义,即概率的古典定义及统计定义。 (一) 概率的古典定义 用概率的古典定义确定概率的方法的要点如下: (1)所涉及的随机现象只有有限个样本点,设共有n个样本点; (2)每个样本点出现的可能性相同(等可能性); 若事件含有k个样本点,则事件的概率为: (1.1-1) [例1.1-3] [例1.1-3]掷两颗骰子,其样本点可用数组(x , y)表示,其中,x与y分别表示第一与第二颗骰子出现的点数。这一随机现象的样本空间为: 它共含36个样本点,并且每个样本点出现的可能性都相同。参见教材6页图。这个图很多同学看不懂!其实就是x+y=?在坐标系反映出来的问题。 (二)排列与组合 (二)排列与组合 用古典方法求概率,经常需要用到排列与组合的公式。现简要介绍如下: 排列与组合是两类计数公式,它们的获得都基于如下两条计数原理。 (1)乘法原理: 如果做某件事需经k步才能完成,其中做第一步有m1种方法,做第二步m2种方法,做第k步有m k种方法,那么完成这件事共有m1×m2×…×m k种方法。 例如, 甲城到乙城有3条旅游线路,由乙城到丙城有2条旅游

线路,那么从甲城经乙城去丙城共有3×2=6 条旅游线路。 (2) 加法原理: 如果做某件事可由k类不同方法之一去完成,其中在第一类方法中又有m1种完成方法, 在第二类方法中又有m2种完成方法,在第k类方法中又有m k种完成方法, 那么完成这件事共有m1+m2+…+m k种方法。 例如,由甲城到乙城去旅游有三类交通工具: 汽车、火车和飞机,而汽车有5个班次,火车有3个班次,飞机有2个班次,那么从甲城到乙城共有5+3+2=10 个班次供旅游选择。 排列与组合 排列与组合的定义及其计算公式如下: ①排列:从n个不同元素中任取)个元素排成一列称为一个排列。按乘法原理,此种排列共有n×(n1) ×…×(n-r+1) 个,记为。若r=n, 称为全排列,全排列数共有n!个,记为,即:= n×(n-1) ×…×(n-r+1), = n! ②重复排列:从n个不同元素中每次取出一个作记录后放回,再取下一个,如此连续取r次所得的排列称为重复排列。按乘法原理,此种重复排列共有个。注意,这里的r允许大于n。 例如,从10个产品中每次取一个做检验,放回后再取下一个,如此连续抽取4次,所得重复排列数为。假如上述抽取不允许放回,则所得排列数为10×9×8×7=5040 。 ③组合: 从n个不同元素中任取x个元素并成一组 (不考虑他们之间的排列顺序)称为一个组合,此种组合数为: .特别的规定0!=1,因而。另外,在组合中,r个元素"一个接一个取出"与"同时取出"是等同的。例如,从10个产品中任取4个做检验,所有可能取法是从10个中任取4个的组合数,则不同取法的种数为: 这是因为取出的任意一组中的4个产品的全排列有4!=24 种。而这24种排列在组合中只算一种。所以。 注意:排列与组合都是计算"从n个不同元素中任取r个元素"的取法总数公式,他们的主要差别在于: 如果讲究取出元素间的次序,则用排列公式;如果不讲究取出元素间的次序,则用组合公式。至于是否讲究次序,应从具体问题背景加以辨别。 [例1.1-4] [例1.1-4] 一批产品共有个,其中不合格品有个,现从中随机取出n个,问:事

(完整版)概率的定义及其确定方法

§1.2 概率的定义及其确定方法 在本节,我们要给出概率的定义,这是概率论中最基本的概念。本节中我们还将介绍几种确定概率的方法。 随机事件的发生有偶然性,但我们常常会觉察到随机事件发生的可能性是有大小之分的。例如,购买彩票后可能中大奖,可能不中奖,但中大奖的可能性远比不中奖的可能性小。既然各种事件发生的可能性有大有小,自然使人们想到用一个数字表示事件发生的可能性大小。这个数字就称为事件的概率。 然而,对于给定的事件A ,该用哪个数字作为它的概率呢?这决定于所研究的随机现象或随机试验以及事件A 的特殊性,不能一概而论。在概率论的发展历史上,人们针对特定的随机试验提出过不同的概率的定义和确定概率的方法:古典定义、几何定义和频率定义。这些概率的定义和确定方法虽然有其合理性,但也只适合于特定的随机现象,有很大的局限性。那么如何给出适合于一切随机现象的概率的最一般的定义呢? 1900年数学家希尔伯特提出要建立概率的公理化定义以解决这个问题,即以最少的几条本质特性出发去刻画概率的概念.1933年数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这一公理化体系迅速得到举世公认,有了这个定义后,概率论才被正式承认为一个数学分支,并得到迅猛发展. 1. 概率的公理化定义 定义1.2.1 设Ω为样本空间,F 为Ω的某些子集组成的事件域.))((F A A P ∈是定义在事件域F 上的实值集函数,如果它满足: (1) 非负性公理 对于任一F A ∈,有0)(≥A P ; (2) 正则性公理 1)(=ΩP ; (3) 可列可加性公理 若,,21A A …,,n A …两两互不相容,则 则称)(A P 为事件A 的概率,称三元总体),,(P F Ω为概率空间. 概率的公理化定义刻画了概率的本质,概率是集合(事件)的实值函数,若在 事件域上给出一个函数,只要这个函数满足上述三条公理就称为概率。 这个定义只涉及样本空间和事件域及概率的最本质的性质而与具体的随机现象无关。对于具体的随机现象中的给定的事件,其概率如何合理地确定那要依据具

统计学 概念定义

1.统计学是收集,处理,分析,解释数据并且从数据中得到结论的科学。2数据分析:描述统计研究数据收集,处理,汇总,图表描述,概括与分析等的统计方法;推断统计研究如何利用样本数据来推断总体特征的统计方法。3.统计数据类型:分类数据,顺序数据,数值型数据。4.参数是用来描述总体特征的概括性数字度量,他是研究者想了解的总体的特征值。 5.统计量是用来描述样本的特征的概括性的数字度量。6概率抽样是遵循随机原则进行的抽样,总体中的与每个单位都要一定的机会被选入样本。7非概率抽样指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。8.抽样误差是由于抽样的随机性引进的样本结果与总体真值之间的误差。9.非样本误差指除了样本误差之外的,由于其他原因引起的样本的观察结果与总体真值之间的差异。10.条形图是用宽度相同的条形的高度或长短来表示数据多少的图形。11.饼图是用圆形及圆内扇形的角度来表示数值的大小的图形。12.茎叶图是反映原始数据分布的图形,它是由茎和叶两部分构成的,其图形是有数子组成的,通过茎叶图,可以看出数据的分布形状及数据的离散状况。13.集中趋势指一组数据向某一中心靠拢的程度,它反映了一组数据中心的位置所在。14.众数是一组数据中出现次数最多的变量值。众数主要用于测度分类数据的集中趋势,也可用于作为顺序数据以及数值型数据集中趋势的测度值。15.平均数也称为均数,它是一组数据相加后除以数据的个数得到的结果。16异中比率指非众数数组的频数占总频数的比例。17.方差是各变量值与其平均数离差平方的平均数。18.离散系数也称变异系数,它是一组数据的标准差与其相对应的平均数之比。19. 概率古典定义:如果某一随机试验的结果有限,而且各个结果出现的可能性相等,则某一事件A发生的概率为该事件所包含的基本事件数m与样本空间中所包含的基本事件数n的比值。20.概率的统计定义:在相同条件下随机试验n次,某事件A出现m次,则比值m/n称为事件A发生的频率。21.主观概率定义:对一些无法重复的验,确定其结果的概率只能根据以往的经验,人为确定这个时间的概率。22.当某一事件B已经发生时,求时间A发生的概率,称这种概率为时间B发生条件下事件A发生的条件概率。23.统计量概念:设X1,X2.。。。。。Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,…Xn),不依赖于任何未知参数,则称函数T(X1,X2,…Xn)是一个统计量。24.在参数估计中,用来估计总体参数的统计量的名称称为估计量。25.点估计就是用样本统计量的某个取值直接作为总体参数的估计值。2 6.区间估计就是点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减抽样误差得到。2 7.如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例称为置信水平,也称置信度或置信系数。2 8.评价估计量的标准:无偏性是指估计量抽样分布的数学期望等于被估计的总体参数:有效性指对同一总体参数的两个无偏估计量,有更小标准的估计量更有效:一致性指随着样本量的增大,点估计量的值越来越接近被估计总体的参数。2 9.原假设Ho为真却被我们拒绝了,犯这种错误的概率用a表示,称a错误或弃真错误:原假设为伪我们却没有拒绝,犯这种错误的概率用B表示,称B错误或取伪错误。30.如果样本是从总体的不同类别中分别抽取,研究目的是对不同的目标量之间是否存在显著性差异进行检验,称为拟合优度检验也称一致性检验。31.在研究问题时有时会遇到要求判断两个分类之间是否存在联系的问题,使用X2检验,判断两组或多组的资料是否相互关联,如果不相互关联,就称为独立,对这类问题的处理成文独立性检验。32.方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。33.当方差分析只涉及到一个分类自变量时称为单因素方差分析。34. 当方差分析只涉及两个分类自变量时称为双因素方差分析。

条件概率及其性质

1.条件概率及其性质 (1)条件概率的定义 设A 、B 为两个事件,且P (A )>0,称P (B |A )= 为在事件A 发生的条件下,事件B 发生的条件概率. (2)条件概率的求法 求条件概率除了可借助定义中的公式,还可以借助古典 概型概率公式,即P (B |A )= . (3)条件概率的性质 ①条件概率具有一般概率的性质,即0≤P (B |A )≤1. ②如果B 和C 是两个互斥事件,则P (B ∪C |A )= P(B|A)+P(C|A) ) . 2.事件的相互独立性 (1)设A 、B 为两个事件,如果P (AB )=P(A)P(B) ,则称事件A 与事件B 相互独立. (2)如果事件A 与B 相互独立,那么 与 , 与 , 与也都相互独立.3.二项分布 在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p ) n -k (k =0,1, 2,…,n ).此时称随机变量X 服从二项分布,记作 X ~B(n ,p) ,并称_p_为成功概率. 若X ~B (n ,p ),则E (X )=np . 1.区分条件概率P (B |A )与概率P (B ) 它们都以样本空间Ω为总样本,但它们取概率的前提是不相同的.概率P (B )是指在整个样本空间Ω的条件下事件B 发生的可能性大小,而条件概率P (B |A )是在事件A 发生的条件下,事件B 发生的可能性大小. 2.求法:(1)利用定义分别求P (A ),P (AB ),得P (B |A )= P (AB ) P (A ) ; (2)先求A 含的基本事件数n (A ),再求在A 发生的条件下B 包含的事件数即n (AB ),得P (B |A )= n (AB ) n (A ) . 1.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问 (1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少? 【解】 记事件A :最后从2号箱中取出的是红球;事件B :从1号箱中取出的是红球. P (B )= 42+4=23 ,P (B )=1-P (B )=13, (1)P (A |B )=3+18+1=49.(2)∵P (A |B )=38+1=1 3, ∴P (A )=P (AB )+P (A B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=11 27. 2.(2011年湖南)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正

概率的古典定义及其计算

12.2.2 概率的古典定义及其计算 定义 如果随机试验具有如下特征: (1)事件的全集是由有限个基本事件组成的; (2)每一个基本事件在一次试验中发生的可能性是相同的; 则这类随机试验称为古典概型. 定义 在古典概型中,如果试验的基本事件总数为n ,事件A 包含的基本事件个数为m ,那么事件A 发生的概率为P (A )=n m 。 这个定义叫做概率的古典定义。它同样具备概率统计定义的三个性质。 例1 从1,2,3,4,5,6,7,8,9九个数字中,随机地取出一个数字,求这个数字是奇数的概率。 解 设A={取出的是一个奇数},则基本事件总数为n=9,事件A 包含了5个基本事件(抽到1,3,5,7,9),即m=5,所以,P (A )=9 5=n m 。 例2 在10个同样型号的晶体管中,有一等品7个,二等品2个,三等品1个,从这10个晶体管中任取2个,计算: (1)2个都是一等品的概率; (2)1个是一等品,1个是二等品的概率。 解 基本事件总数为从10个晶体管中任取2个的组合数,故n=210C =45。 (1)设A={取出2个都是一等品},它的种数m=27C =21,其概率为P (A )=15 74521==n m ; (2)设B={取出2个,1个是一等品,1个是二等品},它的种数m=1217C C =14,所以 P (B )=45 14=n m 。 例3 储蓄卡上的密码是一组四位数号码,每位上的数字可以在0到9这10个数字中选取,问: (1)使用储蓄卡时如果随意按下一组四位数字号码,正好按对这张储蓄卡的密码的概率是多少? (2)某人没记准储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时如果随意按下密码的最后一位数字,正好按对密码的概率是多少? 解 (1)由于储蓄卡的密码是一组四位数字号码,且每位上的数字有从0到9这10中取法,这种号码共有410组。又由于是随意按下一组四位数字号码,按下其中哪一组号码的可能性都相等,可得正好按对这张储蓄卡的密码的概率1P =4 101。 (2)按四位数字号码的最后一位数字,有10中按法,由于最后一位数字是随意按的,按下其中各个数字的可能性相等,可得按下的正好是密码的最后一位数字的概率10 12=P 。 课堂练习:习题12.2 1—4 订正讲解 12.3.1 概率的加法公式 1.互斥事件概率的加法公式

概率论的定义以与公式

§2 随机事件的概率,古典概型与概率的加法公式 2000/7/31 一. 概率的统计定义: 1.频率: 随机事件在一次具体的试验是否发生,虽然不能预先知道,但是,当大量重复同一试验时,随机现象却呈现出某种规律, 即所谓统计规律性. 如:历史上有人作过成千上万次投掷硬币,下表列出他们的试验记录: 2.随机事件 1。随机事件及其概率 2。古典概型 容易看出,投掷次数越多正面向上的频率越接近0.5,其中 事件A发生的次数 频数 事件A发生的频率= = 试验总次数 试验总次数 . 我们将事件发生的可能性大小只停留在定性了解不够的,下面给出事件发生的可能性大小的客观的定量的描述,称为事件发生的概率. 2.随机事件的概率: (1) 定义:在不变的一组条件S下,重复作n 次试验,记μ是n 次试验中事件A 发生的次数.当 试验的次数n 很大时,如果频率 n μ 稳定在某一数值p 的附近摆动,而且一来随着试验次数增多,这种摆动的幅度越变越小,则称数值p 为事件A 在条件S下发生的概率,记作 ()P A p = 这里,频率的稳定性是概率一个直观朴素的描述,通常称为概率的统计定义.但必须指出,事件的频率是带有随机性的,这是由事件本身的随机性所决定。而事件的概率,却是一个客观存在的实数,是不变的。 二. 古典概型: 1.定义: 如果随机现象满足下列三个条件: (1) 一次试验可能结果只有有限个,即所有基本事件只有有限个:

12,,,n A A A L , (2) 每一个基本事件(1,2,,)i A i n =L 发生的可能性是相等的. (3) 基本事件(1,2,,)i A i n =L 是两两互不相容 满足以上三个条件的随机现象模型,称为古典概型. 在古典概型中,如果n 为基本事件总数, m 为事件A 包含的基本事件数, 那么事件A 的概率 ()m P A n == 法国数学家拉普拉斯(Laplace)在1812年把上式作为概率的一般定义.现在通常称它为概率 的古典概型的定义,因为它只适用于古典概型场合. 2. 古典概型公式的运用举例: 【例1】 袋里有2个白球和3个黑球.从袋任取出一球,求它是白球的概率. 解 : 容易看出,“从袋里任取一球”这一试验是古典概型的,且 基本事件总数n =5,取到白球的基本事件数m =2,故 把白球换为合格产品,黑球换为废品,则这个摸球模型就可以描述产品抽样检验问题.这种模型化的方法把表面上不同的问题归类于相同的模型之小中,能使问题更消楚,更易于计算。 【例2】把a, b 两个球随机地放到编号为I, Ⅱ, Ⅲ 的三只盒子里,求盒子I 中没有球的概率。 解:这是一个古典概型问题, 把a, b 两个球随机地放到编号为I, Ⅱ, Ⅲ 的三只盒子里,基本事件总数 2 39n == 设A=“盒子I 中没有球”,则事件A 包含的基本事件数 2 24m == ∴ 4 ()9 P A = 【例3】有一个口袋,内装a 只白球,b 只黑球,它们除颜色不同外,外形完全一样, 从袋了中任不同外,外形完全一样. 现任意模出2个球时,求: (1)模出2个球都是白球的概率; (2)模出一个白球一个黑球的概率 解: 这口袋共有a+b 只球,从袋了中任意模出2个球的基本事件总数 2 a b n C += , (1) 模出2个球都是白球基本事件数 2 1a m C =,

条件概率知识点、例题、练习题

条件概率专题 一、知识点 ①只须将无条件概率P(B)替换为条件概率P(B A),即可类比套用概率满足 的三条公理及其它性质 ②在古典概型中--- P(B A) P( AB) (AB) P(A) (A) ③在几何概型中--- P(B A) P( AB) (AB) P(A) (A) 事件AB包括的基本事件(样本点)数事件A包括的基本事件(样本点)数 区域AB的几何度量(长度,面积,体积等) 区域A的几何度量(长度,面积,体积等) 条件概率及全概率公式 .对任意两个事件A B,是否恒有P(A) > P(A| B). 答:不是?有人以为附加了一个B已发生的条件,就必然缩小了样本空间,也就缩小了概率,从而就一定有P(A) > P(A| B), 这种猜测是错误的?事实上, 可能P(A) > P(A| B),也可能P(A) < P(A|B),下面举例说明. 在0,1,…,9这十个数字中,任意抽取一个数字,令 A={抽到一数字是3的倍数}; B={抽到一数字是偶 数}; B2={抽到一数字大于8},那么 P(A)=3/10, P(A| B i)=1/5, P(AB)=1. 因此有P(A) > P(A| B i), P(A) v P(AB). .以下两个定义是否是等价的? 定义1. 若事件A、B满足P(A^=P(A)P(B), 则称A、B相互独立. 定义2.若事件A、B满足P(A|B)=P(A)或P(B|A)=P(B),则称A、B相互独立?答:不是的?因为条件概率的定义为 P(A B)=P(AB?/ P(B)或P(B| A)=P(A^/ P(A) 自然要求P(A)丰0, P(B)丰0,而定义1不存在这个附加条件,也就是说,P(AB=P(A)P(B)对于P(A)=0或P(B)=0也是成立的.事实上,若P(A)=0 由0W P(AB) < P(A)=0 可知P(AB=0 故P(AB=P(A)P(B). 因此定义1与定义2不等价,更确切地说由定义2可推出定义1, 但定义1 不能推出定义2,因此一般采用定义1更一般化. . 对任意事件 A 、B, 是否都有P(AB < P(A < P(A+B) < P(A)+P(B). 答:是的.由于P(A+B)=P(A)+P(B)- P(AB (*)

《概率的意义》教案和教后反思

《概率的意义》教案 【课题】25.1.2 概率的意义(第一课时) 【教学目标】 〈一〉知识与技能 1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值 2.在具体情境中了解概率的意义 〈二〉教学思考 让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系. 〈三〉解决问题 在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念. 〈四〉情感态度与价值观 在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育. 【教学重点】在具体情境中了解概率意义. 【教学难点】对频率与概率关系的初步理解 【教具准备】壹元硬币数枚、图钉数枚、多媒体课件 【教学过程】 一、创设情境,引出问题 提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁. (抓阄、抽签、猜拳、投硬币,……) 学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币 追问,为什么要用抓阄、投硬币的方法呢? (这样做公平.能保证小强与小明得到球票的可能性一样大) 在学生讨论发言后,教师评价归纳. 用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大. 质疑:那么,这种直觉是否真的是正确的呢?

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

条件概率试题

2.2.1 条件概率 【学习要求】 1.理解条件概率的定义. 2.掌握条件概率的计算方法. 3.利用条件概率公式解决一些简单的实际问题. 【学法指导】 理解条件概率可以以简单事例为载体,先从古典概型出发求条件 概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB) P(A) 也可以利用缩小样本空间的观点计算. 1.条件概率的概念 设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率. 2.条件概率的性质 (1)P(B|A)∈. (2)如果B与C是两个互斥事件,则 P(B∪C|A)=.

[一点通]求条件概率一般有两种方法: 一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A) =n(AB) n(A) ,其中n(AB)表示事件AB包含的基本事件个数,n(A)表示事件A包含的基本事件个数. 二是直接根据定义计算,P(B|A)=P(AB) P(A) ,特别要注意P(AB)的求法.[例1]一只口袋内装有2个白球和2个黑球,那么: (1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少? [思路点拨]先摸出1个白球后放回或不放回,影响到后面取到白球的概率,应注意两个事件同时发生的概率的不同. [精解详析](1)设“先摸出1个白球不放回”为事件A,“再摸出1个白球”为事件B,则“先后两次摸到白球”为AB,先摸1球不放回,再摸1球共有4×3种结果. ∴P(A)=2×3 4×3 = 1 2,P(AB)= 2×1 4×3 = 1 6. ∴P(B|A)=P(AB) P(A) = 1 3. (2)设“先摸出1个白球放回”为事件A1,“再摸出1个白球”为事件B1,两次都摸到白球为事件A1B1. ∴P(A1)=2×4 4×4= 1 2,P(A1B1)= 2×2 4×4 = 1 4. ∴P(B1|A1)=P(A1B1) P(A1) = 1 4 1 2 = 1 2. 故先摸1个白球不放回,再摸出1个白球的概率为1 3;先摸1个白球后放回, 再摸出1个白球的概率为1 2.

概率的定义及其确定方法

1.2 概率的定义及其确定方法 本节包括概率的公理化定义、排列与组合公式、确定概率的频率方法、古典方法、几何方法及主观方法。主要介绍概率的定义,在排列、组合公式的基础上,利用频率方法、古典方法、几何方法及主观方法计算事件的概率。 概率是对随机事件发生可能性大小的数值度量。 1.随机事件的发生是带有偶然性的,但随机事件的发生的可能性是有大小之分的; 2. 随机事件的发生的可能性是可以度量的,犹如长度和面积一样; 3.在日常生活中往往用百分比来表示。这里也是如此 在概率论的发展史上,曾经有过概率的古典定义、概率的几何定义、概率的频率(统计)定义和概率的主观定义。1933年,前苏联数学家柯尔莫哥洛夫首次提出了概率的公里化定义。 一、概率的公理化定义 1.定义 设Ω为一样本空间, F 为Ω上的某些子集组成的一个事件域,如果对任意事件A ∈F ,定义在F 上的一个实值函数P (A )满足: (1)非负性公理:()0;P A ≥ (2)正则性公理:()1;P A = (3)可列可加性公理:若12,,,n A A A 两两互不相容,有 11()();n n n n P A P A +∞+∞ ===∑ 则称P (A )为事件A 的概率,称三元素(,,)P ΩF 为概率空间。 1.并没有告诉我们应如何确定概率。但概率的古典定义、概率的几何定义、概率的频率(统计)定义和概率的主观定义都是在一定的场合下确定概率的方法。由于计算概率要用到排列与组合的公式。 2.概率是关于事件的函数。 二、排列与组合公式 1.两大计数原理 (1)乘法原理 :如果某件事需要经过k 步才能完成,做完第一步有1m 种方法,做完第二步有2m 种方法,…,做完第k 步有k m 种方法,那么完成这件事共有12n m m m ??? 种方法。 如某班共有45位同学,他们生日完全不相同的情况有365×364×363×…×321种。 (2)加法原理:如果某件事可由k 类不同的办法之一去完成,在第一类办法中有1m 种完成方法,在第二类办法中有2m 种方法,…,在第k 类办法中有k m

《条件概率的定义》教学设计

《条件概率的定义》教学设计

P(B │A)=(P(AB))/(P(A)) 同样 , 可以在 P(B)>0的条件下,定义在事件B 发生的条件下,事件 A 发生的条件概率为 P(A │B)=(P(AB))/(P(B)) (二)条件概率的三个基本性质 设A 是一事件,且P(A)>0,则 1. 非负性。对任一事件 B , P(B │A)≥0 2. 规范性 : 对于必然事件Ω, P(Ω│A)=1 3. 可列可加性: 设A i (i =1,2,...),,互不相容,则 P (∪i=1∞ A i |B)=∑P (A i | B )∞ i=1 相仿可以得到如下性质: P (A |B )=1?P (A|B );以及 P (A ?B|C )=P (A|C )?P (AB|C ); 等类似的性质 此外,前面所讲的概率的性质都适用于条件概率。 (三)计算条件概率 P(B │A)有两种方法: 1 在样本空间 Ω 中,先求P(AB),P(A) ,再按定义计算 P(B │A) 2 在缩减的样本空间 Ω_A 中求事件B 的概率,可得到P(B │A) 三、巩固新知 例:一袋中有 10 只球,其中 3 只黑球, 7 只白球,依次从袋中不放回取两球。 ( 1 )已知第一次取出的是黑球,求第二次取出的仍是黑球的概率; ( 2 )已知第二次取出的是黑球,求第一次取出的也是黑球的概率。 解:记A_i =“第i 次取到黑球”(i=1,2 ) ( 1 )可以在缩减的样本空间ΩA 1上计算 . 因为A 1已发生,即第一次取得的是黑球,第二次取球时,所有可取的球只有9 只。 ΩA 1中所含的基本事件数为 9 ,其中黑球只剩下 2 只,所以P (A 2|A 1)=2 9。 ( 2 )由于第二次取球发生在第一次取球之后,故缩减的样本空间 ΩA 1的结构并不直观,因此,直接在 Ω 中用定义计算P (A 1|A 2) 因为P (A 1A 2)= 3×210×9=1 15 又由 且 与 互不相容

概率统计与随机过程第一章(第二节)几何统计概率的定义

第一章随机事件的概率 第二节概率的定义及性质 二.概率的几何定义 古典概率的局限性: 基本事件总数有限,各个基本事件发生的可能性相同. 对基本事件总数无限的情形,古典概率就不适用了. 概率的古典定义是以试验的基本事件总数有限和基本事件等可能发生为基础的。对于试验的基本事件有无穷多个的情形,概率的古典定义显然不适用了。为了研究基本事件有无穷多个而又具有某种等可能性这样的一类随机试验,需要用几何方法来引进概率的几何定义。

先从几个简单的例子开始。 例1 某公共汽车站每隔十分钟有某一路公交汽车到达,乘客到达汽车站的时刻是任意地.求一个乘客候车时间不超过三分钟的概率. 例2 如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海域里随意选定一点钻探,问钻到石油的概率是多少? 例3 在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率。 一种相当自然的答案是认为 ;例2中钻到例1所求的概率等于3 10 8;而例3所求的石油的概率等于 10000 1。在求这些概率时,我概率等于 200

们事实上利用了几何的方法,并假定了某种等可能性。 在例1中,乘客候车时间的区间为[0,10],且取各点的可能性一样; 候车的时间短于3分钟,也就是候车时间的区间为[0,3],相应的概率应是310 。 在例2中,由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率自然认为等于贮藏油域的面积与整个海域面积之比,即等于1000085000040=。 同样地,例3中由于取水样的随机性,所求概率等于水样的体积与总体积之比 20014002= 。

条件概率(教案)

2.2.1条件概率 寿阳县第一职业中学` 付慧萍 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 授课类型:新授课 课时安排:1课时 教具:多媒体 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基 本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为 1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖 奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y和Y Y Y.在事件A 发生的情况下事件B发生,等价于事件A 和事件B 同时发生,即AB 发生.而事件AB 中仅含一个基本事件Y Y Y,因此 (|) P B A=1 2 = () () n AB n A .

大学数学概率统计概念定义归纳

一、随机事件及其概率 1.(基本概念) 随机事件定义(特点):1.试验可以在相同条件下重复进行; 2.每次试验的可能 结果不止一个,并且能事先明确试验的所有可能结果; 3.在一次试验之前不能确定哪一个结果会出现。 样本空间:随机试验的结果称为基本事件、样本或样本点。样本空间就是随机试验所有可能的结果构成的集合,也就是由所有样本点构成的集合,通 常记为Ω 事件,事件发生与否,必然事件,不可能事件 事件(定义):在试验中,可能发生也可能不发生的事件称为随机随机事件,简称事件。;;提要容:随机试验中人们特别关注的具有某种共同特征的一些结果,从数学意义上讲,就是样本空间的子集。事件通常用大写英文字母表示。 在一次试验中,若试验结果ω∈A,则称这次试验中事件A发生了,否则称事件A没有发生。 提示:事件是人们根据自己的喜爱定义的,而事件发生与否是与某次试验关联着的。 有两个特殊的事件:样本空间本身,每次试验一定发生,称为是必然事件;空集也是Ω的子集,也能称为事件,每次试验一定不会发生,称为不可能事件。

事件域: 我们希望随机试验所涉及的所有事件作为集合的运算所得到的结果还是事件,这就是所谓运算的封闭性。 随机试验的事件构成的集合类如果对最多经“可列无限多”次事件的运算的结果还是事件,则把这个集合类称为事件域。 约定随机试验的事件构成事件域,通常记为F。 事件的概率 定义在事件域F上的集函数P,满足非负性、规性、和可列可加性。 概率统计定义:随机事件A发生的可能性大小,称为事件A的概率。 概率公理化定义:设E为随机试验,S为它的样本空间,对于E中的每一事件A,恰对应一个实数,记作P(A),若它满足下列3个条件,则称P(A) 为事件A的概率。 1.非负性:0≤P(A) ≤1; 2.规性:P(A)=1; 2.可列可加性:设A1,A2,….An…..是两两互不相容事件,则 有 古典概型:设随机试验具有下面两个特性:1.试验的样本空间只包含有限个元素; 2.试验中每个基本事件发生的可能性相同。则称这种随机试验为等可 能概型或古典概型。

概率统计第二章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第二章 随机变量及其分布 教学要求: 一、理解随机变量的概念;理解离散型随机变量及其分布律的定义,理解分布律的性质;掌 握(0-1)分布、二项分布、Poisson 分布的概念、性质;会计算随机变量的分布律. 二、理解分布函数的概念及其性质;理解连续型随机变量的定义、概率密度函数的基本性质, 并熟练掌握有关的计算;会由分布律计算分布函数,会由分布函数计算密度函数,由密度函数计算分布函数. 三、掌握均匀分布、正态分布和指数分布的概念、性质. 一、掌握一维随机变量函数的分布. 重点:二项分布、正态分布,随机变量的概率分布. 难点:正态分布,随机变量函数的分布. 练习一 随机变量、离散型随机变量及其分布律 1.填空、选择 (1)抛一枚质地均匀的硬币,设随机变量?? ?=,,出现正面 ,,出现反面H T X 10 则随机变量X 在区间 ]22 1 ,(上取值的概率为21. (2)一射击运动员对同一目标独立地进行4次射击,以X 表示命中的次数,如果 {}81 80 1= ≥X P ,则{}==1X P 8. (3)设离散型随机变量X 的概率分布为{},,2,1, ===i cp i X P i 其中0>c 是常数, 则( B ) (A )11-=c p ; (B )1 1 +=c p ; (C )1+=c p ; (D )0>p 为任意常数 2.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取出3只球,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 解:从1~5中随机取3个共有103 5=C 种取法. 以X 表示3个中的最大值.X 的所有可能取值为;5,4,3 {}3=X 表示取出的3个数以3为最大值,其余两个数是1,2,仅有这一种情况,则

概率论与数理统计概率历史的介绍.doc

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种 多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能. 16 世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰 子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等 数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812 年,法国数学家拉普拉斯(1749 —1827 )在《概率的分析理论》中给出概率的古 典定义:事件 A 的概率等于一次试验中有利于事件 A 的可能结果数与该事件中所有可 能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它 适用的条件有二:( 1)可能结果总数有限;( 2)每个结果的出现有同等可能.其中 第( 2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工 作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要 n r 的各种排列(或总数为n r)的各种组合)看成是等可能的, 求,就是将总数为 P( , ) C( , 通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且有数学上的. “ 用性的狭窄性”促使雅各布 ?伯努利( 1654 — 1705 )“ 找另一条途径找到所期待的果”,就是他在研究古典概率的另一重要成果:伯努利大数定律.条定律告我“ 率具有定性”,所以可以“用率估概率”,而也以后概率的定奠定了思想基.“古典定数学上的”在特朗(1822 — 1900 )悖中表 得淋漓尽致,它揭示出定存在的矛盾与含糊之,致了拉普拉斯的古典定 受到猛烈批. 3.定的史脉 概率的古典定然直,但是适用范有限.正如雅各布?伯努利所:“?? 种方法适用于极罕的象.”因此,他通察来确定果数目的比例,并且“即使是没受教育和的人,凭天生的直,也会清楚地知道,可利用 的有关的次数越多,生的就越小”.然原理,但是其科学明 并不,在古典概型下,伯努利了一点,即“当次数愈来愈大,率接近概率”. 事上,不于古典概型适用,人确信“从中察的率定性”的事是一个普遍律.1919 年,德国数学家 ?米塞斯( 1883 — 1953 )在《概率基研究》一中提出了概率的定:在做大量重复,随着次数的增加,某个事件出的率是在一个固定数的附近,示出一定的定性,把个 固定的数定一事件的概率.

统计概率知识点梳理总结

统计概率知识点梳理总结 第一章随机事件与概率 一、教学要求 1.理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算. 2.了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算. 4.理解事件的独立性概念,掌握运用事件独立性进行概率计算. 5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率. 本章重点:随机事件的概率计算. 二、知识要点 1.随机试验与样本空间 具有下列三个特性的试验称为随机试验: (1) 试验可以在相同的条件下重复地进行;· (2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果; (3) 每次试验前不能确定哪一个结果会出现. 试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用e Ω=. 表示,e称为样本空间中的样本点,记作{}e 2.随机事件

在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ) 看作特殊的随机事件. 3.**事件的关系及运算 (1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ?(或B A ?). (2) 相等:若两事件A 与B 相互包含,即A B ?且B A ?,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ?;“n 个事件 1,2, , n A A A 中至少有一事件发生”这一事件称为 1,2, , n A A A 的和,记作12n A A A ???(简记为1 n i i A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作 A B ?(简记为AB );“n 个事件1, 2, , n A A A 同时发生”这一事件称为 1, 2, ,n A A A 的积事件,记作12n A A A ???(简记为12n A A A 或1 n i i A =). (5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件 1,2, ,n A A A 中任意两个事件不能同时发生,即 i j A A φ =(1≤i

相关主题
文本预览
相关文档 最新文档